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ADYEETISEMENT TO THE FIRST EDITION.

In my late father's Will no instructions wei-e left as to the publication of his

Writings, nor specially as to that of the "Elements of Quateenions," which, but

for his late fatal illness, would have been before now, in all their completeness, in

the hands of the Public.

My brother, the Rev. A. H. Hamilton, who was named Executor, being too

much engaged in his clerical duties to undertake the publication, deputed this task

to me.

It was then for me to consider how I could best fulfil my triple duty in this

matter—First, and chiefly, to the dead; secondly, to the present public; and thirdly,

to succeeding generations, I came to the conclusion that my duty was to publish

the work as I found it, adding merely proof-sheets, partially corrected by my late

fatlier, and from which I removed a few typographical errors, and editing only in

the literal sense of giving forth.

Shortly before my father's death, I had several conversations with him on the

subject of the "Elements," In these he spoke of anticipated applications of

Quaternions to Electricity, and to all questions in which the idea of Polarity is

involved—applications which he never in his own lifetime expected to be able fully

to develop, bows to be reserved for the hands of another Ulysses, He also discussed

a good deal the nature of his own forthcoming Preface ; and I may intimate that,

after dealing with its more important topics, he intended to advert to the great

labour which the writing of the "Elements" had cost him—labour both mental

and mechanical ; as, besides a mass of subsidiary and unprinted calculations, he

wrote out all the manuscript, and corrected the proof-sheets, without assistance.

And here I must gratefully acknowledge the generous act of the Board of Trinity

College, Dublin, in relieving us of the remaining pecuniary liability, and thus incur-

ring the main expense, of the publication of this volume. The announcement of

their intention to do so, gratifying as it was, surprised me the less, when I remem-

bered that they had, after the publication of my father's former book, " Lectures on

Quaternions," defrayed its entire cost ; an extension of their liberality beyond what



vi ADYEETISEMENT TO THE FIRST EDITION.

was recorded by him at the end of his Preface to the ** Lectures," which doubtless

he would have acknowledged, had he lived to complete the Preface of the "Elements."

He intended also, I know, to express his sense of the care bestowed upon the

typographical correctness of this volume by Mr. M. H. Gill of the University Press,

and upon the delineation of the figures by the Engraver, Mr. Oldham.

I annex the commencement of a Preface, left in manuscript by my father, and

which he might possibly have modified or rewritten. Believing that I have thus

best fulfilled my part as trustee of the unpublished " Elements," I now place them

in the hands of the scientific public.

WILLI A.M EDWIN HAMILTON.

January Ist, 1866.



PREFACE TO THE FIEST EDITION.

[1.] The volume now submitted to the public is founded on the same

principles as the "Lectures,"^^) which were published on the same subject

about ten years ago : but the plan adopted is entirely new, and the present

work can in no sense be considered as a second edition of that former one.

The Table of Contents, by collecting into one view the headings of the

various Chapters and Sections, may suflBoe to give, to readers already

acquainted with the subject, a notion of the course pursued : but it seems

proper to offer here a few introductory remarks, especially as regards the

method of exposition, which it has been thought convenient on this occasion

to adopt.

[2.] The present treatise is divided into Three Books, each designed to

develop one guiding conception or view, and to illustrate it by a sufficient

but not excessive number of examples or applications. The First Book

relates to the Conception of a Vector, considered as a directed right line, in

space of three dimensions. The Second Book introduces a Mrst Conception

of a Quaternion, considered as the Quotient of two such Vectors. And the

Third Book treats of Products and Powers of Vectors, regarded as constituting

a Second Principal Form of the Conception of Quaternions in Qeometry.*********»•***
* This fragment, by the Author, was foiuid in one of his manuscript books by the Editor.

[W. E. Hamilton.]





PREFACE TO THE SECOND EDITION.

Sir William Rowan Hamilton died on the 2nd of September, 1865,

leaving liis great work on Quaternions unfinished. He intended to liave

added some account of the operator* v> an Index, and an Appendix con-

taining notes on Anharmomc Coordinates^ on the Baryceiifric Calculus, and

on proofs of his geometrical theorems stated in Nichol's Cyclopaedia. At

the time of his death, with the exception of a fragment of the preface, and

a small portion of the table of contents, all the manuscript he had prepared

was in type. As he rarely commenced writing before his thoughts were

fully matured, he has left no outline of the additions contemplated.

In this edition, printed by direction of the Board of Trinity College,

Dublin, the original text has been faithfully preserved, except in a few

places where trifling errors have been corrected. I liave added notes,

distinguished in every case by pquare brackets, wherever I thought they

were wanted. I have rendered the work more convenient by increasing the

number of cross-references, by including in the page-headings the numbers

of the articles (for the original references are generally given to articles and

not to pages), by dividing the work into two volumes, and by the addition

of an index. The table of contents has been amplified by a brief analysis

of each article, designed as far as possible to assist the reader in following

and in recapitulating the arguments in the text. Hamilton indicated " a

minimum course of study, amounting to rather less than 200 pages (or parts

of pages)," suitable for a first perusal, and he intended to have prepared a

table containing references to this course. Such a table will be found at the

end of the table of contents, but for the convenience of students of Physics,

and of those desirous of obtaining a working knowledge of Hamilton's

powerful engine of research, I have amplified it somewhat, duly noting,

however, the minimum course.

* In the second volume I hope to devote an appendix to this important subject.

Hamilton's Elements of Quaikrnions. ^
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I infer from the fragment of the author's preface that he proposed to

sketch an outline of the method of exposition, of an elementary character

and adapted to those readers to whom the subject is new. To those readers

chiefly I address the following remarks :

—

According to the plan of this work, whenever a new conception or

notation is introduced, a series of illustrative examples immediately follows.

Most of these involve no real difficulty, but occasionally a long and difficult

investigation occurs even in the early parts of the book. Intricate investi-

gations, which are merely illustrative, are everywhere omitted from the

selected course.

The First Book deals with Vectors, considered without reference to

angles or to rotations. In a word, it is concerned with the application of

the signs +, -, and = to the algebra of vectors. The sign - is first intro-

duced, and the sign + follows from the formula of relation [b - a) -^ a = h.

Sections 3 and 4 (pp. 7-11) are occupied with a series of propositions con-

cerning the commutative and associative laws of the addition of vectors, and

the multiplication of vectors by sealars, or algebraical coefficients. Proposi-

tions such as these often appear to a student to be mere truisms, and unfortu-

nately it is not easy to find elementary examples to convince him of the

contrary. The addition of vector-arcs, he will find on p. 156, is not com-

mutative, though it is associative.! With the exception of a few passages

noted in the table of a selected course, there is nothing in chaps. II. and III.

essential to a good knowledge of the subject. They contain, however, an

account of an extremely elegant theory of anharmonic coordinates, indepen-

dent of any non-projective property, and intricate and powerful investigations

of geometric nets and of systems of barycentres.

The Second Book treats of Quaternions considered as quotients of vectors,

and as involving angular relations. It opens with a first conception of a

quaternion as a quotient of two vectors, and thus the division of vectors is

introduced before that of multiplication, just as in the First Book subtraction

precedes addition. If j = /3 : a is the quotient of two vectors, /3 and a, it is

natural to define the product q.a by the relation q.a = [5. It is soon found,

if any vector y is selected in the plane of a and /3, that the product q.y is a

vector in the same plane whose length bears to that of y the same ratio as

the length of /3 to that of a, and which makes the same angle with y that /3

* In fact the commutative law of addition depends on a property of a parallelogram, and there-

fore ultimately on the validity of Euclid's fifth postulate. It does not hold except for Euclidean space.
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makes with a. Thus, from the first oonoeption of a quaternion as a quantity

expressing the relative length and direction of two given vectors, we have

come to consider a quaternion as an operator on a special set of vectors, viz.

those in its own plane. Observe that, so far, we have not arrived at the

conception of the product of two vectors, nor of the product of a quaternion

and an arbitrary vector. We have only reached the limited conception of the

product q .y oi a, quaternion q and a vector y in its plane, and while an

interpretation is assigned to ^ . 7, as yet the product 7 . ? is unknown.

After reviewing a class of quaternions derived by fixed laws from a

given quaternion, a special class of quaternions, called versors or radial

quotients, is considered in detail. The product of a pair of versors is found

(p. 147) to depend on the order in which they are multiplied, that is qq' is

not generally equal to q^g, or the commutative law of algebraic multiplication

is not true for versors, nor d fortiori for quaternions.

The multiplication of a special set of versors of a restricted kind occupies

section 10, chap. I. ; and on p. 160 the famous formula

t'=j^^k' = ijk=-l (A)

is deduced, in which ?',/, and k are right versors* in three mutually perpen-

dicular planes. This section contains the first example of a product of more

than two versors, and it is shown that the multiplication of these specially

related right versors is associative. Warned by the failure of the commutative

law, it is necessary to determine if the remaining laws of algebra are valid

in quaternions. In algebra, if we first form the product be and then multiply

by a, we have the same result as if we multiplied v by the product aby and this

associative law is expressed in symbols by the equation a . be = ab . c. This

is also true for quaternions, and it may be regarded as the chief feature

which distinguishes quaternions from other systems of vector analysis. For

example, Ghrassmann's multiplication is sometimes associative, but sometimes

it is not. It is necessary to prove, moreover, that quaternion multiplication

is distributive, or that a{h + c)==ab + ac. This is not true if b and c are vector

arcs, even when a is a number as shown on p. 156. Some of Hamilton's

early investigations led him to a non-distributive system of multiplication

in 1830.t

Next a quaternion is decomposed in two ways:— (1) in section 11, into

the produet of its tensor and its versor
; (2) in section 12, into the sum of its

* A right versor turns a vector in its plane through a right angle.

t Preface to Lectures on Quaternions, paragraph [41]. Scheffler has reproduced this system.

b2
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scalar and its right or vector part. This right or vector part, it is ultimately

shown, may be identified with a vector ; at present it is regarded as a right

quaternion, or a quotient of two perpendicular vectors. By the first of these

decompositions, " the multiplication of any two quaternions is reduced to the

arithmetical operation of multiplying their tensors, and the geometrical

operation of multiplying their versors"; and by the second the addition of

quaternions is reduced to the algebraical addition of their scalar parts, and

the geometrical addition of their vector parts. Thus it is proved (Arts. 206,

207) that the addition of the vector parts is reducible to the addition of

vectors, and, as the addition both of scalars and of vectors is commutative

and associative, so likewise is the addition of quaternions.

The multiplication of right quaternions, or of the vector parts of quater-

nions, is proved in Art. 211 to be distributive ; and, as any quaternion is

the sum of a scalar and a vector part, it is also proved that the general

multiplication of quaternions is distributive. A long series of examples

follows, some of which are not easy, including Hamilton's well-known con-

struction of the ellipsoid.

Section 14 is entitled " On the reduction of the general Quaternion to the

Standard duadrinomial Form {q = w -v ix +jy + kz) ; with a First Proof of

the Associative Principle of the Multiplication of Quaternions." This proof

depends on the general Distributive Property lately proved, and on the

Associative Property of the particular set of versors i, j, k (Art. 161) ; but

in chap. III. various proofs are given which are independent of these pro-

perties. The first proof is sujficient for all practical purposes.

The laws of combination of quaternions are now established. Addition

(and subtraction) is associative and commutative ; multiplication (and division)

is associative and distributive, but not commutative.

Passing over the second and third chapters in this Second Book, which

are chiefly complementary to the development of the theory, we find in

chap. I., Book III., three lines of argument traced out in justification

of the identification of the vector part of a quaternion with a vector. In

fact a restriction is imposed, or a simplification is iutroduced, and this

restriction or simplification is shown to be consistent with the results

already obtained.* In much tlie same way as a couple or an angular

Compare the note to p. 176, in which Hamilton remarks: *' "We have thus a new point of
agreement, or of connexion, between right quaterniom and their index-vectors, tending to justify the
ultimate assumption (not yet made), of equality between the former and the latter."
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velocity is sometimes represented by a right line, a right quaternion and a

vector of appropriate length, perpendicular to the plane of the quaternion,

are now represented by the same symbol.*

The scope of the remainder of this volume is, I think, sufficiently indi-

cated in the table of contents. The foregoing sketch of the development of

the calculus of Quaternions necessarily presents but a meagre view of the

nature of this work ; however, my object has been to carry out, as far as I

could, the intention of its illustrious author expressed in the fragment of

his preface.

CHARLES JASPER JOLY.

The Obsekvatoht, Dunsink,

December, 1898.

* With but slight change, much of Books I. and II. might have been extended to space of

M-dimensions. In Book III. advantage is taken of the peculiar simplicity of space of those dimensions

in which but one direction is perpendicular to a given plane, and a legitimate reduction of the number
of symbols is consequently made.
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t Compare the second Note to page 206.

[X OA ' BC denotes the point of intersection of the lines oa and bc, uk • abc the point of iiitersec-

tion of the line dk with the plane abc]
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Hamilton's Elements of Quaternions. •=
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given plane, p. 56.—Art. 82, Foimulse of coUineation and coplanarity, p. 66.—
Art. 83, Ratios of co-ordinates expressed as anharmonics of pencils of planes, p. 57.

—

Art. 84, Anharmonics of groups of points and of pencils of planes, p. 58.—Ail. 85,

Quotients of two homogeneous and linear functions of the coordinates of a point

expressed as the anharmonic of a pencil of planes, p. 59.—Art. 86, Reciprocal

theorem and example, p. 59.—Art. 87, Centre and plane of homology of pyramid,

p. 60.]

Section 4.—On Geometrical Nets in Space, 61-81

[Art. 88, Net derived from five points, p. 61.—Art. 89, First construction,

p. 61.—Art. 90, Second construction, p. 62.—Art. 91, Quinary symbols of con-
structed lines and planes, p. 63.—Art. 92. Eight types of points n. Anharmonic
properties, p. 63.—Art. 93, Verification that the enumeration of the points P2 is

complete, p. 73.— Art. 94, Arrangement of the points on lines and in planes, p. 76.

—

Art. 95, Extension of results of (44) and (45) to nets in space, p. 79.]
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Section 5.—On Barycentres of Systems of Points : and on Simple and Com-
plex Means of Vectors, ......... 81-87

[Art. 96, Simple mean of coinitial vectors ; Mean point ; Gauche quadrilateral

(1), (2) ; Lines and planes determined by mean points of partial systems (3)-(6), p. 81.

—Art 97, Complex means ; Barycentres, p. 84.]

Section 6.—On Anharmonic Equations, and Vector Expressions, of Surfaces

and Curves in Space, ......... 87-96

[Art. 98, Local and tangential equations of suifaces; lluled quadric (I)-(IO)

;

twisted curve (11), (12), p. 87.—Art. 99, Vector expression for a curve p = ^(<)

;

for a surface p = <p{t, u) ; Line and plane (1) ; Ellipse and ellipsoid (2) ; quadric cone

(3), (4) ; Cubic cone (6) ; Ruled quadric (6)-(10), p. 94.]

Section 7.—On Differentials of Vectors 96-103

[Art. 100, Definition of the differential of a vector; Hodograph ^5) ; Developable

surface (8) ; Tangents to surfaces (9), p. 96.]

An application of ^nite differences, to a question connected with barycentres, occurs in

p. 84. The anharmonic generation of a ruled hyperboloid (or paraboloid) is employed to

illustrate anharmonic equations ; and (among other examples) certain cones, of the second

and third orders, have their vector equations assigned. In the last Section, a dejinilion of

differentials (of vectors and scalars) is proposed, which is afterwards extended to differen-

tials of qtuilernions, and which is independent of developments and of infinitesimals, but

involves the conception of limits. Vectors of Velocity and Acceleration are mentioned
;

and a hint of Hodographs is given.

BOOK 11.

ON QUATERNIONS, CONSIDERED AS QUOTIENTS OF VECTORS,

AND AS INVOLVING ANGULAR RELATIONS, . . 107-249

CHAPTER I.

Fundamental Peinciples eespkcting Quotients op Vectohs.

Very little, if any, of this Chapter II. i., should be omitted, even in a first perusal

,

since it contains the most essential conceptions and notations of the Calculus of Quater-

nions, at least so far as quotients of vectors are concerned, with numerous geometrical

illustrations. Still there are a few investigations respecting circumscribed cones, imagi-

nary intersections, and ellipsoids, in the thirteenth Section, which a student may pass

over, and which will be indicated in the proper place in this Table.

Section 1.—Introductory Remarks ; First Principles adopted from Algebra, 107-110

[Arts. 101-2, Comparison between Books I. and II. ; General principles adopted

by definition, p, 107.—Art. 103, I. Division must correspond to converse act of

multiplication, or - a = /B ;
— = ^, p. 108.—Art. 104, II. Unequal vectors divided

a a

by equal vectors give imequal quotients, p. 109.—Art. 105, III. Quotients equal to

C 2
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the same are equal to one another, p. 109.—Art. 106, IV. - +-= and
a a a

-: - = - ; Definition of addition, subtraction and division of quotients with a common
a a /3

denominator, p. 109.—Art. 107, V. ^ • - = -, p. 109.]
p a a

Section 2.—First Motive for naming the Quotient of two Vectors a Quater-

nion, 110-113

[Art. 108. The quotient of two vectors is not generally a scalar, p. 110.—Art. 109,

But depends on their relative direction as well as on their relative length, p. 110.

—

Art. 110, The relative direction may be specified by a rotation, p. 111.—Art. Ill,

A rotation is defined by its amount and the direction of its positive axis, p. 111.

—

Art. 112, Hence a geometric quotient is a function of four numerical elements or a

quaternion, p. 112.]

Sections.—Additional Illustrations, 113-114

[Art. 113, Illustration of a quaternion by means of a desk on a table, p. 113.

—

Art. 114, Four numerical elements, p. 113.—Art. 115, Meaning of these elements,

p. 114.—Art. 116, A change in one of these alters the quaternion, p. 114.]

It is shown, by consideration of an angle on a desk, or inclined plane, that the complex

relation of one vector to another, in length and in direction, involves generally a system of

four numerical elements. Many other motives, leading to the adoption of the tiame,

"Quaternion," for the subject of the present Calculus, from its fundamental connexion

with the number " Four," are found to present themselves in the course of the work.

Section 4.—On Equality of Quaternions ; and on the Plane of a Quater-

nion, 115-119

[Art. 117, The quotients of corresponding sides of similar triangles in one plane

are equal when the similarity is direct, p. 115.—Art. 118, But are unequal (and

conjugate) when the similarity is inverse, p. 115.—Art. 119, Coplanar and diplanar

quaternions, p. 115.—Art. 120, Two geometric quotients can be reduced to a common
denominator, and therefore their sum, difference, product, and quotients are quater-

nions, p. 116.—Art 121, Case of equal, p. 117.—Art 122, And of diplanar quaternions

reduced to a common denominator, p. 117.—Art. 123, If ? = - = -, 7 ||| a, )3> and
y a

8 III o, j8, or 7 III g', S
lll^', ||| being a sign of coplanarity, p. 117.—Art. 124, Also

yj3 /8 6 5 a 7—
Ill -, p. 118.—Art. 125, If - = -, then, inversely, - = {, and alternately,

xa a ay p o

- = - and - = -, p. 118.—Art. 126, — = - and xq = qx if a; is a scalar, p. 119.]
a p y S Xa a

Section 5.—On the Axis and Angle of a Quaternion ; and on the Index of

a Right Quotient, or Quaternion, :
119-122

[Arts. 127-8, The axis of a Quaternion is defined, p. 119.—Art. 129, And denoted

by Ax. q, p. 120.—Art. 130, The angle of a quaternion, Z ? > < tt, p. 120.—Art.
131, Axis and angle of a scalar, p. 120.—Art. 132, Right quaternion or quotient of

perpendicular vectors ; Examples of geometrical loci expressed by the symbols Ax.
and Z, p. 121.—Art. 133, Index of a right quaternion; A right quaternion is deter-

mined uniquely by its Index, p. 122.]
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Section 6.—On the Eeciprocal, Conjugate, Opposite, and Norm of a Quater-

nion; and on Null Quaternions, 122-131

j3 a
[Art. 134, The reciprocal oi q = - is g' = -; Lq = Lq' \ Ax. q = - Ax. ^',

a p

p. 122.—Art. 135, As in algebra ^' = - = 1 : y, p. 123.—Art. 136, And g" •.q = q".q'

= 9" • -» P- 123.—Art. 137, Conjugate of quaternion, p. 123.—Art. 138, iKq= Lq;

Ax. Kq = — Ax. q, p. 124.—Art. 139, Kq = q, itqia aacalar; and conversely, p. 124.

—Art. 140, 5' + K^ is a scalar, p. 125.—Art. 141, Which is zero if Z 5f
= -, p. 125.

—Art 142, And conversely. More generally j + K^ > = or < 0, if Z ^ < = or > -,

and conversely, p. 126.—Art. 143, Opposite of a quaternion, p. 126.—Art. 144, Of

a right quotient. K - + - = is the equation of a plane (1) ; and K--- = of a
a a a a

right line (2), p. 126.—Art. 145, K^ = KK = 1 ; K(- 5?) = - K5 ; K - = J- ;
jKo = Nj

q Kg
= (Ty)»,p. 127.]

Section 7.—On Radial Quotients ; and on the Square of a Quaternion, . 131-134

[Art. 146, Definition of a Badial (or Versor), p. 131.—Art. 147, ± 1 are limiting

cases of radials. Right radial, p. 132.—Art 148, The square of a right radial is - 1.

Generally ?' = - Nj if Z ? = -, p. 132.—Art. 149, v - 1 has, in this Calculus, an in-

finite number of values of two classes—geometrical Reals and geometrical Imaginaries.

Equation of circle, p. 133.—Art. 150, Reciprocal, conjugate and opposite of a Right

Radial, p. 134.]

Section 8.—On the Versor of a Quaternion, or of a Vector ; and on some

General Formulae of Transformation, 135-143

[Art. 151-2, Radials and Versors differ only in the point of view from which they

are regarded, p. 135.—Ait. 153-4, Deduction ofproperties proved in Aits. 147-8 when
a versor is regarded as a factor, p. 135.—Art. 155, Uo denotes a unit vector having the

a Tja

same direction as o, p. 136.—Art. 156, And XJq = V' = =- denotes the versor of j',

a Ua

p. 136.—Art. 157, Vq depends only on relative direction, and is uniquely determined

by iTJq^ L q a,nd Ax.XJq= Ax. q; andconversely, p. 137.—^Art 158, KTJq = =- =U-

= UK^, p. 138.—Art. 159, TJxq = + 'Uq ot - TJq according as the scalar a; > or < 0,

whether y is a quaternion or a vector, p. 139.—Art. 160, U- = UU = U, p. 140.

—

Art. 161, Transformations of U^. Geometrica proofs and illustrations, p. 140.]

In the five foregoing Sections it is shown, among other things, that the plane of a

quaternion is generally an essential element of its constitution, so that diplanar quaternions

are unequal ; but that the square of every right radial (or right versor) is equal to negative

unity, whatever its plane may be. The Symbol V — 1 admits then of a real interpretation,

in this as in several other systems ; but when thus treated as real, it is in the present Cal-

culus too vague to be useful : on which account it is found convenient to retain the old

signification of that symbol, as denoting the (uninterpreted) Imaginary of Algebra, or

what may here be called the scalar imaginary, in investigations respecting non-real inier-

teetiont, or non-real eontaets, in geometry.
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Section 9.—On Vector-Arcs, and Vector-Angles, considered as Represen-

tatives of Versors of Quaternions ; and on the Multiplication and

Division of any one such Versor by another, ..... 143-156

This Section is important, on account of its constructions of multiplication and division ;

which show that the product of two diplanar versors, and therefore of two such quaternions,

is not independent of the order of the factors.

[Art. 162, Vector Arcs, p. 143.—Art. 163, a ba = a do and a ac = n bd if a ab

= A CD, p. 143.—Arts. 164-5, Conditions of equality, p. 144.—Art. 16 6,'Great semi-

circular arcs, p. 145.—Art. 167, Eepresentation of the product of two versors hy a

vector arc, p. 146.—Art. 168, The multiplication of versors is not commutative,

p. 147.—Art. 169, Unless the versors are coplanar, p. 148.—Art. 170, For right

versors qq = lLq'q = --^, p. 148,—Art. 171, If their planes are at right angles, ^q

= - qq is a right versor in the plane at right angles to both, 149.—Art. 172, Repre-

sentation of division of versors, p. 150.—Art. 173, q {q" : q) = q" only ii q"
\\\ q;

and conversely, p. 150.—Art. 174, Vector angles, p. 151.—Art. 175, Employed to

construct the product q'q, p. 151.—Art. 176, Second construction, p. 152.—Art. 177,

Sense of the rotation produced by q'q, p. 152.—Art. 178, Illustration by vector

angles of the inequality of q'q and gq', p. 153.—Art. 179, Division of versors.

Conical rotation, p. 154.—Art. 180, Sense of rotation round poles of sides of spheri-

cal triangle. Arcual sum. Spherical sum, p. 166.]

Section 10.—On a System of Three Right Versors, in three Rectangular

Planes; and on the Laws of the Symbols, ij'k, .... 1.57-163

[Art. 181, Versors i,j, and A; variously expressed as quotients, p. 157.—Art. 182,

I. »2 =-l;/ = -l; k''- = -l. II. ij=k;jk=i; ki=j. III. ji = -k; kj = -i;

ik = —J, p. 157.—Art. 183, The associative property of multiplication proved for

i, j, and k ; Fundamental Formula i^ =y2 = k^ = ijk = - I. (A), p. 159.—Art. 184,

II. and III. derived from (A), p. 161.]

The student ought to make himself familiar with these laws, which are all included

in the Fundamental Formula,
ii=.p = k^ = ijk = -l. (A)

In fact, a Quateunion may be symbolically defined to be a Qtiadrinomial Expression of the

form,

q =^ w + ix +jy + kz, (B)

in which tv, x, y, z aie four scalars, or ordinary algebraic quantities, while i, j, k are

three new symbols, obeying the laws contained in the formula (A), and therefore not

subject to all the usual rules of algebra : since we have, for instance,

ij = + k, but ji — — k ; and i'^pk''' = - {ijky.

Section 1 1 .—On the Tensor of a Vector, or of a Quaternion ; and on the

Product or Quotient of any two Quaternions, 163-176

[Art. 185, Tensor of a vector, p. 163.—Art. 186, Acts of Tension and Version.

Examples on the plane and sphere, p. 164.—Art. 187, Tensor of a quaternion.

Examples, p. 167.—Art. 188, Decomposition of a quaternion into Tensor and Versor,

p. 169.—Art. 189, Distinct and partial acts of Tension and Version, p. 169.

—

Art. 190, Transformations of Tj, p. 170.—Art. 191, Tensors and Versors of products

and quotients, p. 171.—Art. 192, — = - . - ; Kq'q = K? . Ka'. Exampleson circles,

2Q q 9'

p. 173.—Art. 193, Quotient of two right quaternions is equal to the quotient of

their indices, ot q' : q = Iq : \q, p. 174.—Art. 194, And q'q - Iq : Iq-'^, if

it5 = ^?'=^iP- 176.]
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[Art. 201, Determinate decomposition of a vector along and at right angles to

a given direction, p. 192.—Art. 202, And of a quaternion into a scalar and a right
Q a

quotient, p. 193.—Art. 203, y3' = S - . a and )8" = V - . a are projections of ob along
a a

and at right angles to oa. Eight line and cylinder, p. 194.—Art. 204, Properties of

"Sq. Cylinders, spheroids, and ellipsoids, p. 196.—Art. 205, V is a distributive

symbol, p. 204.—Art. 206, IV (j + q) = IVj + IV«?', p. 205.—Art. 207, The general

addition of quaternions is commutative and associative, p. 206.—Art. 208, Quotient

and product of two right parts. Spherical trigonometry, p. 207.—Art. 209, CoUinear

quaternions, p. 210.—Art. 210, The multiplication of collinear quaternions is doubly

distributive. Trigonometry, p. 211.—Art. 211, Multiplication of right parts, p. 218.

Art. 212, In general 2y2«?'= 'Zqq' , p. 219.— Art. 213, Chords ; Art. 214, secants; and

Art. 215, tangent-cones to a sphere, pp. 220, 223, 225.—Art. 216, Ellipsoid, circular

sections, cyclic planes, p. 230.—Art. 217, Hamilton's construction, p. 232.—Art. 218,

Geometrical consequences of the construction, p. 235.—Art. 219, Semi-axes. Spherical

conies, p. 238.—Art. 220, Transformations of the Quaternion equation of the ellipsoid,

p. 240.

Section 14.—On the Reduction of the General Quaternion to a Standard

Quadrinomial Form ; with a First Proof of the Associative Principle of

Multiplication of Quaternions, ....... 242-249

Arts. 213-220 (with their sub-articles), in pp. 220-242, may be omitted at first reading.

[Art. 221, Standard quadrinomial form of a quaternion, p. 242.—Art. 222,

Expression for derived functions. Law of the Norms, p. 243.—Art. 223, Proof of the

associative principle of Multiplication. Examples and Interpretations, p. 245.—Art.

224, Sketch of further treatment of the subject, p. 249.]

CHAPTER 11.

On Complanae Quateknions, or Quotients of Vectoks in One Plane; and

ON Powees, Roots, and Logaeithms of Quateenions.

The first six Sections of this Chapter (II. ii.) may be passed over in a first perusal.

Section 1.—On Complanar Proportion of Vectors; Fourth Proportional to

Three, Third Proportional to Two, Mean Proportional, Square Root

;

General Reduction of a Quaternion in a given Plane, to a Standard

Binomial Fonii, .......... 250-256

[Art. 225, Quaternions and vectors in a given plane, p. 260.—Art. 226, Fourth

proportional to three coplanar vectors, p. 260.—Art. 227, Continued proportion.

Mean proportional, p. 251.—Art. 228, Standard binomial form. Couples, p. 254.]
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[Art. 229, Powers and roots of quaternions, p. 256.—Art. 230, Cube roots.

Illustration, p. 256.—Art. 231, Principal cube root, p. 257 —Art. 232, ^"Ty has

tbree real quaternion values, p. 257.—Art. 233, Fractional powers. General roots of
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Powers, 262-268
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of amplitudes. Examples, p. 264.—Art. 237, Powers with scalar, p. 266.—Art.

238, And with coplanar quaternion exponents, p. 268.]

Section 4.—On the Ponential and Logarithm of a Quaternion ; and on

Powers of Quaternions, with Quaternions for their Exponents, . 268-276

[Alt. 239, Ponential of a quaternion P(j), p. 268.—^Art. 240, Exponential property

P(^' + q") = Vq'Vq", if q' \\{q', p. 270.—Art. 241, TP(a; + iy) = V{x) ; UP(a; + iy)

= Viy ; connexion with trigonometry, p. 271.—Art. 242, Imponential, p. 274 ; and

Art. 243, logarithm of a quaternion, p. 275.]

Section 5.—On Finite (or Polynomial) Equations of Algehraic Form, in-

volving Complanar Quaternions ; and on the Existence of 11 Real

Quaternion Roots, of any such Equation of the w'* Degree, . . 277-288

[Art. 244-8, Statements of the theorem that f„^ = 5" + ?i?»"^ + . . . + ^„ = has «

real quaternion roots, pp. 277-78.—Art. 249, Transfoimation of the equation, p. 278.

—Art. 250, Geometrical statement, p. 279.—Art. 251, Construction of ovals, p. 279.

—Art. 252, Geometrical proof, p. 280.—Art. 263, Quadratic equation, p. 281.—Art.

264, Second geometrical proof
, p. 284.—Art. 255, Construction of triangle, given base,

product of sides, and difference of base angles, p. 287.]

Section 6.—On the n^ - n Imaginary (or Symbolical) Roots of a Quaternion

Equation of the n*^ Degree, with Coefficients of the kind considered in

the foregoing Section, 288-292

[Art. 256, Quaternion 01 couple equation equivalent to a system of two scalar

equations, p. 288.—Art. 257, Imaginary quaternion solutions. The general

quaternion equation has w* roots, p. 290.]

Section 7.—On the Reciprocal of a Vector, and on Harmonic Means of

Vectors ; with Remarks on the Anharmonic Quaternion of a Group of

Four Points, and on Conditions of Concircularity, .... 293-300

[Art. 258, Reciprocal of a vector, p. 293.—Art. 259, Eeciprocal of a sum or

difference. Anharmonic quaternion function of a group of four points, p. 293.

—

Arts. 260-1, Circular and harmonic groups, pp. 296, 298.]

In this last Section (II. ii. 7) the short first Article 258, and the following Art. 269,

as far as the formula VIII. in p. 294, should be read, as a preparation for the Third

Book, to which the Student may next roceed.
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Section 1.—On some Eminciations of the Associative Property, or Principle,

of Multiplication of Diplanar Quaternions, ..... 301-307

[Art. 262, q'q=ztiiq' = sr, s' = rq, and t = ss', p. 301.—Art. 263, System of

planes of the six quaternions q, r, s, s, q, t, p. 302.—Art. 264, Enunciations of the

principle in the foim of theorems concerning vector-arcs, p. 302 ; and Art. 265,

Vector-angles, p. 3C4 ; and Arts. 266-7, A hexagon inscribed in a sphere, pp. 305,

306, and Art. 268, A pencil of six rays in space, p. 306.]

Skction 2.—On some Geometrical Proofs of the Associative Property of

Multiplication of Quaternions, which are independent of the Distribu-

tive Principle, 308-312

[Art. 269, Natiu* of proofs, p. 308.—Art. 270, Proof of the theorems of Art. 264

by means of cyclic-arc properties of a sphero-conic, p. 308, and Art. 271, Of that of

Art. 265 by its focal properties, p. 310, and Art. 272, Of that of Arts. 266-7 by stereo-

graphic projection, p. 310.]

Section 3.—On some Additional Formulae, 313-317

[Art. 273, Norm and Tensor of a vector, p. 313.—Art. 274, Transformations of

the equation of the ellipsoid ; Square root of a quaternion and of zero ; Biquater-

nions, p. 313.]

BOOK III.

ON QUATERNIONS, CONSIDERED AS PRODUCTS OR POWERS
OF VECTORS ; AND ON SOME APPLICATIONS OF QUATER-
NIONS, 321 to the end.

CHAPTER I.

On the Interpretation of a Product op Vectors or Power of a Vector,

AS A Quaternion.

The first six Sections of this Chapter ought to be read, even in a first perusal of the work.

Section 1.—On a First Method of Interpreting a Product of Two Vectors

as a Quaternion, .......... 321-322

[Art. 275-7, Introductory, p. 321.—Art. 278, First definition of a product of

vectors /3a = ;8 : Ro, p. 322.]

Hamilton's Elements of Quaternions. ^
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Section 2.— On some Consequences of the foregoing Interpretation, . 322-328

[Art. 279, j3a = Ka)8, p. 322.—Art. 280, Multiplication of vectors is doubly distri-

butive. 3 {a+a) = pa + )8a', p. 323.—Art. 281, Products of parallel and perpendicular

vectors. Examples. Trigonometrical expressions, p. 323.—Art. 282, Square and

reciprocal of a vector o^ = -To^ ; Eo = - = o"^ Examples on spheres, p. 326.]
a

Tiaa ^rst interpretation treats ihe product $ . a, a,8 equal to tbe quotient /3 : a"' ; where

o"^ (or Ea) is the previously defined Reciprocal (II. ii. 7) of the vector o, namely a seco^id

vector, which has an inverse length, and an opposite direction. Multiplication of Vectors is

thus proved to be (like that of Quaternions) a Distributive, but not generally a Commutative

Operation. The Square of a Vector is shown to be always a Negative Scalar, namely the

negative of the square of the tensor of that vector, or of the number which expresses its

length ; and some geometrical applications of this fei'tile principle, to spheres, &c., are

given. The Index of the Right Fart of a Product of Two Coinitial Vectors, oa, ob, is

proved to be a right line, perpendicular to the Plane of the Triangle oab, and representing

by its length the Double Area of that triangle ; while the Rotation round this Index, from
the Multiplier to the Multiplicand, ia positive. This right part, or vector part, Voj3, of the

product vanishes, when the factors axe parallel (to one common line) ; and the scalar part,

Soj9, when they are rectangular.

Section 3.—On a Second Method of arriving at the same Interpretation, of

a Binary Product of Vectors 829-330

[Art. 283, Connexion between Eight Quaternion and its Index. I. Iv' = Iv, if

v' = V, and convtrsely. II. I {v' ± r) = Iv' ± Iv. III. Iv' -.Iv = v' xv. IV. Blv =

IRv, p. 329.—Art. 284, The formula Iv' . Iv = v'v = /3o, is substantially identical

with the definition of 278, p. 329.]

Section 4.—On the Symbolical Identification of a Right Quaternion with its

own Index : and on the Construction of a Product of Two Rectangular

Lines, by a Third Line, rectangular to both, ..... 331-334

[Art. 285, How far is the substitution of a right quaternion for its index permis-

sible? p. 331.—Art. 286, This substitution is consistent with the First Book, p. 331.

—Art. 287-8, And with the Second, p. 332.—Art. 289, And is therefore adopted, p. 333.

—Art. 290, Product of two rectangular lines a line at right angles to both, p. 333.]

Section 5.—On some Simplifications of Notation, or of Expression, resulting

from this Identification ; and on the Conception of an Unit-Line as a

Right Versor, 334-337

[Art. 291, Suppression of the symbols I and Ax. = UV, p. 334.—Art. 292, and

of the terms Eight Part and Index-vector, p. 335.—Art. 293, Conception of a unit-line

as a right versor, p. 336.]

In this second interpretation, which is found to agree in all its results with the first,

but is better adapted to an extension of the theory, as in the following Sections, to

ternary products of vectors, a product of two vectors is treated as the product of the two

right quaternions, of which those vectors are the indices (II. i. 6). It is shown that, on

the same plan, the Sum of a Scalar and a Vector is a Quaternion.
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Skction 6.—On the Interpretation of a Product of Three or more Vectors

as a Quaternion, .......... 337-356

[Art. 294, Multiplication of vectors is a special case of multiplication of Quater-

nions. Examples on products of three vectors, p. 337.—Art. 295, Standard trinomial

form for a vector. Cartesian expressions. Product of any number of vectors, p. 344.

Art. 296, On the product of sides of polygons inscribed in a sphere. Anharmonic

functions, p. 347.]

This interpretation is affected by the substitution, as in recent Sections, of Eiffht

Quaternions for Vectors, without change of order of the factors. Multiplication of Vectors,

like that of Quaternions, is thus proved to be an Associative Operation. A vector,

generally, is reduced to the Standard Trinomial Form,

p = ix +J1/ + kz
;

(C)

in which i,j, k are the peculiar symbols already considered (II. i. 10), but are regarded

now as denoting Three Rectangular Vector-units, while the three scalars x, y, z are simply

rectangular co-ordinates ; from the known theory of which last, illustrations of results

are derived. The Scalar of the Product of Three coinitial Vectors, oa, ob, oc, is found

to represent, with a sign depending on the direction of a rotation, the Volume of the

Parallelepiped under these three lines ; so that it vanishes when they are complanar.

Constructions are given also for products of successive sides of triangles, and other closed

polygons, inscribed in circles, or in spheres; for example, a characteristic property of the

circle is contained in the theorem, that the product of the four successive sides of an

inscribed quadrilateral is a scalar : and an equally characteristic (but less obvious) property

of the sphere is included in this other theorem, that the product of the five successive sides

of an inscribed gauche pentagon is equal to a tangential vector, drawn from the point at

which the pentagon begins (or ends) . Some general Formulae of Transformation of Vector

Expressions are given, with which a student ought to render himself very familiar, as

they are of continual occurrence in the practice of this Calculus; especially the four

formulae (pp. 337, 339)

:

V . yYpa = aS$y - $Sya
;

(D)

Vy/Sa = oS^S-y - jSSya + 780)8 ;
(E)

pSa$y = aSfiyp + $Syap + ySa0p ;
(F)

pSa$y = Y$ySap + YyaS$p + YafiSpy ;
(G)

in which a, P, y, p are any four vectors, while S and V are signs of the operations

of taking separately the scalar and vector parts of a quaternion. On the whole, this

Section (III. i. 6) must be considered to be (as regards the present exposition) an

important one ; and if it have been read with care, after a perusal of the portions

previously indicated, no diflSiculty will be experienced in passing to any subsequent

applications of Quaternions, in the present or any other work.

Section 7.—On the Fourth Proportional to Three Diplanar Vectors, . 356-379

[Art. 297, The Quaternion fourth proportional to three diplanar vectors ^Sa-'y.

Areas of spherical triangles and polygons, p. 356.—Art. 298, Modifications when the

sides of the triangle are greater than quadrants, p. 372.—Art. 299, Exceptional case

of quadrantal triangle. Fourth proportional to three rectangiilar vectors, p. 377.]

Section 8.—On an Equivalent Interpretation of the Fourth Proportional

to Three Diplanar Vectors, deduced from the Principles of the Second

Book, 379-393

[Art. 300, By Book II. ()3 : a) 7 = 8 + eu, u being a fourth proportional to three

given rectangular unit-lines, p. 379.—Art. 301, Before adopting -7 =— 7'* if

d2
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- — — = 1, p. 382.—Art. 302, Two tests are applied, and found to be satisfied,
ay &

p. 382.—Art. 303, Consequently, adopting the formula of 301, if « is a right

quaternion, v-^Iv = u, p. 383.—Art. 304, and as a further consequence {$: a)y =
5 + eu, u being now the same for all systems of mutually rectangular lines. Spherical

parallelograms, p. 385.— Art. 305, Series of spherical parallelograms, p. 387.

—

Art.- 306, Construction of the series, p. 390.]

Section 9.—On the Third Method of interpreting a Product or Function of

Vectors as a Quaternion ; and on the Consistency of the Results of the

Intei-pretation so obtained, with those which have been deduced from

the two preceding Methods of the present Book, .... 394-396

[Art. 307, Fourth unit ti, p. 394.]

These three Sections may be passed over, iu a first reading. They contain, however,

theorems respecting composition of successive rotations (pp. 360, 361, see also p. 368) ;

expressions for the semi-area of a spherical polygon, or for half the opening of an arbitrary

pyramid, as the angle of a quaternion product, with an extension, by limits, to the

somi-area of a spherical figure bounded by a closed curve, or to half the opening of an

arbitrary cone (pp. 368, 369) ; a construction (pp. 390-392), for a series of spherical

parallelograms, so called from a partial analogy to parallelograms in a plane; a theorem

(p. 393), coimecting a certain system of such (spherical) parallelograms with the /oci of a

spherical conic, inscribed in a certain quadrilateral ; and the conception (pp. 384, 394) of a

Fourth Unit in Space {u, or + 1), which is of a scalar rather than a vector character, as

admitting merely of change of sign, through reversal of an order of rotation, although it

presents itself in this theory as the Fourth Proportional (if^Tc) to Three Rectangular

Vector Units.

Section 10.—On the Interpretation of a Power of a Vector as a Quaternion, 396-420

[Art. 308, A power of a vector is a quaternion, p. 396.—Art. 309, and a

quaternion may be regarded as a power of a vector. Proof of the equation
2c 2b 2a

.yTT ^iF aTT ^ _ 1^ p, 399._Art. 310, which includes the whole doctrine of Spherical

Triangles. Spherical sum of angles, p. 404.—Art. 311, And arcual addition of

sides, p. 407.—Art. 312, Solution of the equation of 309, p. 408.—Art. 313, Ex-
tension to spherical polygons, p. 414.—Art. 314, Geometrical loci and, p. 417.—
Art. 315, Transformations connected with the powers of vectors, p. 420.]

It may be well to read this section (III. i. 10), especially for the Exponential
Connexions which it establishes, between Quaternions and Spherical Trigonometry, or

rather Polygonometry, by a species of extension of Moivre's theorem, from the plane to

space, or to the sphere. For example, there is given (in p. 417) an equation of six terms,

which holds good for every spherical pentagon, and is deduced in this way from an
extended exponentialformula. The calculations in the sub-articles to Art. 312 (pp. 409-
414) may however be passed over; and perhaps Art. 315, with its sub-articles (p. 420).
But Art. 314, and its sub-articles, pp. 417-419, should be read, on account of the
exponentialforms which they contain, of equations of the circle, ellipse, logarithmic spirals
(circular and elliptic), helix, and screw surface.

Skcxion 11.—On Powers and Logarithms of Diplanar Quaternions; with
some Additional Formulae, 421-429

[Art. 316, Powers, logarithms, and trigonometrical functions of quaternibns.
Supplementary formula, p. 421.]

It may suffice to read Art. 316, aud its Hist eleven sub-articles, pp. 421-423. In this
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Section, the adopted Logarithm, Iq, of a quaternion y, is the simplest root, q', of the

transcendental equation,

1 + ?' + ^ + 273 + &c. = ? ;

and its expression is found to be,

Iq = lTq + Aq.TJYq (H)

in which T and U are the signs of tensor and versor, while /.q ia the anffk of 5^, supposed

usually to be between and ir. Such logarithms are found to be often useful in this

Calculus, although they do not generally possess the elementary property, that the sum
of the logarithms of two quaternions is equal to the logarithm of their product : this

apparent paradox, or at least deviation from ordinary algebraic rules, arising necessarily

from the corresponding property of quaternion multiplication, which has been already

seen to be not generally a commutative operation {q'q" not = q"q', unless q' and q" be

eomplanar). And here, perhaps, a student might consider his ^rst perusal of this work
as closed.*

XXIX
Pages

CHAPTER II.

Ok Differbntials and Developments of Functions of Quatebnions; and
ON SOME Applications of Quateenions to Geometrical and Physical

Questions.

It has been already said, that this Chapter may be omitted in a first perusal of the work.

Section 1.—On the Definition of Simultaneous Differentials, . . . 430-432

[Art. 317, Introductory, p. 430.—Art. 318, The usual definitions of diiferential

coefficients and of derived coefiicients being inapplicable, p. 430.—Arts. 319, 320,

Difierentials of quaternions are defined, p. 431.—Art. 321, Simultaneous differen-

tials, p. 432.]

Section 2.—Elementary Illustrations of the Definition, from Algebra and

Geometiy, . . . 432-437

[Art. 322, Illustration from Algebra, p. 432.—Ai-t. 323, And from geometry,

p. 435.]

In the view here adopted (comp. I. iii. 7), differentials are not necessarily, nor even
generally, small. But it is shown at a later stage (Art. 401), that the principles of tliis

Calculus allow us, whenever any advantage may be thereby gained, to treat differentials

as infinitesimals; and so to abridge calculation, at least in many applications.

* If he should choose to proceed to the Differential Calculus of Quaternions in the next

Chapter (III. ii,), and to the Geometrical and other Applications in the third Chapter
(III. iii.) of the present Book, it might be useful to read at this stage the last Section

(I. iii. 7) of the First Book, which treats of Differentials of Vectors (pp. 96-102); and
perhaps the omitted parts of the Section II. i. 13, namely Articles 213-220, with theii-

sub-articles (pp. 220-242), which relate, among other things, to a Construction of the

Ellipsoid, suggested by the present Calculus. But the writer ^^ill now abstain from
making any further suggestions of this kind, after having indicated as above what
appeared to him a minimum course of study, amounting to ratlier less than 200 pages (or

parts of pages) of thia Volume, which will be recapitidated for the convenience of the

student at the end of the present Table.
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Sbction 3.—On some general Consequences of the Definition, . . 438-451

[Art. 324, Differential of q^ and of q-^, p. 438.—Art. 325, Notation proposed,

p. 440 —Art. 326, Distributive property, p. 441.—Art. 327, Differential quotients

and differential coefficients, p. 443.—Art. 328, Differential of a function of several

quaternions, p. 445.—Art. 329, Partial differentials, p. 446.—Art 330, Elimination

of a differential, p. 448.—Art. 331, Differentiation of functions of functions, p. 449.]

Partial differentials and derivatives are introduced ; and differentials of functions

offunctions.

Section 4.—Examples of Quaternion Differentiation, .... 451-464

[Art. 332, Differentiation of algebraic and of, p. 451.—Art. 333, Transcendental

functions of a quaternion, p. 453.—Art. 334, Differentiation of Kg^, ^q, Yq, Tq, and

JJq, p. 454.—Art. 335, Differentiation of the axis and angle of a quaternion, p. 457.

—

Art. 336, Differentiation of scalar functions of vectors, p. 459.—Art. 337, And of

vector functions of scalars. Examples, p. 461,]

One of the most important rules is, to differentiate the factors of a quaternion product,

in situ ; thus (by p. 446),

d.qq' = iq .q + q . dq'. (I)

The formula (p. 439), A . q-^ = - q-^dq . q-\ (J)

for the differential of the reciprocal of a quaternion (or vector), is also very often useful

;

and 80 are the equations (p. 456),

dT^^gd,. dU^^^dg
(J.)

Tq q Vg q

and (p. 454), d . o« = ya'+» dt
;

(L)

q being any quaternion, and o any constant vector-unit, while t ia & variable scalar. It

is important to remember (comp. III. i. 11), that we have not in quaternions the usual

equation,

dl? = —

;

Q

unless q and dq be complanar; and therefore that we have not generally,

dl, = ^^

if /J be a variable vector; although we have, in this Calculus, the scarcely less simple

equation, which is useful in questions respecting orbital motion.

« P

if a be a constant vector, and if the plane of a and p be given (or constant).

dl^ = ^, (M)
« P
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Section 5.—On Successive Differentials and Developments, of Functions

of Quaternions, .......... 465-484

[Art. 338, Examples. Second differentials, p. 465.—Art. 339, Simplification

when cPq = 0, or dq = const., p. 466.—Art. 340, Special case of Taylor's theorem,

p. 467.—Ai-t. 341, On the limiting ratio of two functions which vanish together.

Geometrical example, p. 469.—Art. 342, Taylor's series extended to quaternions,

p. 473.—Art. 343, Examples of quaternion development, p. 476.—Art. 344, Successive

differentials and differences, p. 479.—Art. 345, Successive differentials of functions of

several quaternions. Scalar and Vector integrals, p. 479.]

In this Section principles are established (pp. 469-473), respecting qaatemion functions

which vanish together ; and a form of development (pp. 473-475) is assigned, analogous*

to Taylor^ s Series, and like it capable of being concisely expressed by the symbolical

equation, 1 + A = 6<^ (p. 480). As an example of partial and successive differentiation,

the expression (pp. 480-481),

which may represent any vector, is operated on ; and an application is made, by means of

definite integration (pp. 482, 483), to deduce the known area and volume of a sphere, or

of portions thereof ; together with the theorem, that the vector stun of the directed elements

of a spheric segment is zero : each element of surface being represented by an inward

normal, proportional to the elementary area, and corresponding in hydrostatics to the

pressure of afluid on that element.

Section 6.—On the Differentiation of Implicit Functions of Quaternions

;

and on the General Inversion of a Linear Function, of a Vector or

a Quaternion ; with some connected Investigations, . . . 484-668

[Art. 346-347, The solution of a linear quaternion equation, or the Inversion of

a linear quaternion function, p. 484. Is reducible to the inversion of a linear vector

function, p. 485.—Art. 348, Transformations of the formula of solution, p. 489.

—

Art. 349, Quaternion constants or invariants of <p. Self-conjugate parts, p. 491.

—

Art. 350, Deduction of a symbolic cubic equation satisfied by <p and its conjugate <^',

p. 494.—Art. 351, Case of a binomial function. Fixed lines and planes, p. 497.

—

Art. 352, Case of equal roots. Depressed equation, p. 499.—Art. 353, Case of

unequal roots, real and imaginary, p. 508.—Art. 354, Case in which no root is zero.

Real and rectangular system for self-conjugate functions, p. 516.—Art. 355, New
proof of existence of the system, p. 523.—Art. 356, Theorem of successively derived

lines, p. 525.—Art. 357, Rectangular and cyclic transformations, p. 527.—Art. 358,

Focal transformations, p. 530.—Art. 359, Passage from cyclic to focal forms, p. 635.

—Art. 360, Bifocal and mixed transformations, p. 545.—Art. 361, Reciprocity of

forms, p. 547.—Art. 362, Scalar function, Unear with respect to vectors, p. 550.

—

Art. 363, Linear and vector functions derived by dififerentiation, p. 551.—Art. 364,

Solution of linear quaternion equation, p. 555.—Art. 365, Symbolic and biquadratic

equation, p. 560.]

In this Section it is shown, among other things, that a Linear and Vector Symbol, ^,

of Operation on a Vector, p, satisfies (p. 494) a Symbolic and Cubic Equation, of the form,

= m- m'lp + »»'
V _ ,^3

.

(N)

whence m^-i = m' - m"ip + ^* = i^, (N')

= anothei' symbol of linear operation, which it is shown how to deduce otherwise

* At a later stage (Art. 375), a new Enunciation of Taylor's Theorem is given, with a

new proof, but still in s.form adapted to quaternions.
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from f, as well as the three scalar constants, m, m\ m" . The connected algebraical

cubic (pp. 517, 618),

M = m-\- m'c + m"c'^ -i- c' = 0, (0)

is found to have important applications ; and it is proved* (pp. 519, 520) that if

S\<f>p = Sp(j>\, independently of \ and p, in which case the function (j> is said to be

self- conj'uff(lie, then this last cubic has three real roots, c\, c%, cz; while, in the same case,

the vector equation,

Yfi<pp = 0, (P)

is satisfied by a system of Three Real and Rectangular Directions : namely (compare

pp. 527, 528, and the Section III. iii. 7), those of the axes of a (biconcyclic) system of

surfaces of the second order, represented by the scalar equation,

Spcpp = Cp2 + C", in which C and C" are constants. (Q)

Cases are discussed ; and general forms (called cyclic, rectangular, focal, bifocal, &c.,

from their chief geometrical uses) are assigned, for the vector and scalar functions <pp and

Spcpp : one useful pair of such {cyclic) forms being, with real and constant values of g, \, /u,

<pp = gp + Y\pfi, Sp<pp = gp^ + S>\p/ip- (R)

And finally it is shown (pp. 560, 561) that if fq be a linear and quaternion function of a

quaternion, q, then the Symbol of Operation, f, satisfies a certain Symbolic and Biquadratic

Equation, analogous to the cubic equation in (/>, and capable of similar applications.

* A simplified proof, of some of the chief results for this important ease of self-

conjugation, is given at a later stage, in the few first sub-articles to Art. 415.
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CHAPTER I.

FUNDAMENTAL PRINCIPLES RESPECTING VECTORS.

SECTION 1.

On the Conception of a Vector ; and on Equality of Vectors.

Art. 1.—A right line ab, considered as having not only length, but also

direction, is said to be a Yector. Its initial point a is said to be its origin

;

and its final point b is said to be its term. A vector ab is conceived to be (or

to construct) the difference of its two extreme points ; or, more fully, to be the

result of the subtraction of its own origin from its own term ; and, in con-

formity with this conception, it is also denoted by the symbol b - a : a notation

which will be found to be extensively useful, on account of the analogies which

it serves to express between geometrical and algebraical
^^

operations. When the extreme points a and b are

distinct, the vector ab or b - a is said to be an actual

(or an effective) vector ; but when (as a limit) those two

points are conceived to coincide, the vector aa or a - a,

which then results, is said to be null. Opposite vectors, such as ab and ba,

or b - A and a - b, are sometimes called vector and revector. Successive

vectors, such as ab and bc, or b - a and c - b, are occasionally said to be

vector and provector : the line Ac, or c - a, which

is drawn from the origin a of the first to the

term c of the second, being then said to be the

transvector. At a later stage, we shall have to

consider vector-arcs and vector-angles ; but at

present, our only vectors are (as above) right lines.

2. Two vectors are said to be equal to each other, or the equation

ab = CD, or b - A = D - c, is said to hold goo'd, when (and only when) the origin

B 2

B-'a

A- B
Revector.

Fig. 1.
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and term of the one can be brought to coincide respectively with the corre-

sponding- points of the other, by transports (or by translations) uithoitf rota/ion.

It follows that all null vectors are equal, and may therefore be denoted by a

common symbol, such as that used for zero

;

so that we may write,

A-A = B-B = &c. = ;

but that two actual vectors, ab and cd, are

not (in the present full sense) equal to each

other, unless they have not merely equal

lengths, but also similar directions. If then

they do not happen to be parts of one

common line, they must be opposite sides of a parallelogram, abdc ; the two

lines AD, bc becoming thus the two diagonals of such a figure, and conse-

quently bisecting each other, in some point e.

Conversely, if the two equations,

r - E = E - A, and c - e = e - b,

are satisfied, so that the two lines ad and bc are

commedial, or have a common middle point e, then

even if they be parts of one right line, the equa-

tion D - c = B - A is satisfied. Two radii, ab, ac, of any one circle (or sphere),

can never be equal vectors ; because their directions differ.

3. An equation between vectors, considered as an equidifference of jjoints,

admits of inversion and alternation ; or in symbols, if

D - c = b - A,

Fig. 4.

then c - D = A - b, and d - b = c - a.

Fig. 0. Fig. 6.

Two vectors, cd and ef, which are equal to the same third vector, ab, are

also equal to each other ; and these three equal vectors are, in general, the

three parallel edges of a prism.
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SECTION 2.

On Differences and Sums of ITectors taken tifvo by two.

4. In order to be able to write, as in algebra,

(c' - a') - (b - a) = c - B, if c' - a' = c - A,

we next define, that wlien a first vector ab is subtracted from a second vector

AC which is co-initial with it, or from a third vector a'c' which is equal to that

second vector, the remainder is that fourth vector bc, which is drawn from the

terra b of the first to the term c of the second vector : so tliat if a vector be

subtracted from a transvector (Art. I), the remainder is the provector corre-

sponding. It is evident tliat this geometrical subtraction of vectors answers to

a decomposition of vections (or of motions) ; and that, by such a decomposition

of a null vection into two opposite vections, we have the formula,

- (b - a) = (a - a) - (b - a) = A - B
;

so that, if an actual vector ab be subtracted from a null vector aa, the remain-

der is the revector ba. If then we agree to abridge, generally, an expression

of the form - rt to the shorter form, - a, we may write briefly, - ab = ba
;

a and - a being thus symbols of opposite vectors, while a and - (- a) are, for

the same reason, symbols of one common vector : so that we may write, as in

algebra, the identity,

- (- a) = a.

5. Aiming still at agreement with algebra, and adopting on that account

theformula oX relation between the two signs, + and -,

{b - a) + a = b,

in which we shall say as usual that b-a ib added to a, and that their sum is b,

while relatively to it they may be jointly called summands, we shall have the

two following consequences :

—

I. If a rector, ab or b - a, be added to its own origin a, the sum is its

term b (Art. 1) ; and

II. If a provector bc be added to a vector ab, the sum is the transvector ac
;

or in symbols,

I. . (b - a) + A = B ; and II. . (c - b) + (b - a) = c - a.

In fact, the first equation is an immediate consequence of the general formula
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which, as above, connects the signs + and -, when combined with the concep-

tion (Art. 1) of a vector as a difference of two points; and the second is a result

of the same formula, combined with the definition of the geometrical subtraction

of one such vector from another^ which was assigned in Art. 4, and according

to which we have (as in algebra) for any three points a, b, c, the identity,

(C - a) - (b - a) = C - B.

It is clear that this geometrical addition of successive vectors corresponds (comp.

Art. 4) to a composition of successive vections, or motions;

and that the sum of two opposite vectors (or of vector

and revector) is a null line ; so that

BA + AB = 0, or (a - b) + (b - a) = 0.

It follows also that the sums of equal pairs of successive

vectors are equal; or more fully that

if b' - a' = b - a, and c' - b' = c - b, then c' - a' = c - a
;

the two triangles, abo and a'b'c', being in general the two opposite faces of a

prism (comp. Art. 3).

6. Again, in order to have, as in algebra,

(c' - b') + (b - a) = c - A, if c' - b' = c - b,

we shall define that if there be two successive vectors, ab, bc, and if a

third vector b'c' be equal to the second, but not succes-

sive to the first, the sum obtained by adding the

third to the first is that fourth vector, ac, which is

drawn from the origin a of the first to the term c of

the second. It follows that the sum of any two co-

initial sides, AB, AC, of any parallelogram abdc, is the Fig, 8.

intermediate and co-initial diagonal ad ; or, in symbols,

(c - a) + (b - a) = D - A, if D - c = b - a
;

because we have then (by 3) c - a = d - b.

7. The sum of any two given vectors has thus a value which is independent

of their order; or, in symbols, a + 3 =
i3 + a. If equal vectors be added to

equal vectors, the sums are equal vectors, even if the summands be not given

as successive (comp. 5) ; and if a null vector be added to an actual vector, the

sum is that actual vector ; or, in symbols, + a = o. If then we agree to

abridge generally (comp. 4) the expression + a to + a, and if a still denote a
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vectorf then + a, and + (+ a), &o., are other symbols for the same veotor ; and

we have, as in algebra, the identities,

- (- a) = + a, + (- a) = - (+ a) = - a, (+ a) + (- a) = 0, &c.

SECTION 3.

On Sums of three or more Vectors.

8. The sum of three given vectors, a, j3, y, is next defined to be that

fourth veotor,

S = 7 + O f a), or briefly, S = 7 + |3 + a,

which is obtained by adding the third to the sum of the first and second

;

and in like manner the sum of anj/ number of vectors is formed by adding

the last to the sum of all that precede it : also, for any four vectors, a, j3, 7, B,

the sum 8 + (7 + j3 + a) is denoted simply by 8 + 7 + j3 + a, without parentheses,

and so on for any number of summands.

9. The sum of any number of successive vectors, ab, bc, cd, is thus the

line AD, which is drawn from the origin a of the

first, to the term d of the last ; and because, when

there are three such vectors, we can draw (as in

fig. 9) the two diagonals ac, bd of the (plane or

gauche) quadrilateral abcd, and may then at plea-

sure regard ad, either as the sum of ab, bd, or as ^^'
'

the sum of ac, cd, we are allowed to establish the following general /or/w«</«

of association y for the case of any three summand lines, a, j3, 7 :

(7+/3)+o = 7 + (j3 + a)=7+/3 + a;

by combining which with the formula of commutation (Art. 7), namely, with

the equation,

a + /3 = i3 + a,

which had been previously established for the case of any two such sum-

mands, it is easy to conclude tliat the Addition of Vectors is always both an

Associative and a Commutative Operation. In other words, the sum of any

number of given vectors has a value which is independent of tlieir order, and of

the mode of grouping them ; so that if the lengths and directions of the sum-

mands be preserved^ the length and direction of the sum will also remain
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unchanged : except that this last direction may be regarded as indeterminate,

when the kngth of the sum-line happens to vanish, as in the case which we are

about to consider.

10. When any n summand-lines, ab, bc, ca, or ab, bc, cd, da, &c.,

arranged in any one order, are the n successive sides of a triangle abc, or of

a quadrilateral abod, or of an^ other closed polygon, their sum is a null line, aa
;

and conversely, when the sum of any given system of n vectors is thus equal

to zero, they may be made {in any ordevy by transports without rotation) the

n successive sides of a closed polygon (plane or

gauche). Hence, if there be given any such poly-

gon (p), suppose a pentagon abode, it is possible to

construct another closed polygon (p'), such as aVc'd'e',

with an arbitrary initial point a\ but with the same

number of sides, aV, . . e'a', which neiv sides shall Fig. lo.

be equal (as vectors) to the old sides ab, . . ea, taken in any arbitrary order.

For example, if we dr&w four successive vectors, as follows,

a'b' = CD,

and then complete the new pentagon by drawing the line eV, this closing side

of the second figure (p') will be equal to the remaining side de of the frst

figure (p).

11. Since a closed figure abc . . is still a closed one, when all its points are

projected on any assumed plane, by any system of

parallel ordinates (although the area of the pro-

jected figure a'bV. . . may happen to vanish), it

follows that if the sum of any number of given

vectors a, j3, y, . . be zero, and if we project them all

on any one plane by parallel lines drawn from their

extremities, the sum oi theprojected vectors a, /3', y, .

.

will likewise be null; so that these latter vectors,

like the former, can be so placed as to become the ^^S- H-

successive sides of a closed polygon, even if they be not already such. (In

fig. 11, a"b"c" is considered as such a polygon, namely, as a tdangle with

evanescent area ; and we have the equation,

AB +BC +CA=0,

as well as a'b' + bV + c'a' = 0, and ab + bc + ca = 0.)
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SECTION 4.

On Coefficients of ITeetors.

12. The simple or single vector, a, is also denoted by la, or by 1 . a, or by

(+ 1) a ; and in like manner, the double vector, a + a, is denoted by 2a, or

2 . a, or (+ 2) a, &c. ; the rule being, that for any algebraical integer, w,

regarded as a coefficient by which the vector o is multiplied, we have always,

la + ma = (1 + m) a;

the symbol I + m being here interpreted as in algebra. Thus, Oa = 0, the

zero on the one side denoting a null coefficient, and the zero on the other side

denoting a null vector ; because by the rule,

la + Oo = (1 + 0) a = la = a, and .*. Oa = a - a = 0.

Again, because (1) a + (- 1) a = (1 - 1) a = Oa = 0, we have (- 1) a = - a

= - a = - (la) ; in like manner, since (1) a + (- 2) a = (I - 2) a = (- 1) a = - o,

we infer that (-2)a=-o-a=- (2a) ; and generally {- m) a = - {ma),

whatever wliole number m may be : so that we may, without danger of

confusion, omit the parentheses in these last symbols, and write simply, - la,

- 2a, - ma.

13. It follows that ivhatever (wo whole numbers (positive or negative, or

Fig. 12.

null) may be represented by tn and n, and tvhafever two vectors may be denoted

by a and j3, we have always, as in algebra, the formulae,

na ± ma = (w ± m) a, n (ma) = {nm) a = nma,

and (compare fig. 12),

m{l5 ± a) = m^ ± ma ',

so that the multiplication ofvectors by coefficients is a doubly distributive operation,

Hamilton's Elements of Quaternions. ^
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at least if the multipliers be whole numbers ; a restriction whicli, however, will

soon be removed.

14. If ma = j3, the coefficient m being still whole, the vector jS is said to be

a multiple of a ; and conversely (at least if the integer m be different from

zero)y the vector a is said to be a sub-multiple of j3. A multiple of a sub-

multiple of a vector is said to be o, fraction of that vector ; thus, if /3 = ma, and
n

7 = wa, then 7 is a fraction of /3, which is denoted as follows, 7 = — )3; also j3

n . V^
is said to be multiplied by the fractional coefficient — , and 7 is said to be the

2Jrod'uct of this multiplication. It follows that if x and y be any twofractions,

(positive or negative or null, whole numbers being included), and if a and /3

be any two vectors, then

ya ± xa = {y ± x) a, y {xa) = {yx) a = yxa, x(^ ± a) = x[5 ± xa;

results which include those of Art. 13, and may be extended to the case

where 07 and y are incommensurable coefficients, considered as limits oi fractional

ones.

15. For any actual vector a, and for any coefficient x, of any of the

foregoing kinds, the product xa, interpreted as above, represents always a

vector /3, which has the same direction as the multiplicand-line a, ii x > 0, but

has the opposite direction if a: < 0, becoming null if a; = 0. Conversely, if

a and (5 be any tivo actual vectors, with directions either similar or opposite, in

each of which two cases we shall say that they are parallel vectors, and shall

write /3 II
a (because both are then parallel, in the usual sense of the word, to

one common line), we can always find, or conceive as found, a coefficient x^O,

which shall satisfy the equation (5 = xa] or, as we shall also write it, /3 = aa?

;

and the positive or negative number x, so found, will bear to ± 1 the same

ratio, as that which the length of the line /3 bears to the length of a.

16. Hence it is natural to say that this coefficient x is the quotient which

results, from the division of the vector /3, by the parallel vector a ; and to write,

accordingly, „

a? = /3 -r a, or a; = /3 : a, or a; = —
;

a

so that we shall have, identically, as in algebra, at least if the divisor-line a be

an actual vector, and if the dividend-line /3 be parallel thereto, the equations,

(/3 : a) . a = - o = l3, and xa :a = — = a?

;

a a

which will afterwards be extended, by definiiion, to the case of non-parallel
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vectors. We may write also, under the same conditions, a = — , and may say

that the vector a is the quotient of the division of the other vector j3 by the

number x ; so that we shall have these other identities,

- .x = {ax=) B, and — = a.

17. The positive or negative quotient, x = -, which is thus obtained by the
a

division of one of two parallel vectors by another, including zero as a limit, may
also be called a Scalar; because it can always be found, and in a certain

sense constructed, by the comparison ofpositions upon one common scale (or axis)
;

or can be put under the form,

C - A AC
X = = —

,

B- A AB

where the three points, a, b, c, are colUnear (as in the figure annexed). Such

scalars are, therefore, simply the Eeals (or real
' ^ -^

,

, _

^ A B c
quantities) of Algebra; but, in combination with '

' '

FifiT. 13.
the not less real Vectors above considered, they

form one of the main elements of the System, or Calculus, to which the present

work relates. In fact it will be shown, at a later stage, that there is

an important sense in which we can conceive a scalar to be added to a

vector; and that the sum so obtained, or the combination ^^ Scalar plus Vector^'

is a Quaternion.

c 2
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CHAPTER II.

APPLICATIONS TO POINTS AND LINES IN A GIVEN PLANE.

SECTION 1.

On liinear Equations connecting two Co-initial Yectors.

18. When several vectors, oa, ob, . . are all drawn from one common

point o, that point is said to be the Origin of the St/siem ; and each particular

vector, such as da, is said to be the vector of its own term, a. In the present

and future sections we shall always suppose, if the contrary be not expressed,

that all the vectors a, /3, . . which we may have occasion to consider, are thus

drawn from one common origin. But if it be desired to change that origin o,

without changing the term-points a, . . we shall only have to subtract, from

each of their old vectors a, . . one common vector w, namely, the old vector oo'

of the new origin o' ; since the remainder's, a- u), (5 - (o, . . will be the new

vectors Oy /3', . . of the old points a, b, . . . For example, we shall have

o' = o'a = a - o' = (a - o) - (o' - o) = OA - oo' = a - tu.

19. If two vectors a, j3, or oa, ob, be thus drawn from a given origin o,

and if their directions be either similar or
O A B

opposite, so that the three points, o, a, b, are ' ~'.
~

'

situated on one right line (as in the figure

6
annexed), then (by 16, 17) their quotient — is some positive or negative scalar

y

a

such as X ; and conversely, the equation /3 = xa, interpreted with this reference

to an origin, expresses the condition of collinearity, of the points o, a, b ; the

particular values x = 0,x=\, corresponding to the particular positions, o and a,

of the variable point b, whereof the indefinite right line oa is the locus.

20. The linear equation, connecting the two vectors a and /3, acquires a

more symmetric/orm, when we write it thus :

«a + 6/3 = ;

where a and b are two scalars, of which however only the ratio is important.
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The condition of coincidence, of the two points A and b, answering above to

a; = 1, is now— = 1 ; or, more symmetrically,

a + b = 0.

Accordingly, when a = - b, the linear equation becomes

6(i3
- a) = 0, or j3 - o = 0,

since we do not suppose that both the coefficients vanish ; and the equation

/3 = a, or OB = OA, requires that the point b should coincide with the point a : a

case which may also be conveniently expressed by the formula,

B = a;

coincident points being thus treated (in notation at least) as equal. In general,

the linear equation gives,

« . OA + i . OB = 0, and therefore a : b = bo : oa.

SECTION 2.

On I^lnear Equations between three Co-initial Sectors.

21. If two (actual and co-initial) vectors, a, /3, be not connected by an^

equation of the form aa + bfi = 0, with ant/

two scalar coefficients a and b whatever, their

directions can neither be similar nor opposite

to each other ; they therefore determine a

plane aob, in wjiich the (now actual) vector,

represented by the sum aa + 5j3, is situated.

For if, for the sake of symmetry, we denote

this sum by the symbol - cy, where c is some

third scalar, and 7 = oc is some third vector,

so that the three oo-initial vectors, a, j3, 7, are connected by the linear equation,

aa + b(5 + cy= 0;
and if we make

, -aa , -b3
OA = OB =——

;

c c

then the two auxiliary points, a' and b', will be situated (by 19) on the two

indefinite right lines, oa, ob, respectively : and we shall have the equation,

oc = oa'+ ob',

so that the figure a'ob'g is (by 6) a parallelogram, and consequently plane.
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22. Conversely, if c be any point in the plane aob, we can draw from it the

ordinatesy ca' and cb', to the lines da and ob, and can determine the ratios of

the three scalars, a, i, c, so as to satisfy the two equations,

a oa' b ob'_

c oa' e OB
'

after which we shall have the recent expressions for oa', ob', with the relation

DC = oa'+ ob' as before ; and shall thus be brought back to the linear equation

ao + ij3 + cy = 0, which equation may therefore be said to express the condition

of complanarity of the four points, o, a, b, c. And if we write it under the

form,

xa + y^ -\- Z'y = 0,

and consider the vectors a and |3 as given, but y as a variable vector, while

|r, y, s are variable scalars, the locus of the variable point c will then be the

given plane, oab.

23. It may happen that the point c is situated on the right line ab, which

is here considered as a given one. In that case (comp. Art. 17, fig. 13), the

AC
quotient— must be equal to some scalar, suppose t ; so that we shall have an

equation of the form.

7 — a

j3-a
t, or 7 = a + ^ (/3 - a), or (1 - if) a + ^/3 - 7 = ;

by comparing which last form with the linear

equation of Art. 21, we see that the condition

of collinearity of the three points a, b, c, in the

given plane oab, is expressed by the foi-mula,

a + 6 + c = 0.

This condition may also be thus written,

^ -a -b oa' ob' ,
1 =— + — , or— + — = 1;

c c OA ob Fig. 16.

and under this last form it expresses a geometrical relation, which is otherwise

known to exist.

24. When we have thus the two equations,

aa + b(5 + cy = 0, and a + b + c = 0,

so that the three co-initial vectors a, (5, y terminate on one right line,

and may on that account be said to be termino-collinear, if we eliminate,
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successively and separately, eaoli of the three scalars «, 6, c, we are conducted

to these three other equations, expressing certain ratios of segments :

6 (/3 - a) + c (7 - a) = 0, c (7 - /3) + a (a - /3) = 0,

a{a-y) + b{P-y) = 0;
or

= J . AB + C . AC = C . BC + fl . BA = « . CA + 6 . CB.

Hence follows this proportion, between coefficients and segments,

« : Z> : c = BC : CA : ab.

We might also have observed that the proposed equations give,

J/3 + Cy cy + (la aa + bQ

o + c
'^

c + a ' a +
whence

AC y - a b
= - -, &c.

AB j3 - a a + b c

25. If we still treat a and j3 as given, but regard 7 and - as variable, the

equation xa + yQ
7 =

x + y

will express that the variable point c is situated somewhere on the indefinite

right line ab, or that it has this line for its locus : wliile it divides the finite line

AB into segments, of which the variable quotient is,

Ac^ y

cb X

Let c' be another point on the same line, and let its vector be,

, x'a + /j3
'^

^' + / '

then, in like manner, we shall have this other ratio of segments,

c'b x''

If, then, we agree to employ, generally, /or any group offour coUinear points,

the notation,

ab cd ab ad
(abcd) = — .— = — :

—
;

' bc da bc dc

80 that this symbol,

(abcd),

may be said to denote the anhannonic function, or anharmonic quotient, or
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simply the anharmonic of the group, a, b, c, d : we shall have, in the present

case, the equation,

,, AC Ac' yx'
l^ACBc = — : -^- = —7.

CB c B xy

26. When the anharmonic quotient becomes equal to negative unity the group

becomes (as is well known) harmonic. If then we have the two equations,

xa + yQ , xa- y(5

' X + y ^ - y

the two points c and c' are harmonically conjugate to each other, with respect

to the ttco given points, a and b ; and when they vary together, in consequence

of the variation of the value of -, they form (in a well-known sense), on the

indefinite right line ab, divisions in involution; the double points {or foci) of this

involution, namely, the points of which each is its otm conjugate, being the

points A and B themselves. As a verification, x. m^c b c'

if we denote by n the vector of the middle Fig. 17.

point M of the given interval ab, so that /3 - /^ = ju - a, or ju = | (a + /3), we

easily find that

y-fl_y-X_j6-H MOMB^
j3 - /U y + X 7' - ju' MB MC'

'

so that the rectangle under the distances mc, mc', of the two variable but conju-

gate points, c, c', from the centre m of the involution, is equal to the constant

square of half the interval between the two double points, a, b. More

generally, if we write

Xa + yQ . Ixa + myii

X + y ' Ix + my

where the anharmonic quotient — = ^ is any constant scalar, then in anotherm xy
known and modern* phraseology, the points c and c' will form, on the inde-

finite line ab, two homographic divisions, of which a and b are still the double

points. More generally still, if we establish the two equations

Xa + vB , , Ixa' + myQ'
y = -^-^, and 7 = —. '-!-;

X + y
'

Ix + my

— being still constant, but - variable, while a' = oa', j3' = ob', and y' = oc',m X y r- 7 I }

the ttco given lines, ab and a'b', are then homographically divided, by the two

variable points c and c', not now supposed to move along one common line.

* See the Geomitrie Supe'rieure of M. Chasles, p. 107. (Paris, 1852.)
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27. When the linear equation oa + 6/3 + cy = subsists, without the rela-

tion a + b + c =-0 between its coeflacients, then the three co-initial vectors

a, /3, 7 are still complanar, but they no longer terminate on one right line;

their term-points, a, b, c being now the corners of a triangle.

In this more general case, we may propose to find the vectors (/, (5% y' of

the three points, c

a' = OA • BC, b' = OB • CA, c' = DC ' AB
;

that is to say, of the points in which the lines

drawn from the origin o to the three corners

of the triangle intersect the three respectively A

opposite sides. The three collineations oaa', &o.,

give (by 19) three expressions of the forms,

a = xa, |3' = y/3, y' = Zy,

where x, p, z are three scalars, which it is required to determine by means of the

three other collineations, a'bc, &c., with the help of relations derived from the

principle of Art 23. Substituting therefore for a its value x'^ a, in the given

linear equation, and equating to zero the sum of the coefficients of the neio

linear equation which results, namely,

ar^aa + 5/3 + cy = ;

and eliminating similarly j3, y, each in its turn, from the original equation
;

we find the values.

X =
-b
c -v a

- c
z =

b + c* ^ c^a^ " a + b'

whence the sought vectors are expressed in either of the two following ways :

aa

or

II. . . a' =

6+ c'

, _ ft/3 + Cy

^' =
-5/3

5 + c
/3' =

cy + aa , aa + J/3

c + a y =
a + b

In fact we see, by one of these expressions for a, that a' is on the line oa
;

and by the other expression for the same vector a', that the same point a' is

on the line bc. As another verification, we may observe that the last expres-

sions for a', /S", y', coincide with those which were found in Art. 24, for a, /3, y
themselves, on the particular supposition that the three points a, b, c were

colliuear.

Hamilton's Elements of Quaternions. D
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28. We may next propose to determine the ratios of the segments of the

sides of the triangle abc, made by the points a', b', c'. For this purpose, we

may write the last equations for a, j3', 7' under the form,

and we see that they then give the required ratios, as follows

:

ba' _ c cb' a Ac' h
^

a!c h* b'a c' c'b a'

whence we obtain at once the known equation of six segments,

ba' cb' ac' _ ^~7~ • "T" •
""7" ~ •»

AC BA cb

as the condition of concurrence of the three right lines aa', bb', cc', in a common

point, such as o. It is easy also to infer, from the same ratios of segments,

the following proportion of coefficients and areas,

a:b:c = obc : oca : gab,

in which we must, in general, attend to algebraic signs ; a triangle being

conceived to pass [through zpro) from positive to negative, or vice versd, as com-

pared with any given triangle in its own plane, when (in the course of any

continuous change) its vertex crosses its base. It may be observed that with

this convention (which is, in fact, a necessary one, for the establishment of

generalformulae) we have, for any three points, the equation

ABC + BAC = 0,

exactly as we had (in Art. 5) for any two points, the equation

AB + BA = 0.

More fully, we have, on this plan, the formulae,

ABC = - BAC = BCA = - CBA = CAB = - ACB
;

and any two complanar triangles, abc, a'bV, bear to each other a positive or a

negative ratio, according as the two rotations, which may be conceived to be

denoted by the same symbols abc, a'bV, are similarly or oppositely directed.

29. If a' and b' bisect respectively the sides bc and ca, then

a = b = c,

and c' bisects ab ; whence the known theorem follows, that the three bisectors

of the sides of a triangle concur, in a point which is often called the centre of

gravity, but which we prefer to call 1 he mean point of the triangle, and which
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is here the origin o. At the same time, the first expresions in Art. 27 for

«'» /3'j y become,

2'
/3' = -|

whence this other known theorem results, that the three bisectors trisect each

other.

30. The linear equation between a, /3, 7 reduces itself, in the case last

considered, to the form,

a + (S + y = 0, or OA + OB + DC =
;

the three vectors a, j3, 7, or oa, ob, oc, are therefore, in this case, adapted

(by Art. 10) to become tlie successive sides of a

triangle, by transports without rotation ; and

accordingly, if we complete (as in fig. 19) the

parallelogram aobd, the triangle gad will have

the property in question. It follows (by 11)

that if yfQ project the four points o, a, b, c, by

any system of parallel ordinates, into four other

points, o^, A^, B^, c^, on any assumed plane, the

sum of the three projected vectors, a^, (5^, 7^, or

o^A^, &o., will be null; so that we shall have the new linear equation,

or,

OA+o^B, + o^c,= 0;

and in fact it is evident (see fig. 20) that the

projected mean point o^ will be the mean point

of the projected triangle, a^, b^, c^. "We shall

have also the equation,

(«.-«) + 0,-/3) + (7.-7) = 0;

«/ - « = OA - OA = (O^A + AAJ - (00, + O^a) = AA^ - 00^;

Fig. 20.

where

hence 00,= i(AA,+ BB^+CCj,

or the ordinate of the mean point of a triangle is the mean of the ordinates of the

three corners.

D 2
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SECTION 3.

On Plane Geometrical IVets.

31. Resuming the more general case of Art. 27, in which the coefficients

«, b, c are supposed to be unequal, we may next inquire, in what points a", b",

c" do the lines b'c', cV, aV meet respectively the sides bc, ca, ab, of the

triangle ; or may seek to assign the vectors a", j3", 7" of the points of inter-

section (comp. 27),

b'' = cV • CA, C" = a'b' • AB.

The first expressions in Art. 27 for j3', y% give the equations,

whence
(c + a) (5' + b(i = 0, {a + b) y + cy = ;

b(B-cy _{a + b) y - (c + a) /3'
^

b -c (a + 6) - (c + a) '

but (by 25) one member is the vector of a point on bc, and the other of a

point on b'c' ; each therefore is a value for the vector a of a'', and similarly

for /3'' and y". We may therefore write,

// *^ - oy

b-c' r=
Cy - aa

c - a
*

„ aa - bfi

and by comparing these expressions with the second set of values of a', j3', y

in Art. 27, we see (by 26) that the points a", b", g" are, respectively, the

harmonic conjugates (as they are indeed known to be) of the points a', b', c',
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with respect to the three pairs of points, b, c ; c, a ; a, b ; so that, in the

notation of Art. 25, we have the equations,

(ba'ca") = (cb'ab") = (ac'bc'O = - 1.

And because the expressions for a", |3", 7" conduct to the following linear

equation between those three vectors,

{b - c) a"+ (c - a) j3"+ {a - b) 7"= 0,

with the relation

{b-c) + (c-a) + {a-b) =

between its coefficients, we arrive (by 23) at this other known theorem, that

the three points a", b", 0" are collinear, as indicated by one of the dotted lines in

the recent fig. 21.

32. The line a"bV may represent ani/ rectilinear transversal, cutting the

sides of a triangle abc ; and because we have

^ -
«''-/^

_ _ £
a"c ~

7 - a" ~
b'

while -7- = -, and -— = -, as before, we arrive at this other equation of six
B a O C B «

segmentsf for any triangle out by a right line (oomp. 28),

ba'' cb' ac' _

which again agrees with known results.

33. Eliminating j3 and 7 between either set of expressions (27) for /3'

and 7', with the help of the given linear equation, we arrive at this other

equation, connecting the three vectors a, ]3', y :

= - «a + (c + «) /3' + (a + 6) 7'.

Treating this on the same plan as the given equation between a, /3, 7, we find

that if (as in fig. 21) we make,

a'" = OA • b'c', b'" = OB • c'a', c'" = OG ' a'b',

the vectors of these three new points of intersection may be expressed in either

of the two following ways, whereof the first is shorter, but the second is, for

some purposes (comp. 34, 36), more convenient

:

I
^nf_ aa ,.„,_ b(5 ///_ gy

2a + b + c' ^ 2b + c + a' '^ 2c + a + 6

'

or

jy r„ _ 2ffa + ^/3 + cy _ 2bP + C7 + fla ,„ _ 2c7 + aa + 6/3

2a + 6 + c~' ^ 26 + c + a '

'^

'Zc + a + 'b~'
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And the three equations, of which the following is one,

(J _ c) «"- {2b + c + a) /3'"+ {2c + a + h) 7'"= 0,

with the relations between their coefficients which are evident on inspection,

show (by 23) that we have the three additional coUineations, a"b"'c"', b"(/'V",

c'V'b'", as indicated by three of the dotted lines in the figure. Also, because

we have the two expressions,

^,„^ (a + &)/+(c + a)/3^ ^„^ (a + 6)/-(c + a)j3
-

(a + J) + (c + a) ' (a + 6) - (c + a) '

we see (by 26) that the two points a", a'" are harmonically conjugate with

respect to b' and c'; and similarly for the two other pairs of points, b", b'",

and c", d'\ compared with c', a', and with a', b': so that, in a notation already

employed (25, 31), we may write,

B A C A j = (C B ABJ=(ACBCJ=-1.

34. If we hegin^ as above, with any four eomplanar points, o, a, b, c, of

which no three are collinear, we can (as in fig. 18), by what may be called a

Fird Construction, derive from them six lines, connecting them two by two,

and intersecting each other in three new points, a', b', c'; and then by a

Second Construction (represented in fig. 21), we may connect these by three

new lines, which will give, by their intersections with the former lines, six

new points, a", . . c''\ We might proceed to connect these with each other,

and with the given points, by sixteen new lines, or lines of a Third Construc-

tion, namely, the four dotted lines of fig. 21, and twelve other lines, whereof

three should be drawn from each of the four given points ; and these would

be found to determine eighty-four new points of intersection, of which some

may be seen, although they are not marked, in the figure.

But howeverfar these processes of linear construction may be continued, so

as to form what has been called* a plane geometrical net, the vectors of the

points thus determined have all one common property : namely, that each can

be represented by an expression of the form,

xaa + yh^ + ZCy
P =

i >

xa + yb + zc

where the coefficients x, y, z are some whole numbers. In fact we see (by 27,

31, 33) that such expressions can be assigned for the nine derived vectors,

• By Prof. A. F. Mobius, in page 274 of his Barycentrio Calculio (der barycentrische Calcul,

Leipzig, 1827).
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a, . . . y"\ which alone have been hitherto considered ; and it is not difficult

to perceive, from the nature of the calculations employed, that a similar result

must hold good, for every vector subsequently deduced. But this and other

connected results will become more completely evident, and their geometrical

signification will be better understood, after a somewhat closer consideration

of anharmonic quotients, ondi the introduction of a certain system of anharmonic

co-ordinates, for points and lines in one plane, to which we shall next proceed :

reserving, for a subsequent Chapter, any applications of the same theory to

space.

SECTION 4.

On il.nharinoiiic Co-ordtnates and Equations of Points and
Ijines in one Plane.

35. If we compare the last equations of Art. 33 with the corresponding

equations of Art. 31, we see that the harmonic group ba'ca'', on the side bc of

the triangle abc in fig. 21, has been simply reflected into another such group,

bWa", on the line b'c', by a Jiannonic jmicil of four rays, all passing through

the point o ; and similarly for tlie other groups. More generally, let oa, ob,

OC, OD, or briefly o . abcd, be any pencil, with the point o for vertex; and let

the neic ray on be cut, as in fig. 22, by the three sides of the triangle abc, ii*

the three points a„ Bi, Ci ; let also

yh^ + zcy
OAi = ai =

yh + zc

so that (by 25) we shall have the anharmonic quotients,

(ba'ca,) - ^, (ca'bai) = -;
y

and let us seek to express the two other vectors of intersection, j3i and 7,, with

a view to determining the anharmonic ratios of

the groups on the two other sides. The given

equation (27),

aa + h^ + cy = 0,

shows us at once that these two vectors are, "^ W/ \b

OB. = ft
=(2. - ») 7 + ?'""

;

{y -z)c-^ya

[z - y)b3 + zaa
OC, = y, = -j-^rj- ;

[z - y)0 -^ za

/^\\
B A, A' C

Fig. 22.
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whence we derive (by 25) these two other anharmonics,

fcBABi) =
; (bcaci) =

;

so that we have the relations,

(cb'abi) + (ca'ba,) = (bc'aci) + (ba'cAi) = 1.

But in general, for any four collinear points a, b, c, d, it is not difficult to

prove that

AB AC
. CD + — . BD = DA :

BC CB

whence by the definition (25) of the signification of the symbol (abcdj, the

following identity is derived,

(abcd) + (acbd) = 1.

Comparing this, then, with the recently found relations, we have, for fig. 22,

the following anharmonio equations

:

(cab'bi) = (ca'bAi) = -
;

y

(bac'ci) = (ba'cAi) = -
;

and we see that (as was to be expected from known principles) the anharmonic

of the group does not change, when we pass from one side of the triangle,

considered as a transversal of the pencil, to another such side, or transversal.

We may therefore speak (as usual) of such an anharmonic of a group, as being

at the same time the Anharmonic of a Pencil ; and, with attention to the order

of the rays, and to the definition (25), may denote the two last anharmonics

by the two following reciprocal expressions :

z y
(o . cabd) = -

;
(o . bacd) = -

:

^

y ' z

with other resulting values, when the order of the rays is changed ; it being

understood that

(o . cabd) = (c'a'bV),

if the rays oc, oa, ob, od be cut, in the points c\ a', b\ d\ by any one right

line.

36. The expression (34),

xaa + yb^ + zcy

xa ] yh + zc ^

may represent the vector of any point p in the given plane, by a suitable choice
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of the coefficients a;, y, 2, or simply of their ratios. For since (by 22) the three

complanar vectors pa, pb, pc must be connected by some linear equation, of

the form
«' . pa + J' . PB + c' . PC = 0,

or

a'(a-/«) + 6'(/3-p) + c'(7-p) = 0,

which gives

a a + 6'j3 + c'y

a'+V+c' '

we have only to write
«' h' c'

P =

7 = ^^'

a b'"' c"'

and the proposed expression for p will be obtained. Hence it is easy to infer,

on principles already explained, that if we write (compare the annexed

fig. 23),

Pi = PA • BC, P2 = PB • CA, P3 = PC • AB,

we shall have, with the same coefficients xi/z, the following expressions for

the vectors oPi, 0P2, 0P3, or pi, p2, ps, of these three a

points of intersection, p,, Pj, P3

:

c'

zcy + xaayb(5 + zcy
P^ ^ —I

>

1/0 + ZG
pi =

zc + xa

Fig. 23.

xaa + f/5j3

P^
~ ''—T >

xa -¥ yh

which give at once the following anharmonics of

pencils, or of groups,

(a . Bocp) = (ba'cp,) = -
z

%
(b . COAP) = (cb'aPj) =• -
^ ' X

(c . aobp) = (ac'bps) =»
^

y

whereof we see that the product is unity. Any two of these three pencils suffice to

determine the position of the point p, when the triangle abc, and the origin o are

given ; and therefore it appears that tlie three coefficients x, y, z, or any scalars

proportional to them, of which the quotients tlius represent the anharmonics of

those pencils, may be conveniently called the Anharmonic Co-ordinates of

that point, p, with respect to the given triangle and origin : while the point p

itself may be denoted by the Symbol,

p = {x, y, z).

Hamilton's Elements of Quathrnions,
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With this notation, the thirteen points of fig. 21 come to he thus symbolized

:

A = (1, 0, 0), B = (0, 1, 0), c = (0, 0, 1), o = (1, 1, 1)

;

a' =(0,1,1) b' =(1,0,1), c' =(1,1,0);

a" = (0, 1, - 1), b'^ = (- 1, 0, 1), c" = (1, - 1, 0)

;

a'" = (2, 1, 1), b'" = (1, 2, 1), c"' = (1, 1, 2).

37. If Pi and P2 be any two points in the given plane.

Pi = (a^i, Vii 2i), P2 = (a'aj y-iy 22).

and if t and u be any two scalar coefficients, then the following third point,

p = [txx + tixiy tyi + uyi, tzi + uz^),

is colUnear with the two former points, or (in other words) is situated on the

right line P1P2. For, if we make

X = txi-¥ uXi, y = tt/i ^- uyz, s = tZi + uz^,

and
Xiaa + . . x^aa + .

.

xaa +

x^a + . . x-itt + . . xa + . .

these vectors of the three points PiPzP are connected by the linear equation,

t {xitt -\- . .) pi + u {x^a + . .) P2
- {xa+ . .) p = ;

in which (comp. 23), the sum of the coefficients is zero. Conversely, the point

p cannot be coUinear with Pi, P2, unless its co-ordinates admit of being thus

expressed in terms of theirs. It follows that if a variable point p be obliged

to move along a given right line P1P2, or if it have such a line (in the given plane)

for its locus, its co-ordinates xyz must satisfy a homogeneous equation of the first

degree, with constant coefficients ; which, in the known notation of determinants,

may be thus written,

X, y, z

^2i» ^2) S2

=

or, more fully,

Q = x [y^z^ - Ziyi) + y [ziXz - x^z^] + z {xiyi - y^Xi) ;

or briefly

= /a; + my + nz,

where /, m, n are three constant scalars, whereof the quotients determine the

position of the right line A, which is thus the locus of the point p. It is natural to

call the equation, which thus connects the co-ordinates of the point p, the Anhar-

monic Equation of the Line A ; and we sliall fiud it convenieut also to speak of
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the coefficients /, w*, n, in that equation, as being the Anharmonic Co-ordinates

of that Line : which line may also be denoted by the Symbol,

A = [/, m, «].

38. For example, the three sides bc, ca, ab of the given triangle have

thus for their equations,

X = 0, y = 0, 2 = 0,

and for their symbols,

[1, 0, 0], [0, 1, 0], [0, 0, 1].

The three additional lines oa, ob, oc, fig. 18, have, in like manner, for their

equations and symbols,

y - z = 0, z - X = 0, X - y = 0,

[0, 1, - 1], [- 1, 0, 1], [1, - 1, 0].

The lines bVa", c'a'b", a'b'c", of fig. 21, are

y + z - X = 0, z + X - y = 0, x + y - z => 0,

or

[-1,1,1], [1,-1,1], [1,1,-1];

the lines a"b'"c'", b"c'"a'", (/'a'"b'", of the same figure, are in like manner

represented by the equations and symbols,

p + z - 3x = 0, z + X - Sy = 0, x + y - Sz = 0,

[- 3, 1, 1], [1, - 3, 1], [1, 1, - 3] ;

and the line a"b"c" is

X + y + z = 0, or [1, 1, 1].

Finally, we may remark that on the same plan, the equation and the symbol

of what is often called the line at infinity, or of the locus of all the infinitely

distant points in the given plane, are respectively,

ax -^ by ¥ cz = 0, and [a, b, c]
;

because the linear function, ax { by + cz, of the co-ordinates x, y, z oi a, point p

in the plane, is the denominator of the expression (34, 36) for the vector p of

that point : so that the point p is at an infinite distance from the origin o,

when, and only when, this linear function vanishes.

39. These anharmonic co-ordinates of a line, although above interpreted (37)

^vith reference to tlie equation of that line, considered as connecting the co-

ordinates of a variable point thereof, are capable of receiving an independent

geometrical interpretation. For the three points l, m, n, in which the line A.

or [/, m, «], or Ix + my + nz = 0, intersects the three sides bc, ca, ab of the

E 2
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given triangle abc, or the three given lines x = 0, y = 0, 2 = (38), may

evidently (on the plan of 36) be thus denoted

:

L={0,n,-m); m = (- w, 0, /) ; n = (m, -
/, 0).

But we had also (by 36),

a''= (0, 1, - 1) ; b"= (- 1, 0, 1) ; c"= (1, - 1, 0)

;

whence it is easy to infer, on the principles of recent articles, that

— = (ba cl) ; - = (cB am)
; t = (^c bn)

;

with the resulting relation,

(ba"cl) . (cb"am) . (ac^bn) = 1.

40. Conversely, this last equation is easily proved, with the help of the

known and general relation between segments (32), applied to any two trans-

versals, a"b"c'' and lmn, of any triangle abc. In fact, we have thus the two

equations,

ba" cb" ac" _ bl cm an _ .

77 • 77 • ~77 "^ -^5 • • •'• >

A C B A C B LC MA NB

on dividing the former of which by the latter, the last formula of the last

article results. We might therefore in this way have been led, without any

consideration of a variable point p, to introduce three anxiliary scalars, /, m, w,

defined as having their quotients —, -, — equal respectively, as in 39, to the
7th Iff fit

three anharmonics of groups,

(ba'^cl), (cb"am), (ac"bn)
;

and then it would have been evident that these three scalars, /, w, n (or any

others proportional thereto), are sufficient to determine the position of the right

line A, or lmn, considered as a transversal of the given triangle abc : so that

they might naturally have been called, on this account, as above, the anhar-

monic co-ordinates of that line. But although the auharmonic co-ordinates of

a point and of a line may thus be independently defined, yet the geometrical

utility of such definitions will be found to depend mainly on their combination:

or on the formula Ijc + my + j/s = of 37, which may at pleasure be considered

as expressing, either that the variable point [x, y, z) is situated somewhere upon
the given right line [/, w, w] ; or else that the variable line [/, m, «] passes, in

some direction^ through the given point {x, y,z).
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41. If Ai and A2 be any two right lines in the given plane,

Ai = [/i, mi, «i], A3 = [4, nii, W2],

then any third right line A in the same plane, which passes through the inter-

section Ax ' A2, or (in other words) which concurs with tliera (at a finite or

infinite distance), may be represented (comp. 37) by a symbol of the form,

A = [til + w/2, tmi + UMi, tni + UHi'],

where t and u are scalar coeSicients. Or, what comes to the same thing, if

/, w, n be the anharmonic co-ordinates of the line A, then (oomp. again 37),

the equation /, m, n

= 1 {mint - niMi) + &o. = /„ Wi, «i

h, m2, W2

must be satisfied ; because, if (X, Y, Z) be the supposed point common to the

three lines, the three equations

IX + mY + nZ = 0, hX + MiY + »,Z = 0, kX + W2F + n^Z = 0,

must co-exist. Conversely, this co-existence will be possible, and the three lines

will have a common point (which may be infinitely distant), if the recent

condition of concurrence be satisfied. For example, because [«, h, c] has been

seen (in 38) to be the symbol of the line at infinity (at least if we still retain

the same significations of the soalars a, h, c as in Articles 27, &o.), it follows

that

A = [/, m, w], and A'= [/ + ua, m + uh, n + uc],

are symbols of two parallel lines ; because they concur at infinity. In general,

all problems respecting intersections of right lines, collineations of points, &c.,

in the given plane, when treated by this anharmonic method, conduct to easy

eliminations between linear equations (of the scalar kind), on which we need

not here delay : the mechanium of such calculations being for the most part the

same as in the known method of trilinear co-ordinates : although (as we have

seen) the geometrical interpretations are altogether different.

SECTION 5.

On Plane Creometrical UTets, resumed.

42. If we now resume, for a moment, the consideration of those plane

geometrical nets, which were mentioned in Art. 34 ; and agree to call tho.se

points and lines, in the given plane, rational points and rational lines, respec-

tively, which have their anharmonic co-ordinates equal (or proportional) to whole
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numbers ; because then the anharmonic quotients^ which were discussed in the

last Section, are rational ; but to say that a point or line is irrational^ or that

it is irrationallij related to the given system oi four initial points o, a, b, c,

when its anharmonic co-ordinates are not thus all equal (or proportional) to

integers ; it is clear that whatever four points we may assume as initial, and

however far the construction of the net may be carried, the net-points and net'

lines which result will all be rational, in the sense just now defined. In fact>

we begin with such ; and the subsequent eliminations (41) can never after-

wards conduct to any, that are of the contrary kind: the right line which

connects two rational points being always a rational line ; and the point of

intersection of two rational lines being necessarily a rational point. The

assertion made in Art. 34 is therefore fully justified.

43. Conversely, every rational point of the given plane, with respect to the

four assumed initial points oabc, is a point of the net which those four points

determine. To prove this, it is evidently sufficient to show that every rational

point Ai = (0, y, z), on any one side bc of the given triangle abc, can be so

constructed. Making, as in fig. 22,

Bi = oAi • CA, and Ci = oAi • ab,

we have (by 35, 36) the expressions,

Bi = (y, 0, y - Z), Ci = (2, 2 - y, 0)

;

from which it is easy to infer (by 36, 37), that

c'bi • BC = (0, y,z- y), b'ci ' BC = {0,y - z, z)
;

and thus we can reduce the linear construction of the rational point (0, y, z),

in which the two whole numbers y and s may be supposed to be prime to each

other, to depend on that of the point (0, 1, 1), which has

already been constructed as a'. It follows that although no

irrational point q of the plane can be a net-point, yet every

such point can be indefinitely approached to, by continuing the

linear construction ; so that it can be included icithin a quadri-

lateral interstice P1P2P3P4, or even within a triangular interstice

P1P2P3, which interstice of the net can be made as small as we may desire.

Analogous remarks apply to irrational lines in the plane, which can never coin-

cide with net-lines, but may always be indefinitely approximated to by such.

44. If p, Pi, Pj be any three collinear points of the net, so that the formulee

of 37 apply, and if p' be any fourth net-point {x, y', z') upon the same line,

then writing x^a + y^b + ZiC = Vi, x^a + yj) + ZjC = Vz,
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we shall have two expressions of the forms,

tVipi + UVipi , t'vipx -^ u'v^pz

tVi + Ul\ tVx + UVi

in which the coefficients tut'u' are rational, because the co-ordinates xyz, &c.,

are such, whatever the constants ahc may be. We have therefore (by 2o) the

following rational expression for the anharmonic of this net-group :

I '\ _ *'^' _ ^y^^ ~ ^'/') (/'gg
- ^'y^

.
( P1PP2P ) — 7-7 — 7 \~T'i ' r >

tu {xij^-yx^ {xyx -yxi)'

and similarly for every other group of the same kind. Hence every group of

four collinear net-points, and consequently also every pencil of four concurrent

net-lines, has a rational value for its anhannonic function ; which value depends

only on the processes of linear construction employed, in arriving at that group

or pencil, and is quite independent of the configuration or arrangement of the

four initial points : because the three initial constants, a, h, c, disappear from the

expression which results. It was thus that, in fig. 21, the nine pencils, which

had the nine derived points a! . . (/" for their vertices, were all harmonic

pencils, in whatever manner the four points o, a, b, c might be arranged. In

general, it may be said that plane geometrical nets are all homographic

figures;* and conversely, in any two such i^\qxiq figures, corresponding points

may be considered as either coinciding, or at least (by 43) as indefinitely

approacliing to coincidence, with similarly constructed points of two plane nets:

that is, with points of wl)ich (in their respective systems) the anharmonic co-

ordinates (36) are equal integers.

45. Without entering here on any general theory of transformation of

anharmonic co-ordinates, we may already see that if we select anyfour net-

points Oi, Ai, Bi, Ci, of which no tliree are collinear, every other point p of the

same net is rationally related (42) to these; because (by 44) the three new

anharmonics of pencils, (ai . BiOiCiP) = —, &c., are rational : and therefore

(comp. 36) the new co-ordinates Xi, y,, Si of the point p, as well its old co-or-

dinates xyz, are equal or proportional to whole numbers. It follows (by 43)

that every point p of the net can be linearly constructed, if any four such points

be given (no three being collinear, as above) ; or, in other words, that the

whole net can be reconstructed,f if an'j one of its quadrilaterals (such as the

* Compare the Geometric Superieure of M. Chasles, p. 362.

t This theorem (45) of the possible reconstruction of a plane net, from any one of its quadrilaterals,

and the theorem (43) respecting the possibility of indefinitely approaching by nel-Unes to the points

above called irrational (42), without ever reaching such points by any processes of linear construction
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interstice in fig. 24) be known. As an example, we may suppose that the

four points oaVc' in fig. 21 are given, and that it is required to recover from

them the three points abc, which had previously been among the data of the

construction. For this purpose, it is only necessary to determine first the

three auxiliary points a.''\ ^"\ c'", as the intersections oa' • bV, &c. ; and next

the three other auxiliary points a", b", c", as b'g' * b'"c'", &c. : after which the

formulae, a = b'b'' • c'c'', &c., will enable us to return, as required, to the

points A, B, c, as intersections of known right lines.

SECTION 6.

On Antaarmonic fiquations, and Yector Expressions, for Curves

in a given Plane.

46. When, in the expressions 34 or 36 for a variable vector p = op, the

three variable scalars (or anharmonic co-ordinates) x, y, z are connected by any

given algebraic equation, such as

fp (^, P, 2) = 0,

supposed to be rational and integral, and homogeneous of the p*^ degree, then

the locus of the term p (Art. 1) of that vector is a plane curve of the j9'^ order;

because (comp. 37) it is cut in p points (distinct or coincident, and real or

imaginary), by any given right line, Ix + my + nz = 0, in the given plane.

For example, if we write

faa + U^hli + v'^Cy

^ fa + u^h + v^c
'

where t, u, v are three new variable scalars, of which we shall suppose that

the sum is zero, then, by eliminating these between the four equations,

' X = t^, y = w^, z = v^, t ^- u + V = 0,

we are conducted to the following equation of the second degree,

= f^=, x^ + y^ + z^ - 2yz - 2zx - 2xy
;

so that here p = 2, and the locus of p is a conic section. In fact, it is the conic

which touches the sides of the given triangle abc, at the points above called a',

b', c' ; for if we seek its intersections with the side bc, by making .r = ^^38),

of the kind here considered, have been taken, as regaids their substance (although investigated by a

totally different analysis), from that highly original treatise of Mobius, which was referred to in a

foi-mer note (p. 22). Compare the remarks in the following Chapter, upon nets in space.
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Fig. 26.

we obtain a quadratic with equal roots, namely, [y - zf = ', which shows that

there is contact with this side at the point (0, 1, 1), or a' (36) : and similarly

for the two other sides.

47. If the point o, in which the three right lines aa', bb', cc' concur^ be

(as in fig. 18, &c.) interior to the triangle abc, the sides of that triangle are

then all cut internally, by the points a', b', c' of contact with the conic ; so that

in this case (by 28) the ratios of the constants «, 6, e are all positive, and the

denominator of the recent expression (46) for p can-

not vanish, for any real values of the variable

scalars t, n, v ; and consequently no such values can

render infinite that vector p. The conic is therefore

generally in this case, as in fig. 25, an inscribed

ellipse ; which becomes however the inscribed circle,

when
rt"^ : J"^ : c"^ = s - a : 8 - b : s -

;

a, b, c denoting here the lengths of the sides of the

triangle, and s being their semi-sum.

48. But if the point of concourse o be exterior to the triangle of tangents

ABC, so that two of its sides are cut externally, then two of the three ratios of

segments (28) are negative ; and therefore one of the three constants a, h, c may

be treated as < 0, but each of the two others as > 0. Thus if we suppose that

b > 0, c> 0, a < 0, a + b > 0, a -^ c > 0,

a' will be a point on the side bc itself, but the points b', c', o will be on the

lines AC, ab, aa' prolonged, as in fig. 26 ; and

then the conic a'bV will be an ellipse (including

the case of a circle) , or a parabola, or an hyper-

bola, according as the 7vots of the quadratic,

{a + c)t^ + 2cfu + {b + c) tt^ = 0,

obtained by equating the denominator (46) of

the vector p to zero, are either, 1st, imaginary ;
Fig- 26.

or Ilnd, real and equal; or Ilird, real and unequal: that is, according as

we have
bc -^ ca { ab > 0, or = 0, or < ;

or (because the product abc is here negative), according as

a~^ + b~^ + c~^ < 0, or = 0, or > 0.

Hamilton's Elements of Quaternions. F
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For example, if the conic be what is often called the exscnhed circle, the

known ratios of segments give the proportion,

«"'
: J~M c~^ = - 8 : s - c : s - b

;

and
-s + s-o + s-b<0.

49. More generally, if c^ be (as in fig. 26) a point upon the side ab, or

on that side prolonged, such that cc^ is parallel to the chord b'c', then

c^c' : Ac' = cb' ; ab' = - a : c, and ab : ac' = a + J : J
;

writing then the condition (48) of ellipticity (or circularity) under the form,

— < —-—, we see that the conic is an ellipse, parabola, or hyperbola, accord-
c

ing as c^c' < or = or > ab ; the arrangement being still, in other respects, that

which is represented in fig. 26. Or, to express the same thing more symme-

trically, if we complete the parallelogram cabd, then according as the point

D falls, 1st, beyond the chord b'c', with respect to the point a ; or Ilnd, on that

chord; or Ilird, within the triangle ab'c', the general arrangement of the same

figure being retained, the curve is elliptic, or parabolic, or hyperbolic. In that

other arrangement or configuration, which answers to the system of inequa-

lities, h>0, oO, a46 + c<0, the point a' is still upon the side bc itself, but

o is on the line a'a prolonged through a ; and then the inequality,

a{b + c) -¥ be <-{¥ -vhc + c^) < 0,

shows that the conic is necessarily an hyperbola ; whereof it is easily seen that

one branch is touched by the side bc at a'', while the other branch is touched

in b' and (/, by the sides ca and ba prolonged through a. The curve is also

hyperbolic, if either a + b or a + c be negative, while b and c are positive as

before.

50. When the quadratic (48) has its roots real and unequal, so that the

conic is an hyperbola, then the directions of the asymptotes may be found, by

substituting those roots, or the values of t, u, v which correspond to them (or

any scalars proportional thereto), in the numerator of the expression (46) for

p ; and similarly we can find the direction of the axis of the parabola, for the

case when the roots are real but equal : for we shall thus obtain the directions,

or direction, in which a right line op must be drawn from o, so as to meet the

conic at infinity. And the same conditions as before, for distinguishing the

species of the conic, may be otherwise obtained by combining the anharmonic

equation, f= (46), of that conic, with the corresponding equation ax + by

+ eg = (38) of the line at infinity ; so as to inquire (on known principles of
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modern geometry) whether that line meets that curve in hco imaginary points

^

or touches it, or cuts it, in points which (although infinitely distant) are here to

be considered as real.

51. In general, iif{x, y, z) = be the anharmonic equation (46) of any

plane curve, considered as the locus of a variable point p ; and if the differen-

tial* of this equation be thus denoted,

= Af{x, y, z) = Xdx + Ydy + Zdz
;

then because, by the supposed homogeneity (46) of the function/, we have the

relation

Xx-^Yy + Zz = 0,

we shall have also this other but analogous relation,

Xsif + r/ + Zz' = 0,

if x' - X '. y' - y : z' - z = dx : d:y I dz\

that is (by the principles of Art. 37), if p' = {x
, y\ z) be any point upon the

tangent to the curve, drawn at the point p = (a;, y, z), and regarded as the limit

of a secant. The symbol (37) of this tangent at p may therefore be thus

written,

[X, Y, Z], or [d,/, Dy/, D,/]
;

where Bx, Dy, Dg are known characteristics ofpartial derivation.

52. For example, when/has the form assigned in 46, as answering to the

conic lately considered, we have J).jf= 2 {x - y - z), &g. ; whence the tangent

at any point {x, y, z) of this curve may be denoted by the symbol,

[x-y -z, y-z-x, z-x-y];

in which, as usual, the co-ordinates of the line may be replaced by any others

proportional to them. Thus at the point a', or (by 36) at (0, 1, 1), which is

evidently (by the form of/) a point upon the curve, the tangent is the line

[- 2, 0, 0], or [1, 0, 0] ; that is (by 38), the side bc of the given triangle, as

was otherwise found before (46). And in general it is easy to see that the

recent symbol denotes the right line, which is (in a well known sense) the

polar of the point {x, y, z), with respect to the same given conic ; or that the

line [Z', Y\ Z'~\ is the polar of the point {x, y, z) : because the equation

Xx + Yy+Zz'=0,

* In the theory of quaternions, as distinguished from (although including) that of vectors, it will

he found necessary to introduce a new dejinition of differentials, on account of the non-commutative

property of quaternion-muUipHcaiion : hut, for the present, the usual significations of the signs d and

D are suflScient.

F 2
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which for a conic may be written as X'x+ Y'y + Z'z = 0, expresses (by 51) the

condition requisite, in order that a point {x, p, z) of the curve* should belong

to a tangent which passes through the point {x\ y\ %). Conversely, the point

(dj, //, z) is (in the same well-known sense) the pole of the line [X, F, Z] ; so

that the centre of the conic, which is (by known principles) the pole of the line

at infinity (38), is the point which satisfies the conditions a~'^X = h~^T = c'^Z;

it is therefore, for the present conic, the point k = {b + c, c ^- a, a + b], of

which the vector ok is easily reduced, by the help of the linear equation,

aa + b^ + cy = (27), to the form,

a^a + b^Q + 0*7

2 [be + ca + ah)
'

with the verification that the denominator vanishes, by 48, when the conic is a

parabola. In the more general case, when this denominator is different from

zero, it can be shown that every chord of the curve, which is drawn through

the extremity k of the vector k, is bisected at that point k : which point would

therefore in this way be seen again to be the centre.

53. Instead of the inscribed conic (46), which has been the subject of

recent articles, we may, as another example, consider that exscribed (or cir-

cumscribed) conic, which passes through the three corners a, b, c of the given

triangle, and touches there the lines aa'', bb", cc" of fig. 21. The anhar-

monic equation of this new conic is easily seen to be,

yz + zx + xy = )

the vector of a variable point p of the curve may therefore be expressed as

follows,

t~^aa + u'^b^ + v'^cy

t'^a + w"'6 + v'^c
'

with the condition ^ + m + <; = 0, as before. The vector of its centre k' is

found to be

2 {d'a + Z>^i3 + c^y)

" ~ a''-¥b'+c'-2bc- 2ca - 2ab
'

and it is an ellipse, a parabola, or an hyperbola, according as the denominator

of this last expression is negative, or null, or positive. And because these

two recent vectors, k, k, bear a scalar ratio to each other, it follows (by 19)

that the three points o, k, k' are collinear; or in other words, that the line of

* If the curve/= were of a degree higher thsua. tlie second, then the two equations above written

would represent what are called the first polar, and the last or the linc'polar, of the point {x, y' , z),

with respect to the given cui"ve.
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centres k, k', of the tico conies here considered, passes through the point of con-

course o of the three lines aa', bb', cc'. More generally, if l be the pole of any

given right line A = [/, m^ n~\ (37), with respect to the inscribed conic (46), and

if l' be the pole of the same line A with respect to the exscribed conic of the

present article, it can be shown that the vectors ol, ol', or A, X', of these two

poles are of the forms,

\ = k {laa + mh(5 + wcy), X' = // (Jaa + mb(^ + ncy),

where Ic and k' are scalars ; the three points o, l, l' are therefore ranged on

one right line.

64. As an example of a vector-expression for a curve of an order higher

than the second, the following may be taken :

(^aa + u^bQ + v^cy

t^a + u^b + v^c

with ^ + w + e? = 0, as before. Making x = t^, y = w', 2 = f', we find here by

elimination of t, u, v the anharnionic equation,

{x + y + zy - 27xyz = ;

the locus of the point p is therefore, in this example, a curve of the third order,

or briefly a cubic curve. The mechanism (41) of calculations with anharnionic

co-ordinates is so much the same as that of the known trilinear method, that it

may suffice to remark briefly here that the sides of the given triangle abc are

the three (real) tangents ofinflexion;

the points of inflexion being those

which are marked as a", b", c" in

fig. 21 ; and the origin of vectors

o being a conjugate point.* If

a = h = c, in which case (by 29)

this origin o becomes (as in fig.

19) the mean point of the triangle,
Fig. 27.

the chord of inflexion a"b'V is then the line at infinity, and the curve takes the

form represented in fig. 27 ; having three infinite branches, inscribed within

the angles vertically opposite to those of the given triangle abc, of which the

sides are the three asymptotes.

55. It would be improper to enter here into any details of discussion of

such cubic curves, for which the reader will naturally turn to other works.f

* Answering to the values t = \, u = d, v = 6-, where fl is one of the imaginary cube-roots of

unity
;
which values of t, u, v give x = y = z, and p = Q.

t Especially the excellent Treatise on Higher Plane Curves, by the Rev. George Salmon, F.T.C.D.,

&c. Dublin, 1852.
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But it may be remarked, in passing, that because the general cubic may be

represented, on the present plan, by combining the general expression of

Art. 34 or 36 for the vector p, with the scalar equation

s^ = 27kxyZy where s = x + y + z',

k denoting an arbitrary constant, which becomes equal to unity, when the

origin is (as in 54) a conjugate point ; it follows that if p = {x, p, z) and

p' = («', y', z') be anp two points of the curve, and if we make / = «' + y' + /, we

shall have the relation,

/or//, ^s' ps zs'
xyzs ^ = afyzs^, or —7 .^ . —; = 1

:

^ ^ ' sx' sy sz'

in which it is not difficult to prove that

—. = (a . PBP B ) ; ^ = (b . PGP c ) ; — = (c . pap a )

;

sx ' sy ' sz ^

the notation (35) of anharmonics ofpencils being retained. We obtain there-

fore thus the following Theorem :
—" If the sides of any given plane* triangle

ABC be cut (as in fig. 21) by any given rectilinear transversal, a"b'V, and if any

two points p and p' in itsplane be such as to satisfy the anharmonic relation

(a" . pbp'b'O . (b'' . pcp'c") . (c" . pap'a") = 1,

then these two points p, p' are on one common cubic curve, which has the three

collinear points, a", b", c" for its three real points of inflexion, and has the sides

Bc, CA, AB of the triangle for its three tangents at those points "; a result which

seems to offer a new geometrical generationfor curves of the third order.

56, Whatever the order of a plane curve may be, or whatever may be the

degree p of the/Mwc^/o«/in 46, we saw in 51 that the tangent to the curve at

any point p = [x, y, z) is the right line

A = [/, m, w], if / = Da/, m = Dyf, n = Da/;

expressions which, by the supposed homogeneity of /, give the relation

Ix -^ my + nz = 0, and therefore enable us to establish the system of the two

following differential equations,

/da; + mdiy + wda = 0, aAl + ydm + zdw =» 0.

If then, by elimination of the ratios of x, y, z, we arrive at a new homogeneous

equation of the form,

= f(d,/, D,/, D,/),

• This Theorem may be extended, with scarcely any modification, from plane to spherical curves,

of the third order.
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as one that is true for all values of a?, y, z which render the function/ =

(although it may require to he cleared oi factors, introduced hy this elimina-

tion), we shall have the equation

r (/, th, n) = 0,

as a condition that must be satisfied by the tangent A to the curve, in all the

positions tvhich can he assumed hy that right line. And, by comimring the two

differential equations.

dp (/, m, ») = 0, x^l + y^m + sdw = 0,

we see that we may write the proportion,

x:y:z = T)i¥: d„,f : d„f, and the symbol v = (d^f, d^f, d„f), if (x, y, z)

be, as above, the point of contact p of the variable line [/, m, n,"] in any one of its

positions, with the curve which is its envelope. Hence we can pass (or return)

from the tangential equation f = 0, of a curve considered as the envelope of a right

line A, to the local equationf= 0, of the same curve considered (as in"46) as the

locus of a point p : since, if we obtain, by elimination of the ratios of /, m, n,

an equation of the form
=/(D/r, D„F, d„f),

(cleared, if it be necessary, of foreign factors) as a consequence of the

homogeneous equation f = 0, we have only to substitute for these partial deriva-

tives, D;F, &0., the anharmonic co-ordinates x, y, z, to which they are propor-

tional. And when the functions / and f are not only homogeneous (as we

shall ahvays suppose them to be), but also rational and integral (which it is some-

times convenient not to assume them as being), then, while the degree of the

function/, or of the local equation, marks (as before) the order of the curve,

the degree of the other homogeneous function f, or of the tangential equation

F = 0, is easily seen to denote, in this anharmonic method (as, from the analogy

of other and older methods, it might have been expected to do), the class of

the curve to wliich that equation belongs : or the number of tangents (distinct

or coincident, and real and imaginary), which can be drawn to that curve,

from an arbitrary point in its plane.

57. As an example (comp. 52), if we eliminate x, y, z between the

equations,

I = X - y - z, m = y - z - X, n = z - x - y, Ix + my + nz = 0,

where /. m, n are the co-ordinates of the tangent to the inscribed conic of

Art. 46, we are conducted to the following tangential equation of that conic,

or curve of the second class,

F (/, m, n) = mn + nl + //w = ;
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with the verification that the sides [I, 0, 0], &o. (38), of the triangle abc are

among the lines which satisfy this equation. Conversely, if this tangential

equation were given we might (by 56) derive from it expressions for the

co-ordinates of contact x^ y, z, as follows :

X = D;F = w + M, 1/ = n + If z = I + m;

with the verification that the side [1, 0, 0] touches the oonio, considered now

as an envelope, in the point (0, 1, 1), or a', as before : and then, by eliminating

/, m, w, we should be brought back to the local equation, f= 0, of 46. In like

manner, from the local equation/= ^/s + zx + xp = of the exscribed conic (53),

we can derive by differentiation the tangential co-ordinates,*

I = T)xf = y + z, m <= z + X, n = x + y,

and so obtain by elimination the tangential equation, namely,

F {I, m, n) = l^ + m'^ \- n^ - 2mn - 2nl - 2lm =
;

from which we could in turn deduce the local equation. And (oomp. 40), the

very simple formula
Ix + my + nz = 0,

which we have so often had occasion to employ, as connecting two sets of

anharmonic co-ordinates, may not only be considered (as in 37) as the local

equation of a given right line A, along which a point p moveSy but also as the

tangential equation of a given point, round tvhich a right line turns : according

as we suppose the set /, m, n, or the set x, y, z, to be given. Thus, while the

right line a^bV, or [1, 1, 1], of fig. 21, was represented in 38 by the equa-

tion a; + j^ + z = 0, the point o of the same figure, or the point (1, 1, 1), may

be represented by the analogous equation,

/ + w + n = ;

because the co-ordinates I, m, n of every line, which passes through this point o,

must satisfy this equation of the first degree, as may be seen exemplified, in

the same Art. 38, by the lines da, ob, oc.

58. To give an instance or two of the use of forms, which, although

homogeneous, are yet not rational and integral (56) we may write the local

equation of the inscribed conic (46) as follows :

aji + yi + z* = ;

* This name of " tangential co-ordinates^^ appears to have been first introduced by Dr. Booth in a

Tract published in 1840, to which the author of the present Elements cannot now more particularly

refer : but the system of Dr. Booth was entirely different from his own. See the reference in Salmon's

Higher Plane Curves, note to page 16.
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and then (suppressing the common numerical factor |), the partial derivatives

are

/ = x~i, m = y^f w = s"i

;

so that a form of the tangential equation for this conic is,

/-^ + wr' + nr^ = ]

which evidently, when cleared of fractions, agrees with tlie first form of the

last Article : with the verification (48), that a"' + b~^ +c~^ =0 when the curve is a

parabola; that is, when it is touched (50) by the line at infinity (38). For the

exscribed conic (53), we may write the local equation thus,

ar* + y-'^ + is"' = ;

whence it is allowed to write also,

/ = a;"*, m = y~'^^ n = z~^,

and
li + ffii + fii = ;

a form of the tangential equation which, when cleared of radicals, agrees again

with 57. And it is evident that we could return, with equal ease, from these

tangential to these local equations.

59. For the cubic curve with a conjugate point (54), the local equation may

be thus written,*

ari + yJ + 2* = ;

we may therefore assume for its tangential co-ordinates the expressions,

/ = a;~i, m = yi, n = r"!

;

and a form of its tangential equation is thus found to be,

^4 + m-i + n-i = 0.

Conversely, if this tangential form were given^ we might return to the local

equation, by making

X = l~2, y = m~2, z = w"t,

which would give xi + yi + zi = 0, as before. The tangential equation just now

found becomes, when it is cleared of radicals,

= l^ + m-^ + n-^- 2m-'n-' - 2/r'/-^ - 2l-'m-'
;

or, when it is also cleared oi fractions,

= F = ni^n"^ + ii^l^ -T Pnf - 2nPm - 2lm^n - 2mn^l

;

* Compare Salmon's Higher Plane Curves, page 172 [Art. 216, new ed.].

Hamilton's Elements of Quaternions, G
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of which the biquadratic form shows (by 56) that this cubic is a curve of the

fourth class, as indeed it is known to be. The inflexional character (54) of the

points a'\ b", c" upon this curve is here recognised by the circumstance,

that when we make m - w = 0, in order to find the four tangents from

A." - (0, 1,-1) (?^6), the resulting biquadratic, = m* - 4/w^ has three equal

roots ; so that the line [1, 0, 0], or the side bc, counts as three, and is there-

fore a tangent of inflexion : the fourth tangent from a" being the line [1, 4, 4],

which touches the cubic at the point (- 8, 1, 1).

60. In general, the two equations (56),

nvt^f - InJ = 0, nvtyf - mD„f = 0,

may be considered as expressing that the homogeneous equation,

/ (nx, ni/, - Ix - my) = 0,

which is obtained by eliminating z with the help of the relation Ix + my + nz = 0,

from f [x, y, z) = 0, and which we may denote by [x, y) = 0, has two

equal roots x:y,\i I, m, n be still the co-ordinates of a tangent to the curve/;

an equality which obviously corresponds to the coincidence of ttvo intersections

of that line with that curve. Conversely, if we seek by the usual methods

the condition of equality of two roots x:y oi the homogeneous equation of the

jo'* degree,

= <p [x, y) =f {nx, ny, - Ix - my),

by eliminating the ratio x : y between the two derived homogeneous equations,

= Da;0, = Dj,0, we shall in general be conducted to a result of the dimension

2/?(p - 1) in I, m, n, and of the/orm,

= wP(P->) F (/, m, n)
;

and so, by the rejection of ^q foreign factor «p(p-^), introduced by this elimina-

tion,* we shall obtain the tangential equation f = 0, which will be in general of

the degree p{p - 1) ; such being generally the known class (56) of the curve of

which the order (46) is denoted byjf?: with (of course) a similar mode of

passing, reciprocally, from a tangential to a local equation.

61. As an example, when the function /has the cubicfonn assigned in 54,

we are thus led to investigate the condition for the existence of two equal

roots in the cubic equation,

= (j) {x,y) = {{n - I) X + {m - I) y}^ + 27n'^xy {Ix + my),

* Compare the method employed iu Sahnon's Higher Plane Curves, page 98 [Art. 91, new ed.] to

find the equation of the reciprocal of a given curve, with resp<ct to the imaginary conic, x- + y'^ + z^ = 0.

In general, if the function r be deduced from/ as above, tlien f{xijz) = 0, and f{xi/z) = are equa-

tions of two reciprocal curves.
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by eliminating x : y between two derived and quadratic equations; and the

result presents itself, in the first instance, as of the twelfth dimension in the

tangential co-ordinates /, w, n ; but it is found to be divisible hj n^, and when

this division is effected, it is reduced to the sixth degree, thus appearing to

imply that the curve is of the sixth class, as in fact the general cubic is well

known to be. A further reduction is however possible in the present case, on

account of the conjugate point o (54), which introduces (comp. 57) the

quadratic factor,

{l+m + nY = ;

and when this factor aho is set aside, the tangential equation is found to be

reduced to the biquadratic form* already assigned in 59 ; the algebraic division,

last performed, corresponding to the known geometric depression of a cubic curve

with a double point, from the sixth to the fourth class. But it is time to close

this Section on Plane Curves; and to proceed, as in the next Chapter we

propose to do, to the consideration and comparison of vectors ofpoints in space.

* If we multiply that form f = (53) by z^, and then change nz to - Ix — my, we obtain a

biquadratic equation in I : m, namely,

= iff (;, m) = {l- mf (Ix + myf + 2lm {I + m) {Ix + my) z + PmH^ ;

and if we then eliminate I : m between the two derived cubics, = Pn|', = d»,\|/, we are conducted to

the following equation of the twelfth degree, = Qi?yH^f{x, y, z), where /has the same cubic form as

in 54, We are therefore thus brought back (comp. 59) from the tangential to the local equation of

the cubic curve (54) ; complicated, however, as we see, with the factor x^y^sfi, which corresponds to

the system of the three real tangents of inflexion to that curve, each tangent being taken three times.

The reason why we have not here been obliged to reject also the foreign factor, z'^, as by the general

theoiy (60) we might have expected to be, is that we multiplied the biquadratic function f only by 2^,

and not by 2*.

G 2
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CHAPTER III.

APPLICATIONS OF VECTORS TO SPACE.

SECTION L

On lilnear Equations between Tectors not Complanar.

62. When three given and actual vectors oa, ob, oc, or a, (5, 7, are not

contained in any common plane, and when the three scalars a, b, c do not all

vanish, then (by 21, 22) the expression aa + b(5 + cy cannot become equal to

zero ; it must therefore represent some actual vector (1), which we may, for the

sake of symmetry, denote by the symbol - dd : where the netv (actual) vector S,

or CD, is not contained in any one of the three given and distinct planes, boc,

CCA, AOB, unless some one, at least, of the three given coefficients a, b, c,

vanishes ; and where the netv scalar, d, is either greater or less than zero. We
shall thus have a linear equation between four vector's,

aa + b(5 + cy -^ dd = 0;
which will give

^~ d d ' d
'

or CD = OA + OB + oc

where oa', ob', oc', or
- aa

~d~'

b^ - Cy~
d

'

d
are the vectors of the three points a', b', c',

into which the point d is projected, on the

three given lines oa, ob, oc, by planes drawn

parallel to the three given planes, boc, &c. ;

so that they are the three co-initial edges of

a parallelepiped, whereof the sum, od or B, is

the infernal and co-initial diagonal (comp 6j.

Or we may project d on the three planes, by

lines da", db", do" parallel to the three

given lines, and then shall have

b(5 + cy

Fig. 28.

oa = ob + oc =
, &o., and S = CD = oa' + oa" = ob' + ob" = oc' + oc".
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And it is evident that this construction will apply to any fifth point d of spacej

if the four points gabc be still supposed to be given, and not complanar : but

that some at least of the three ratios of the four scalars a, b, c, d (which last

letter is not here used as a mark of differentiation) will vary with the position

of the point d, or with the value of its vector S. For example, we shall have

a = 0, if D be situated in the plane bog ; and similarly for the two other given

planes through o.

63. We may inquire (comp. 23), what relation between these scalar coefi-

cients must exist, in order that the point d may be situated in the fourth given

plane abc; or what is the condition of complanarity of the four points, a, b, c, d.

Since the three vectors da, db, do are now supposed to be complanar, they must

(by 22) be connected by a linear equation, of the form

« (a - 8) + A (j3 - S) + C (y - 8) = ;

comparing which with the recent and more general form (62), we see that

the required condition is,

a + h-\-c + d=0.

This equation may be written (comp. again 23) as

-a - h - c , oa' ob' oc' ,-r-+-5-+-7-=l, or — + — + — = 1;
d d d OA OB oc

and, under this last form, it expresses a known geometrical property of a plane

ABCD, referred to three co-ordinate axes oa, ob, oc, which are drawn from any

common origin o, and terminate upon the plane. We have also, in this case

of complanarity (comp. 28), the following proportion of coefficients and areas :

a '. h : c : - d = dbc : dca : dab : abc ;

or, more symmetrically, with attention to signs of areas,

a : h : c '. d = bcd : - cda : dab : - abc ;

where fig. 18 may serve for illustration, if we conceive o in that figure to be

replaced by d.

64. When we have thus at once the two equations,

aa + ij3 + cy + c?S = 0, and a + 6 + c + c?=0,

so that the four co-initial vectors, a, /3, y, 8 terminate (as above) on one common

plane, and may therefore be said (comp. 24) to be termino-complanar, it is

evident that the two right lines, da and bc, which connect two pairs of the

four complanar points, must intersect each other in some point a' of the plane,

at a finite or infinite distance. And there is no difficulty in perceiving, on
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the plan of 31, that the vectors of the three points, a\ b', c' of intersection,

which thus result, are the following :

, , bB + cy aa + dS
for A = BC • DA, a = -7 =

;

+ c a + a

„ , ,3, cy + aa bQ + d^
•{ for B = CA • DB, B = — = -^7 —

;

^ ^ c + a b + d

r, , , aa + bQ Cy + dS
for c = AB • DC, 7 = —

—

f- = — —

;

V a + b c + d

expressions which are independent of the position of the arbitrary origin o, and

which accordingly coincide with the corresponding expressions in 27, when

we place that origin in the point d, or make d = 0. Indeed, these last results

hold good (comp. 31), even when the foicr vectors, a, j3, y, S, or the five points

o, A, B, c, D, are ail complanar. For, although there then exist two linear

equations between those four vectors, which may in general be written thus,

a'a + b'(5 + c'y + d'd = 0, a''a + b''(i + c"y + d"l = 0,

without the relations, a + &c. = 0, a" + &c. = 0, between the coefficients, yet if

we form from these another linear equation, of the form,

{a" + ta) a + [b" + tb') jS + (c" + tc') y + [d" + td') 8 = 0,

and determine t by the condition,

t =
a'^b'^c'+ d'

we shall only have to make a = «" + td, &c., and the two equations written at

the commencement of the present article will then both be satisfied ; and will

conduct to the expressions assigned above, for the three vectors of intersection:

which vectors may thus be found, without its being necessary to employ those

processes of scalar elimination, which were treated of in the foregoing Chapter.

As an Example, let the two given equations be (comp. 27, 33),

cfa + 6)3 + Cy = 0, (2a + 6 + c) d" - «a = ;

and let it be required to determine the vectors of the intersections of the

three pairs of lines bc, aa'^' ; ca, ba'" ; and ab, ca'". Forming the combi-

nation,

(2a + J + c) d" - aa -^ t [aa -^^ bp 'r Cy) = U,

and determining t by the condition,

(2a + 6 + c) - a + ^ (<T + 6 + c) = 0,
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wliieh gives ^ = - 1, we have for tlie three sought vectors the expressions,

b(5 + Cy cy + 2aa 2aa + b(5

b + c ' c + 2a ' 2a + b
'

whereof the first = a, by 27. Accordingly, in fig. 21, the line aa'" intersects

BC in the point a' ; and although the two other points of intersection here

considered, which belong to wliat has been called (in 34) a Third Construction,

are not marked in that figure, yet their anharmonic symbols (36), namely,

(2, 0, 1) and (2, 1, 0), might have been otherwise found by combining the

equations y = and x = 2z for the two lines ca, ba'" ; and by combining s = 0,

X = 2y for the remaining pair of lines.

65. In the more general case, when the four given points a, b, c, d, are not

in any common plane, let e be any fifth given point of space, not situated on

any one of the four faces of the given pyramid abcd, nor on any such face

prolonged ; and let its vector oe = c. Then {he four co-initial vectors, ea, eb,

EC, ED, whereof (by supposition) no three are complanar, and which do not

terminate upon one plane, must be (by 62} connected by some equation of

the form
a . EA + 5 . KB + C . EC + </ . ED = ;

where the/owr sealars, a, b, c, d, and their sum, which we shall denote by - e,

are all diferentfrom zero. Hence, because EA = a-c, &c., we may establish

the following linear equation between five co-initial vectors, a, |3, y, S, c, whereof

nofour are termino-complanar (64),

fla + 5j3 + cy + f/S + 66 = ;

with the relation, a + J + c + c?+e = 0, between the five sealars a, b, c, d, c,

whereof no one now separately vanishes. Hence also,

e = {aa-i-b(i + cy + dd) : {a + b + c + d), &c.

66. Under these conditions, if we write

D, = DE • ABC, and ODi = Si,

that is, if we denote by Si the vector of the point Dj in which the right line dk

intersects the plane abc, we shall have

aa + b(5 + Cy dS + es
S:

a + b + c d + e

In fact, these two expressions are equivalent, or represent one common vector,

in virtue of the given equations ; but tlie firet shows (by 63) that this vector



48 ELEMENTS OF QUATERNIONS. [I. iii. § 1.

Si terminates on the plane abc, and the second shows (by 25) that it termi-

nates on the line de ; its extremity Di must therefore be, as required, the

intersection of this line with that plane. We have therefore the two

equations,

I. . . « (a - go + Mi3 - 80 + c (r
~ Si) = ;

II. . . d{S-Si) + e{e-S,) = 0;

whence (by 28 and 24) follow the two proportions,

T. . . a: b :c = D|BC : DiCa : DiAB
;

IF. . . d : e = edi : DiD
;

the arrangement of the points, in the annexed fig. 29, answering to the ease

where all the four coefficients a, b, c, d are positive (or

have one common sign), and when therefore the remain-

ing coefficient e is negative (or has the opposite sign).

67. For the three complanar triangles, in the first

proportion, we may substitute any three pi/ramidal

volumes, which rest upon those triangles as their bases,

and which have one common vertex, such as d or e ; and ^^^' ^^'

because the coUineation dedi gives dDiBc - eDiBO = debc, &c., we may write

this other proportion,

Y\ . . a : b : c = uebo : deca : deab.

Again, the same coUineation gives

EDi : DDi = eabc : dabc
;

we have therefore, by IT., the proportion,

ir'. . . d : - e = eabc : dabc.

But DEBC + DECA + DEAB + EABC = DABC,

Had a+b + c + d^-e;

we may therefore establish the following /M//er formula of proportion, between

coefficients and volumes :

III. . . a:b :c: d: - e^ debc : deca : deab : eabc : dabc
;

the ratios of all these ^vepi/ramids to each other being considered aB positive,

for the particular arrangement of the points which is represented in the recent

figure.

68. The formula III. may however be regarded as perfectly general, if we
agree to say that a pyramidal volume changes sign^ or rather that it changes its
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algebraical charactery as positive or negative^ in comparison with a given pyramid,

and with a given arrangement of points, in passing through zero (comp. 28)

;

namely when, in the course of any continuous change, any one of its vertices

crosses the corresponding base. With this convention* we shall have, generally,

DABC = - ADBC = ABDC = - ABCD, DEBC = BCDE, DECA = CDEA
;

the proportion III. may therefore be expressed in the following more

symmetric, but equally generalform

:

IIF. . . a:b:c: d :e = bcde : cdea : deab : eabc : abcd
;

the sum of these five pyramids being always equal to zerOy when signs (as above)

are attended to.

69. We saw (in 24) that the two equations,

«a + ij3 + cy = 0, a + 6 + c = 0,

gave the proportion of segments,

a : J : c = bc : CA : ab,

whatever might be the position of the ongin o. In like manner we saw (in 63)

that the two other equations,

ffo + Jj3 + cy + c?8 = 0, rt + J + c + (/ = 0,

gave the proportion of areas,

a:b:c:d= bcd : - cda : dab : - abc
;

where again the origin is arbitrary. And we have just deduced (in 68) a

corresponding proportion of volumes from the two analogous equations (65),

aa + b^ + cy + dB + ee = 0, a + b + c + d+e = 0,

with an equally arbitrary origin. If then we conceive these segments, areas,

and volumes to be replaced by the scalars to which they are thus proportional,

we may establish the three generalformulae :

I. OA . Bc + OB . CA + oc . ab = ;

II. OA . BCD - OB . CDA + OC . DAB - OD . ABC = ;

III. OA . BCDE + OB . CDEA + OC . DEAB + OD . EABC + OE . ABCD = ;

where in I., a, b, c are any three collinear points

;

in II., A, B, c, D are any four complanar points ;

and in III., a, b, c, d, e are any five points of space

;

* Among the consequences of this convention respecting signs of volumes, which has already heen

adopted by some modern geometers, and which indeed is necessary (comp. 28) for the establishment of

general formulae, one is that any two pyramids, ahcd, a'u'c'd', bear to each other a positive or a nega-

tive ratio, according as the two rotations, bcd and b'c'd', supposed to be seen respectively from the

points A and a', have similar or opposite directions, as right-handed or left-handed.

Hamilton's Elements of Quaternions. H
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while o is, in each of the three formulsB, an entirely arbitrary point. It must,

however, be remembered, that the additions and subtractions are supposed to be

performed according to the rules of vectors^ as stated in the First Cliapter of the

present Book ; the segments, or areas, or volumes, which the equations

indicate, being treated as coefficients of those vectors. We might still further

abridge the notations, while retaining the meaning of these formulae, by omitting

the symbol of the arbitrary origin o ; and by thus writing,*

v. A . BC + B . CA + C . AB =5 0, :

for any three collinear points ; with corresponding formulae 11". and Iir., for

any four complanar points, and for any five points of space.

SECTION 2.

On Ctuinary ISymbols for Points and Planes in Space.

70. The equations of Art. 65 being still supposed to hold good, the vector

p of any point p of space may, in indefinitely many ways, be expressed (comp.

36) under the form

:

xaa + vbQ + zcy + wd^ + vet
I. . . OP = p = ^ ^-

;

xa + yb + zc -{ wd + ve

in which the ratios of the diferences of the five coefficients, xyzwv, determine the

position of the point. In fact, because the four points abcd are not in any

common plane, there necessarily exists (comp. 65) a determined linear relation

between the four vectors drawn to them from the point p, which may be

written thus,

x'a . pa + i/b . PB + z'c . PC + w^d . pd = 0,

giving the expression,

__ _ xaa + y'b^ + %'cy + w'd'B

xa { yb + zc -^^ wd

in which the ratios of the/owr scalars x'y'z'tv\ depend upon, and conversely

determine, the position of p ; writing, then,

X = tx' + V, y = t'^ + V, z = tz' + V, w = tw' + V,

where t and v are two new and arbitrary scalars, and remembering that

fla + . . + ec = 0, and a + . . + e = (65J, we are conducted to the form for p,

assigned above.

* We should thus have some of the notations of the Baryeentrie CaUulus, hut employed here with

different interpretations.
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71. When the vector p is thus expressed, the point p may be denoted by

the Quinary/ Symbol [x, p, z, w, v) ; and we may write the equation^

T={x,p,Z,W,v).

But we see that the same point p may also be denoted by this other symbol^ of

the same kind, {x\ ?/, z\ w\ v\ provided that the following proportion

between differences of cofficients (70) holds good:

x' - v' : y' - v' '. z' - v' '. w' ~ v' = X - V : y - v: z - V : w - V.

Under this condition, we shall therefore write the following formula of

congruence,

{of, /, z\ w\ v') = {x, y, z, w, v),

to express that these two quinary symbols, although not identical in composition,

have yet the same geometrical signification, or denote one common point. And
we shall reserve the symbolic equation,

{x\ y\ z', w\ v') = {x, y, z, w, v),

to express that the fim coefficients, x' . . . v', of the one symbol, are separately

equal to the corresponding coefficients of the other, x' = x, . . v' ^ v.

72. Writing also, generally,

{tx, ty, tz, tw, tv) = t {x, y, z, w, v),

{x' + ar, ..«>' + t;) = [x', . . 'v') + {x, . . v), &c.,

and abridging the particular symbol* (1, 1, 1, 1, 1) to (U), while (Q), (Qf), . .

may briefly denote the quinary symbols {x, . . f), {x% ..«?'),.. we may thus

establish the congruence (71),

(QO-(Q), ii{Q)-t{Q')-^u{U);

in which t and u are arbitrary coefficients. For example,

(0, 0, 0, 0, 1) - (1, 1, 1, 1, 0), and (0, 0, 0, 1, 1) = (1, 1, 1, 0, 0) ;

each symbol of the first pair denoting (65) the given point e ; and each

symbol of the second pair denoting (66) the derived point Dj. When the

coefficients are so simple as in these last expressions, we may occasionally omit

the commas, and thus write, still more briefly,

(00001) ^ (11110) ; (00011) - (11100).

• This quinary symbol (Z7) denotes no determined point, since it corresponds (by 70, 71) to the

leterminate vector p = -
; but it admits of useful co«i5tMa<tow« with other quinary symbols, as above.

H 2
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73. If three vectors, p, p\ p\ expressed each under \}[\S) first form (70), be

termino-collinear (24) and if we denote their denominators, xu + . . , x'a \- . . ^

x'^a + . ., hj m, w', m", they must then (23) be connected by a linear equa-

tion with a null sum of coefficients, which may be written thus :

tmp + fm'p + fVp' = ; tm + fm' + f'm'' = 0.

We have, therefore, the two equations of condition,

t {xaa + . . + vez) + t' {x'aa + . . + v'et) + t" {x"aa + . . + v'^et) = ;

t{xa+ . . + ve) + t' {x'a + . . + v'e) + t" {x"a + . . + vi'e) = ;

where t, f, t" are three new scalars, while the five vectors a . . c, and the five

Bcalars a . . e, are subject only to the two equations (65) : but these equations

of condition are satisfied by supposing that

tx + fx' + rx" = . .=tv + tV + fV = - w,

where u is some new scalar, and they cannot be satisfied otherwise. Hence

the condition ofcollinearity of the three points p, p', p", in which the three vectors

p, p\ p" terminate, and of which the quinary symbols are (Q), (Q'), (Q")>

may briefly be expressed by the equation,

so that if any four scalars, t, l', t'\ u, can be found, which satisfy this last symbolic

equation, then, but not in any other case, those three points ppV are ranged on

one right line. For example, the three points d, e, Di, which are denoted (72)

by the quinary symbols, (00010), (00001), (11100), are collinear ; because the

sum of these three symbols is,[U). And if we have the equation,

(Q") = ^(Q) + ^'(Q') + ^(^),

where t, if, u are any three scalars, then (Q'') is a symbol for a point p", on the

right line pp'. For example, the symbol (0, 0, 0, t, t') may denote any point

on the line de.

74. By reasonings precisely similar it may be proved, that if (Q) (Q')

(Q'') (Q"0 be quinary symbols for any four points pp'p'^p''' in any common

plane, so that the four vectors pp'p'p" are termino-complanar (64), then an

equation, of the form

t (Q) + t' [Q) + f (Q'O + r (Q"0 = -u{U),

must hold good ; and conversely, that if the fourth symbol can be expressed

as follows,

{<^")-t{q)^f{Q:)-^f{(^')^u{U],
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with any scalar values of t, t\ t'\ w, then i\\Q fourth point v'" is situated in the

plane pp'p'' of the other three. For example, the four points,

(10000), (01000), (00100), (11100),

or A, B, c, Di (66), are complanar ; and the symbol (^, t\ t'\ 0, 0) may repre-

sent any point in the plane abc.

75. When a point p is thus complanar with three given points, Po, Pi, P2, "we

have therefore expressions of the following forms, for the five coefficients x, . .v

of its quinary symbol, in terms of the fifteen given coefficients of their symbols,

and oifour new and arbitrary scalars

:

X = tf/Xo + tiXi + t-^i + w ; . . . V = toVo + tiVi + tiVi + u.

And hence, by elimination of these four scalars, to , . Uy we are conducted to a

linear equation of the form

l{x - v) + m [y - v) + n [z - v) ¥ r {ic - v) = Oy

which may be called the Quinary Equation of the Plane PoPiPz, or of the sup-

posed locus of the point p : because it expresses a common property of all the

points of that locus ; and because the three ratios of the /owr new coefficients I,

m, n, r, determine the position of the plane in space. It is, however, more sym-

metricalf to write the quinary equation of a plane n as follows,

Ix + my + W2 + rw? + se? = 0,

where ^q fifth coe^cientj s, is connected with the others by the relation,

I + m + ti + r + s = 0;

and then we may say that [I, w, w, r, 5] is (comp. 37) the Quinary Symbol of

the Plane n, and may write the equation,

n = [ /, m, u, r, sj.

For example, the coefficients of the symbol for a point p in the plane abc may
be thus expressed (comp. 74)

:

X = to + u, y = ti + u, z = 1^ + u, to = u, V = u\

between which the only relation, independent ofthe four arbitrary scalars to. .u, is

w-v = 0\ this therefore is the equation of the plane abc, and the symbol of that

plane is [0, 0, 0, 1, - 1] ; which may (comp. 72) be sometimes written more

briefly, without commas, as [0001 Ij. It is evident that, in any such symbol,

the coefficients may all be multiplied by any common factor.
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76. The symbol of the plane PoPiPj having been thus determined, we may-

next propose to find a symbol for the point, p, in which that plane is intersected

by a given line P3P4 : or to determine the coefficients x . . v, or at least the ratios

of their differences (70), in the quinary symbol of that point,

[x, y, z,w,v)=-p = P0P1P2 • P3P4.

Combining, for this purpose, the expressions,

X = taXa + tiXi + u\ . . V - t^Vs + t^Vi + u\

(which are included in the symbolical equation (73),

{Q) = t^{Q^)-vt,{Q,)+u'{U),

and express the coUinearity PP3P4), with the equations (75),

Ix \- . . + sv = 0, / + . . + 5 = 0,

(which express the complanarity PP0P1P2), we are conducted to the formula,

4 {1x3 + . . + s%) + ti {Ixi + . . + sz?4) =
;

which determines the ratio t-i : ^4, and contains the solution of the problem.

For example, if p be a point on the line dp:, then (comp. 73),

X = y = Z = Vj\ W = ta + U'y V = ti + u'
;

but if it be also a point in the plane abc, then w - v = (75), and therefore

1^3 - i^4 = ; hence

(Q) = ^3 (00011) + u' (11111), or (Q) 3 (00011)

;

which last symbol had accordingly been found (72) to represent the intersection

(66), Di = ABC • DE.

77. When the five coefl&cients, xyzwv, of any given quinary symbol (Q) for

a point p, or those of any congruent symbol (71), are any whole numbers (posi-

tive or negative, or zero), we shall say (comp. 42) that the point p is rationally

related to the five given points, a . . e ; or briefly, that it is a Rational Point of

the System, which those five points determine. And in like manner, when the

five coefficients, Imnrs, of the quinary symbol (75) of a p)ln'ne Yi are either

equal or proportional to integers, we shall say that the plane is a Rational Plane

of the same System; or that it is rationally related to the same five points.

On the contrary, when the quinary symbol of a point, or of a plane, has not

thus already whole coefficients, and cannot be transformed (comp. 72) so as to

have them, we shall say that the point or plane is irrationally related to the

given points ; or briefly, that it is irrational. A right line which connects two
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rational pointsf or is the intersection of two rational planes, may be called, on

the same plan, a Rational Line ; and lines whicli cannot in either of these

two ways be constructed, may be said by contrast to be Irrational Lines. It

is evident from the nature of the eliminations employed (comp. again 42), that

9. plane, which is determined as containing three rational points, is necessarily a

rational plane ; and in like manner, that a point, which is determined as the

common intersection of three rational planes, is always a rational point : as is

also every point which is obtained by the intersection of a rational line with a

rational plane ; or of ttco rational lines with each other (when they happen to be

oomplanar)

.

78. Finally, when two points, or two planes, differ only by the arrangement

(or order) of the coefficients in their quinary sy^nhols, those points or planes

may be said to have one common type ; or briefly to be syntypical. For ex-

ample, ^Q five given points, a, . . e, are thus syntypical, as being represented

by the quinary symbols (10000), . . (00001) ; and the ten planes, obtained by

taking all the ternary combinations of those five points, have in like manner

one common type. Thus, the quinary symbol of the plane abc has been seen

(75) to be [OOOII] ; and the analogous symbol [llOOOJ represents the plane

CDE, &c. Other examples will present themselves, in a shortly subsequent

Section, on the subject of Nets in Space. But it seems proper to say here a

few words, respecting those Anharmonic Co-ordinates, Equations, Symbols, and

Types, for Space, which are obtained from the theory and expressions of the

present Section, by reducing (as we are allowed to do) the number of the

coefficients^ in each symbol or equation, iroTufive to four.

SECTION 3.

On Anbarmonic Co-ordinates in Space.

79. When we adopt the second form (70) for p, or suppose (as we may)

that the fifth coefficient in the first form vanishes, we get this other general

expression (comp. 34, 36), for the vector of a point in space:

xaa + yb3 + zcy + wdB
OP = /o = ^-^ ^-—

-J— ;

xa + yb + zc + wd

and may then write the symbolic equation (comp. 36, 71),

p = {x, y, z, w),

and call this last the Quaternary Symbol of the Point p : although we shall
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soon see cause for calling it also the Anharmonic Symbol of that point. Mean-

while we may remark, that the only congruent symbols (71), of this last form,

are those which differ merely by the introduction of a common factor : the

three ratios of the /owr coefficients, x . . w, being a// required, in order to deter-

mine the position of the point ; whereof those four coefficients may accordingly

be said (comp. 36) to be the Anharmonic Co-ordinates in Space.

80. When we thus suppose that «; = 0, in the quinary symbol of the point

p, we may suppress the fifth term sv, in the quinary equation of a plane 11,

Ix ¥ . . + sv = (75) ; and therefore may suppress also (as here unnecessary)

the fifth coefficient, s, in the quinary symbol of that plane, which is thus reduced

to the quaternary form,

n = \_l, m, n, r].

This last may also be said (37, 79), to be the Anharmonic Symbol of the Plane,

of which the Anharmonic Equation is

Ix + my + nz + rw == ',

the four coefficients, Imnr, which we shall call also (comp. again 37) the An-

harmonic Co-ordinates of that Plane Tl, being not connected among themselves

by any general relation (such as / + . . + s = 0) : since their three ratios (comp.

79) are all in general necessary, in order to determine the position of the plane

in space.

81. If we suppose that the fourth coefficient, w, also vanishes, in the recent

symbol of a point, that i^oint p is in the plane abc; and may then be sufficiently

represented (as in 36) by the Ternary Symbol [x, y, z). And if we attend

only to the points in which an arbitrary plane 11 intersects the given plane abc,

we may suppress its fourth coefficient, r, as being for such points unnecessary.

In this manner, then, we are reconducted to the equation, Ix + m,y + ws = 0,

and to the symbol, A = [/, m, w], for a right line (37) in the plane abc, considered

here as the trace, on that plane, of an arbitrary plane 11 in space. If this plane

11 be given by its quinary symbol (75), we thus obtain the ternary symbol for

its trace A, by simply suppressing the two last coefficients, r and s.

82. In the more general case, when the point p is not confined to the plane

ABC, if we denote (comp. 72) its quaternary symbol by (Q), the lately estab-

lished formulae of collineation and complanarity (73, 74) will still hold good

:

provided that we now suppress the symbol
(
U), or suppose its coefficient to be

zero. Thus, the formula.
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expresses that ihe point p is in the plane p'p'V"; and if the coefficient t'"

vanish, the equation which then remains, namely,

signifies that p is thus complanar with the two given points p', p", and with an

arbitrary third point ; or, in other words, that it is on the right line p'p" whence

(comp. 76) problems of intersections of lines with planes can easily be resolved.

In like manner, if we denote briefly by [i2] the quaternary symbol [/, m, n, r]

for a plane U, the formula

\_R-] = t' [iJ'j + r [R"] + r [i2"']

expresses that the plane n passes through the intersection of the three planes

U\ n", n"'; and if we suppose t'" = 0, so that

the formula thus found denotes that the plane IT passes through the point of

intersection of the two planes, n', 11", with ani/ third plane ; or (comp. 41),

that this plane D co)itains the line of intersection of 11', 11''; in which case the

three planes, 11, 11', 11", may be said to be colUnear. Hence it appears that

either of the ttco expressions,

i...tf (Q') + r (Q"), II. . . r \_R'-\ + r [ii"],

may be used as a Symbol of a Right Line in Space : according as we consider

that line A either, 1st, as connecting two given points, or Ilnd, as being the

intersection of two given planes. The remarks (77) on rational and irrational

points, planes, and lines require no modification here ; and those on types (78)

adapt themselves as easily to quaternary as to quinary symbols.

83. From the foregoing general formulae of collineation and complanarity,

it follows that the point p', in which the line ab intersects the plane cdp

through CD and any proposed point p = {xyziv) of space, may be denoted thus

:

p' = AB • CDP = [xyOO]
;

for example, e = (1111), and c' = ab • cde = (1100). In general, if abcdef

be any six points of space, the four colUnear planes (82), abc, abd, abe, abf,

are said to form a pencil through ab ; and if this be cut by any rectilinear

transversal, in four points, c\ d\ e', f\ then (comp. 35) the anharnionic function

of this group of poi)its (25) is called also the Anharmonic of the Pencil of

Planes : which may be thus denoted,

(ab . cdef) = (c'd*eV).

Hamilton's Elements of Quaternions. J



68 ELEMENTS OF QUATEENIONS. [I. m. § 3.

Hence (comp. again 25, 35), by what has just been shown respecting c' and p',

we may establish the important formula

:

(CD . AEBP) = (ac'bp') = -

;

y

SO that this ratio of coefficients^ in the symbol [xyzw] for a variable point p (79),

represents the anharmonic of a pencil of planes, of which the variable plane cdp

is one ; the three other planes of this pencil being given. In like manner,

(ad . BECp) = -, and (bd . ceap) = -

;

Z X

so that (comp. 36) the product of these three last anharmonics is unity. On

the same plan we have also,

(bo . AEDP) = -, (CA . BEDP) = —

,

(AB . CEDP) = -
\^ ' w \o w

so that the three ratios, of the three first coefficients xyz to the fourth coefficient

w, suffice to determine the three planes, bop, cap, abp, whereof the point p is the

common intersection, by means of the anharmonics of three pencils of planes, to

which the three planes respectively belong. And thus we see a motive (besides

that of analogy to expressions already used for p)oints in a given plane), for

calling the /oMr coefficients, xyzw, in the quaternary symbol (79) for a point in

space, the Anharmonic Co-ordinates of that Point.

84. In general, if there be any four coUinear points, Pq, . . Ps, so that

(comp. 82) their symbols are connected by two linear equations, such as the

following,

(Qi) = t{Q,) + u [Q,], (a) = t' (Qo) + W [Q,),

then the anharmonic of their group may be expressed (comp. 25, 44) as follows :

, , ut'
(p.p.p.p,) = ^;

as appears by considering Hob pencil (cd . PqPiPzPs), and the transversal ab (83).

And in like manner, if we have (comp. again 82) the two other symbolic

equations, connecting /ow>* coUinear planes Ho'. . Hz,

[i^,] = t [i4] + u [i?2], [Rz'] = f [Ro] + u' [i^,],

the anharmonic of their pencil (83) is expressed by the precisely similar

formula,

(nonin^na) = ^,

;

as may be proved by supposing the pencil to be out by the same transversal

line AB.
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85. It follows that if / {xi/zw) and /i {xyzw) be any two homogeneous and

linear functions of x, y, z, w; and if we determine four collinear planes

Ho . . lis (82), bj the four equations,

/=0, A=f, A = 0, A^kf,

where k is any scalar ; we shall have the following value of the anharmonic

function, of the pencil of planes thus determined :

(non,n,n3) = A: = --^.

Hence we derive this Theorem, which is important in the application of the

present system of co-ordinates to space :

—

" The Quotient of any two given homogeneous and linear Functions^ of the

anharmonic Co-ordinates (79) of a variable Point p in space, may he expressed as

the Anharmonic (rioninalls) of a Pencil of Planes ; whereof three are given,

while the fourth passes through tJie variable point p, and through a given right

line A which is common to the three former planes.'"

86. And in like manner may be proved this other but analogous

Theorem :

—

" The Quotient of any two given homogeneous and linear Functions, of the

anharmonic Co-ordinates (80) of a variable Plane U, may be expressed as the

Anharmonic (PqPiPzPs) of a Group of Points ; whereof three are given and

collinear ; and the fourth is the intersection, A • 11, of their common and given

right line A, with the variable plane IT."

More fully, if the two given functions of Imnr be f and Fi, and if we

determine three points PoPiPs by the equations (comp. 57) f = 0, Fi = r, f, = 0,

and denote by Pj the intersection of their common line A with IT, we shall

have the quotient,

^ = (PoPiPaPa).

For example, if we suppose that

A3 = (1001), B2 = (0101), c, = (0011),

a\ = (lOOl), b\ = (OlOl), c'2 = (OOlI),

so that A2 = DA • BCE, &c., and (dAjAa'z) = - 1, &c.,

we find that the three ratios of I, m, n to r, in the symbol n = {Imnr^ may be

expressed (comp. 39) under the form of anharmonics of groups, as follows :

- = (da 2AQ) ; — = (db jBr) ; - = (do zcs)

;

where q, r, s denote the intersections of the plane n with the three given

I 2
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right lines, da, db, dc. And thus we have a motive (corap. 83) besides that

of analogy to lines in a given plane (37), for calling (as above) the four coeffi-

cients /, m, n, r, in the quaternary symbol (80) for a plane 11, the Anharm^nic

Co-ordinates of that Plane in Space.

87. It may be added, that if we denote by l, m, n the points in which the

same plane 11 is cut by the three given lines bc, ca, ab, and retain the

notations a", b", c" for those other points on the same three lines which were

so marked before (in 31, &c.), so that we may now write (comp. 36)

a'' = (OlIO), b'' = (lOlO), c" = (1100),

we shall have (comp. 39, 83) these three other anharmonics of groups, with

their product equal to unity :

— = (CA bl) ; - = (ab cm) ; — = (bc an)
;

n ^ ' I ^ m
and the six given points, a!\ b", c", a.\, b'z, o\, are all in one given plane [e], of

which the equation and symbol are :

X. + y + z + 10 = Q', [e] = [1111].

The six groups of points, of which the anharmonic functions thus represent

the six ratios of the four anharmonic co-ordinates, Imnr, of a variable plane 11,

are therefore situated on the six edges of the given pyramid, abcd ; two points in

each group being corners of that pyramid, and the ttvo others being the inter-

sections of the edge with the two planes, [e] and IT. Finally, the plane [e] is

(in a known modern sense) the plane of homology,* and the point e is the centre

of homology, of the given pyramid abcd, and of an inscribed pyramid Ai^iCiDi,

where Ai = ea • bcd, &c. ; so that Di retains its recent signification (66, 76),

and we may write the anharmonic symbols,

Ai=(0111), Bi=(1011), Ci=(1101), D,= (1110).

And if we denote by a'ib'ic'id'i the harmonic conjugates to these last

points, with respect to the lines ea, eb, ec, ed, so that

(eAiAa'i) = . . = (eDiDD'i) = - 1,

we have the corresponding symbols,

a'i = (2111), b', = (1211), c'x = (1121), d'i = (1112).

Many other relations of position exist, between these various points, lines,

and planes, of which some will come naturally to be noticed, in that theory

of nets in space to which in the followiug Section we shall proceed.

* See Poncelet's Traite des ProprieUa Projeetives (Paris, 1822).
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SECTION 4.

On Creometrical IVets in lipace.

88. When we have (as in 65) five given points a . . e, whereof no four

are complanar, we can connect any two of them by a right line, and the three

others by o, plane, and determine the point in which these last intersect one

another : deriving thus a system of ten lines Ai, ten planes Di, and ten points Pi,

from tlie given system oi Jive points Po, by what may be called (comp. 34) a

First Construction. We may next propose to determine all the neio and

distinct lines, A2, and planes, U2, which connect the ten derived points Pi with

the five given points Pq, and with each other ; and may then inquire what

new and distinct points Fz arise (at this stage) as intersections of lines with

planes, or of lines in one plane with each other : all such new lines, planes, and

points being said (comp. again 34) to belong to a Second Construction^ And
then we miglit proceed to a Third Construction of the same kind, and so on

for ever : building up thus what has been called* a Geometrical Net in Space.

To express this geometrical process by quinary symbols (71, 75, 82) of points,

planes, and lines, and by quinary types (78), so far at least as to the end of the

second construction, will be found to be an useful exercise in the application of

principles lately established : and therefore ultimately in that Method of

Vectors, which is the subject of the present Book. And the quinary form

will here be more convenient than the quaternary, because it will exhibit more

clearly the geometrical dependence of the derived points and planes on i\ie five

given points, and will thereby enable us, through a principle of symmetry, to

reduce the number of distinct types.

89. Of the five given jjoints, Po, the quinary type has been seen (78) to

be (10000) ; while of the ten derived points Pi, of first construction, the

corresponding type may be taken as (00011); in fact, considered as symbols,

these two represent the points a and Di. The nine other points Pi are

aVc'aiBiCiAuB,C2 ; and we have now (comp. 83, 87, 86) the symbols,

a' = BC • ADE = (01100), A, = EA • BCD = (10001),

A, = DA • BCE = (10010) ;

also, in any symbol or equation of the present form, it is permitted to change

A, B, c to B, c, A, provided that we at the same time write the third, first,

* By Mobius, in p. 291 of his already cited Barycentrie Calculus,
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and second co-efficients, in the places of the first, second, and third : thus,

b'= CA" BDE= (10100), &c. The symbol (xi/000) represents an arbitrary point

on the line ab ; and the symbol [OOwrs], with n + r+ s = 0, represents an

arbitrary plane through that line : each therefore may be regarded (comp. 82)

as a symbol also of the line ab itself, and at the same time as a type of the ten

lines Ai ; while the symbol [00011], of the plane abc (75), may be taken (78)

as a type of the ten planes IIi. Finally, the Jim pyramids,

BCDE, cade, ABDE, ABCE, ABCD,

and the ten triangles, such as abc, whereof each is a common face of two such

pyramids, may be called pyramids Mi, and Mangles Ti, of the First Con-

struction.

90. Proceeding to a Second Construction (88), we soon find that the lines

Az may be arranged in two distinct groups ; one group consisting of fifteen lines

A2,i, such as the line* aa'di, whereof each connects two points Pi, and passes

also through one point Po, being the intersection of two planes Hi through that

point, as here of abc, ade ; while the other group consists of thirty lines A2,2,

such as b'c', each connecting two points Pi, but not passing through any point

Po, and being one of the thirty edpes of five new pyramids R^, namely,

c'b''A2Ai, a'c'BzBi, bVc2Ci, A2B2C2D1, AjBiCiDi :

which pyramids R2 may be said (comp. 87) to be inscribed homologues of the

five former pyramids Ri, the centres ofhomology for these ^^w pairs ofpyramids

being the five given points a . . e ; and the planes of homology being five planes

[a] . . [e], whereof the last has been already mentioned (87), but which belong

properly to a third construction (88). The planes Da, of second construction,

form in like manner tico groups; one consisting of fifteen planes 112,1, such

as the plane of {he five points, AB1B2C1C2, whereof each passes through one point

Po, and through four points Pi, and contains two lines Azji, as here the lines

AB1C2, AC1B2, besides containing /owr lines A2,2, as here B1B2, &c. ; while the other

group is composed of twenty planes 112,2, such as AjBiCi, namely, the ttventy

faces of the five recent pyramids R^, whereof each contains three points Pi, and

three lines Aj,?, but does not pass through any point Pq. It is now required

to express these geometrical conceptions^ of the forty-five lines A2; the thirty-five

planes li^', and the five planes of homology of pyramids, [a] . . . [e], by

* AB1C2, AB2C1, da'ai, ea'a2, are other lines of this group.

t Mobius (in his Barycentric Calculus, p. 284, &c.) has very clearly pointed out the existence and

chief properties of the foregoing lines and planes ; but besides that his analysis is altogether different

from ours, he does not appear to have aimed at enumerating, or even at classifying, all the points of

what has been above called (88) the teeond construction, as we propose shortly to do.
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quinary symbols and types, before proceeding to determine the points p, of

second construction.

91. An arbitrary j3om^ on the right line aa'di (90) may be represented by

the symbol [tuuOO) ; and an arbitrary plane through that line by this other

symbol,
[
Ommrr], where m and r are written (to save commas) instead of - m

and - r ; hence these two symbols may also (corap. 82) denote tlie line aa'd,

itself, and may be used as types (78) to represent the group of lines A?,!.

The particular symbol [01111], of the last form, represents that particular

plane through the* last-mentioned line, which contains also the line ab,C2 of

the same group ; and may serve as a type for the group of planes Ili,!. The

line b'c', and the group A2,2, maybe represented by {stuQQ) and [tttus\ if we

agree* to write s = t +u, and s => - s ; while the plane b'c'az, and the group

112,2, may be denoted by [Illl2]. Finally, the plane [e] has for its symbol

[11114] ; and the four other planes [a], &o., of homology of pyramids (90),

have this last for their common type.

92. The points Pa, of second construction (88), are more numerous tlian the

lines As and planes 112 of that construction : yet with the help of types, as

above, it is not difficult to classify and to enumerate them. It will be suffi-

cient here to write down these types, which are found to be eight, and to offer

some remarks respecting them ; in doing wliich we shall avail ourselves of the

eight following typical points, whereof the two first have already occurred, and

which are all situated in the plane of abc :

a'' =(01100); a''' = (21100); a'^ = (21100) ; a^ = (02100)

;

A^'= (02100); A^" = (12l00); a^"'= (32100) ; A« = (23l00);

the second and third of these having (10011) and (30011) for congruent symbols

(71). It is easy to see that these eight types represent, respectively, ten, thirty,

thirty, twenty, twenty, sixty, sixty, and sixty distinct points, belonging to

eight groups, which we shall mark as P2,i, . . P2,8 ; so that the total number of

the points P2 is 290. If then we consent (88) to close the present inquiry, at

the end of what we have above defined to be the Second Construction, the total

number ofthe net points, Pj, Po, which are thus derived by lines and jjlanes from

the five given points Po, is found to be exactly three hundred: while the /ow^

number of the net-lines, Ai, A2, and of the net-planes, Hi, 112, has been seen to

be one hundred, so far.

* With this convention, the line ab, and the group Ai, may he denoted by the plane-symbol

\QQtus], iheiv point-symbol being (<mOOO).
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(1.) To the type P2,i belong the ten points.

with the quinary symbols,

a''- (01100), . . a\= (lOOlO), . . A.\= (lOOOl), . . d'i = (00011),

which are the harmonic conjugates of the ten points Pi, namely, of

aVc', A2B2C2, AiBiCiDi,

with respect to the ten lines Ai, on which those points are situated ; so that

we have ten harmonic equations, (ba'ca''] = - I, &c., as already seen (31, 86,

87). Each point P2,i is the common intersection of a line Ai with three titles

A2,2 ; thus we may establish the four ioWowmg formulce of concurrence (equi-

valent, by 89, to ten such formulae) :

a'' = Bc • b'c' * BiCi • B2C2 ; A'2 = DA " DiAi * b'c2 ' c'b2
;

a'i = EA • DiA2 • b'Ci • c'Bi ; d'i = DE * AjAg ' B1B2 * C1C2.

Each point P2,i is also situated in three planes IIi ; in three other planes, of the

group 112,1 ; and in six planes 112,2 ; for example, a" is a point common to the

twelve planes,

ABC, BCD, BCE
;

AB1C2C1B2, DB^BiC'c,, EB^BaC'Cj ;

b'c'Ai, BiCiAi, B2C2A2, bVAj, BjCiDi, B2C2D1.

Each line, Ai, or A2,2> contains one point P2,i ; but no line A2,i contains any.

Each plane, IIi or 112,2, contains three such points ; and each plane 112,1

contains two, which are the intersections of 02)posite sides of a quadrilateral Q^ in

that plane, whereof the diagonals intersect in a point Po : for example, the

diagonals B1C2, B2C1 of the quadrilateral B1B2C2C1, which is (by 90) in one of the

planes 112,1, intersect* each other in the point a ; while the opposite sides CiBi,

B2C2 intersect in a'' ; and the two other opposite sides, B1B2, C2C1 have the point

D^ for their intersection. The ten points P2,i are also ranged, three hy three,

on ten lines of third construction A3, namely, on the axes of homology,

A^'b'iC'i, . . a''b'2C'2, . . a'iA'2D'i, . . a'^b'c'',

of ten pairs of triangles T^, T^, which are situated in the ten planes 111, and of

whieli the centres of homology are the ten points Pi : for example, the dotted

line a'^e'V, in fig. 21, is the axis of homology of the two triangles, abc, a'bV,

whereof tlie latter is inscribed in the former, with the point o in that figure

(replaced by Di in fig. 29), to represent their centre of homology. Tlie same

ten points P2,i are also ranged six by six, and the ten last lines A3 are ranged

* Compare the first Note to page 62.
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four hy four, in five planes lis, namely in the^j/^w^s of homology oi five pairs of

pyramids^ JRi, R^, already mentioned (90) : for example, the plane [e] contains

(87) the six points a'"b''c'''a'2b'8c'2, and the four right lines,

a'^b'^c',, b'^c'^a'^, c'Vjb'^, a''b''c'';

which latter are the intersections of the four faces,

DCB, DAC, DBA, ABC,

of the pyramid abcd, with the corresponding faces,

DiCiBi, DiAiCi, DiBiA,, AiBiCi,

of its inscribed homologue AiBxCiDi ; and are contained, besides, in the four other

planes,

A2bV, BjcV, C2a'b', AjB2C2:

the three triangles, abc, AiBiCi, A2B2C2, for instance, being all homologous,

although in different planes, and having the line h!'^"c" for their common axis

of homology. We may also say, that this line a^'b^'c'' is the common trace

(81) of two planes 112,2, namely of AiBjCi and A2B2C2, on the plane abc ; and in

like manner, that the point a'' is the common trace, on that plane 111, of two

lines A2,2, namely of BiCi and B2C2 : being also the common trace of the two lines

b'iC'i and b''2c'2, which belong to the third construction.

(2.) On the whole, these ten points, of second construction, a" . . ., may be

considered to be already well known to geometers, in connexion with the

theory of transversal* lines and planes in space : but it is important here to

observe, with what simplicity and clearness their geometrical relations are

expressed (88), by the quinary symbols and quinary types employed. For

example, the collinearity (82) of the four planes, abc, AiBiCi, A2B2C2, and [e],

becomes evident from mere inspection of theirfour symbols,

[00011], [11121], [11112], [11114],

which represent (75) the four quinary equations,

w-v = 0, x + y+z-2w-'V = 0, x + y+z-w- 2v = 0, x + y + z + w-4:V=0;

with this additional consequence, that the ternary symbol (81) of the common

trace, of the three latter on the former, is [111] : so that this trace is (by 38)

the line a'''b'V of fig. 21, as above. And if we briefly denote the quinary

symbols of the four planes, taken in the same form and order as above, by

* The colKnear, complanar, and harmonic relations hetween the ten points, which we have ahove

marked as P2,i) and which have been considered hy Mobius also, in connexion with his theory of

nets in space, appear to have been first noticed hy Carnot, in a Memoir upon transversals.

Hamilton's Elements of Quaternions. K
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[i2o] [i^i] [-R2] [-Bs], we see that they are connected by the two relations,

[i?i] = - [i2o] + [R2'] ; [Rsl = 2[i?o] + [i^a]

;

whence if we denote the planes themselves by Hi, U^, U\, Efs, we have

(comp. 84) the following value for the anharmonic of their pencil,

(nxn2n',n3)=-2;

a result which can be very simply verified, for the case when abcd is a regular

pyramid, and e (comp. 29) is its mean point : the plane II3, or [e], becoming

in this case (comp. 38) the plane at infinity, while the three other planes, abc,

AiBiCi, A2B2C2, are parallel ; the second being intermediate between the other

two, but twice as near to the third as to the first.

(3.) We must be a little more concise in our remarks on the seven other

types of points P2, which indeed, if not so well known,* are perliaps also, on

the whole, not quite so interesting : although it seems that some circumstances

of their arrangement in space may deserve to be noted here, especially as

affording an additional exercise (88), in the present system of symbols and

types. The type Vz,% represents, then, a group of thirty points, of which k'",

in fig. 21, is an example ; each being the intersection of a line A2,i with a

line A2,2 as a""' is the point in which aa' intersects b'c' : but each belonging to

no other line, among those which have been hitherto considered. But without

aiming to describe here all the lines, planes, and points, of what we have

called the third construction, we may already see that they must be expected

to be numerous : and that the planes Ha, and the lines A3, of that construction,

as well as the pyramids Rz, and the triangles T^, of the second construction,

above noticed, can only be regarded as specimem, which in a closer study of

the subject, it becomes necessary to mark more fully, on the present plan, as

lis,!, . . 2\,i. Accordingly it is found that not only is each point P2,2 one of

the corners of a triangle Ti,i of third construction (as a''' is of a'^'b^^'c"'' in

fig. 21), the sides of which new triangle are lines A3,2, passing each tlirough

one point P2,i and through two points P2,2 (like the dotted line a^'b^V of

fig. 21) ; but also each such point P2,2 is the intersection of two new lines of

* It does not appear that any of these other types, or ffroups, of points P2, have hitherto been

noticed, in connexion with the )iet in space, except the one which we have ranked as the Jifth, P2,6,

and which represents two points on each line Ai, as the type P2,i has been seen to represent one point

on each of those ten lines of first construction : but thsit Jifth group, which may be exemplified by the

intersections of the line dk with the two planes aiBiCi and A2H2C2, has been indicated by Mcibius (in

page 290 of his already cited work), although with a different notation, and as the result of a different

analysis.
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third construction, A3,3, whereof each connects a point Pq with a point P2,i.

For example, the point a"' is the common trace (on the plane abc) of the two

new lines, da'i, ea'z : because, if we adopt for this point a"^ the second of its

two congruent symbols, we have (comp. 73, 82) the expressions,

a:"= (lOOll) = (d) - (A^) = (e) - {k\).

We may therefore establish the formula of concutrence (comp. the first sub-

artiole)

:

a'''' = Aa' • b'c' • DA'i • EA'a

;

which represents a system of thirtij such formulfie.

(4.) It has been remarked that the point a"" may be represented, not only

by the quinary symbol (21100), but also by the congruent symbol, (10011) ;

if then we write,

Ao = (fllOO), Bo = (11100), Co = (llIOO),

these three new points AqBoCo, in the plane of abc, must be considered to be

syntypicaly in the quiiiary sense (78), with the three points a'''b'''c'^', or to

belong to the same group P2,2, although they have (comp. 88) a different

ternary type. It is easy to see that, while the triangle h!"^"'d" is (comp.

again fig. 21) an inscribed homohgue Tz^x of the triangle a'b'c', which is itself

(comp. sub-article 1) an inscribed homologue ^2,1 of a triangle Ti, namely of

ABC, with a'''b"c'' for tlieir common axis of homology, the new triangle AoBqCo is

on the contrary an exscrihed homologue 2^3,2, with the same axis As,!, of the

same given triangle 7'i. But from the syntypical relation existing as above for

space between the points h!" and Aq, we may expect to find that these two

points P2,2 admit of being similarly constructed, when the fve points Po are

treated as entering symmetrically (or similarly), as geometrical elements, into

the constructions. The point Ao must therefore be situated, not only on a

line A2,i, namely, on aa', but also on a line A2,2, which is easily found to be

A1A2, and on two lines A3,3, each connecting a point Pq with a point P2,i

;

which latter lines are soon seen to be bb'' and cc". We may therefore

establish the formula of concurrence (comp. the last sub-article)

:

Ao = aa' • A1A2 • bb'' • cc'''

;

and may consider the three points Aq, Bq, Cq as the traces of the three lines A1A2,

B1B2, CiC2 : while the three new lines aa'', bb'', cc'', which coincide in position

with the sides of the exscrihed triangle AoBqCo, are the traces A3,3 of three

planes Il2,i, such as AB1C2B2C1, which pass through the three given points a,b,c,

K 2
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but do not contain the lines Az,! whereon the six points P2,2 in their plane IIi

are situated. Every other plane Hi contains, in like manner, six points P2 of

the present group ; every plane 112,1 contains eight of them ; and every plane

112,2 contains three; each line A2,i passing through two such points, but each

line A2,2 only through one. But besides being (as above) the intersection of

two lines A2, each point of this group P2,2 is common to two planes Hi, four

planes 112,1, and two planes 112,2 ; while each of these thirty points is also a

common corner of two different triangles of third construction, of the lately

mentioned kinds ^3,1 and ^3,2, situated respectively in the tw^o planes of first

construction which contain the point itself. It may be added that each of the

two points P2,2, on a line A2,i, is the harmonic conjugate of one of the two points

Pi, with respect to the point Pq, and to the other point Pi on that line ; thus

we have here the two harmonic equations,

(aa'dia'^') = (adiA'ao) = - 1,

by which the positions of the two points a'''' and Ao might be determined.

(5.) A third group, P2,3, of second construction, consists (like the preceding

group) of thirty points, ranged two hy two on the fifteen lines A2,i, and six by

six on the ten planes n,, but so that each is common to two such planes ; each

is also situated in tico planes 112,1, in two planes 112,2, aud on one line A3,i,

in which (by sub-art. 1) these two last planes intersect each other, and two of

the five planes Il3,i ; each plane 112,1 contams four such points, and each plane

112,2 contains three of them ; but no point of this group is on any line Ai,

or A2,2. The six points P2,3, which are in the plane abc, are represented (like

the corresponding points of the last group) by two ternary types, namely by

(211) and (311) ; and may be exemplified by the two following points, of

which these last are the ternary symbols :

A'^ = AA' • a"b'V = AA' • AiBiCi • A2B2C2 ;

Ai^'^ = AA' • d'iA'2Ai = AA' • b'CiC2 * c'BiBj.

The three points of the first sub-group a^''. . are collinear ; but the three points

Ai^^ . . of the second sub-group are the corners of a netv triangle, ^3,3, which

is homologous to the triangle abc, and to all the other triangles in its plane

which have been hitherto considered, as well as to the two triangles AiBiCi and

A2B2C2 ; the line of the three former points being their common axis of homology

;

and the sides of the new triangle, Ai'''^Bj'"^Ci^^, being the traces of the three planes

(comp.190) of homology of pyramids, [a], [b], [c] ; as (comp. sub-art. 2) the

line a^b^^c^'' or a"b''c" is the common trace of the two other planes of the same
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group Ilj,!, namely of [d] and [e]. We may also say that the point Ai'^ is the

trace of the line K\k\ ; and because the lines b'co, c'bq are the traces of the two

planes 112,2 in which that point is contained, we may write the formula of

concurrence,

Ai^"' = Aa' • a'iA'z * b'Co * c'Bo.

(6.) It may be also remarked, that each of the two points P2,3, on any line

A2,i, is the harmonic conjugate of a point P2,2, with respect to tlie point Pq,

and to one of the two points Pi on that line ; being also the harmonic con-

jugate of this last point, with respect to the same point Po, and tlie other point

P2,2 : thus, on the line aa'di, we have the four harmonic equations, which are

not however all independent, since two of them can be deduced from the two

otliers, with the help of the two analogous equations of the fourth sub-article:

(aa'"aV^) = (aa'AoA^^) = (aAqDiAi'^) = (aDiA'"Ai^^) = - 1.

And the three pairs of derived points Pi, P2,2, P2,3, on any such line A2,i, will

be found (comp. 26) to compose an involution, with the given point Po on the

line for one of its two double points (or foci) : the other double point of this

involution being a point P3 of third construction ; namely, the point in which

the line A2,i meets that one of the fve planes of homology lis,!, which corre-

sponds (comp. 90) to the particular point Po as centre. Thus, in the present

example, if we denote by a^ the point in which the line aa' meets the plane

[a], of which (by 81, 91) the trace on abc is the line [ill], and therefore is

(as has been stated) the side Bi'^c,'"' of the lately mentioned triangle ^3,3, so

that

A^ = (122) = aa'- Bc"'- Cb'"- Bx'^Cj^

we shall have the three harmonic equations,

(aaVdi) = (aa"'a^Ao) = (aa^^a^Ai^^) = - 1

;

which express that this new point a^ is the common harmonic conjugate of the

given point a, with respect to the three pairs ofpoints, a%, a'"ao, a'^Ai'^ ; and
therefore that these three pairs form (as has been said) an involution, with A and
A^ for its two double points.

(7.) It will be found that we have now exhausted all the types of points

of second construction, which are situated upon lines A2,i; there being

only four such points on each such line. But there are still to be considered

two new groups of points P2 on lines Ai, and three others on lines A2,2.

Attending first to the former set of lines, we may observe that each of the two

new types, P2,4, Pj,}, represents twenty points, situated two by two on the ten
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lines oi first construction, but not on any line A2; and therefore six by six in

the ten planes 111, each point however being common to three such planes: also

each point P2,4 is common to three planes 112,2, and each point P2,5 is situated

in one such plane ; while each of these last planes contains three points P2,4,

but only one point P2,5. If we attend only to points in the plane abc, we
can represent these two neiv groups by the two ternary types (021) and (021),

which as symbols denote the two typical points,

A^ = BC • c'AiAj • DiAiBi * D]A2B2 ; A'^^ = BC * c'BiB2 = BC * c'Bo ;

we have also tlie concurrence,

A"^ = BC • c'Aq • DiO" • Ab'".

It may be noted that a"^ is the harmonic conjugate of c', with respect to Aq

and Bi'^, which last point is on the same trace c'ao, of the plane c'aiA2 ; and

that a'^' is harmonically conjugate to b/, with respect to c' and Bq, on the

trace of the plane c'biB2, where b/ denotes (by an analogy wliich will soon

become more evident) the intersection of that trace with the line ca : so that

we have the two equations,

(Aoc'bi^W) = (b„b/cVO = - 1.

(8.) Each tine Ai contains thus two points P2, of each of the two last new

groups, besides the point P2,i, the point Pi, and the two points Po, wliich had

been previously considered : it contains therefore eight points in all, if we still

abstain (88) from proceeding beyond the Second Construction. And it is easy

to prove that these eight points can, in tico distinct modes, be so arranged as to

form (comp. sub-art 6) an involution, with two of them for the two double

points thereof. Thus, if we attend only to points on the line bo, and repre-

sent them by ternary symbols, we may write,

b = (010), c = (001), a'= (Oil), a" = (Oil)

;

A^ = (021), A^^ = (021), A,^ = (012), Ai^' = (0l2)

;

and the resulting harmonic equations

I. . . (ba'ca") = (bA^CA^^) = (BA/CAi^^j = - 1,

II. . . (a'ba''c) = (aVa'^Ai^) = (aV'a'a/O = - 1,

will then suflS.ce to show : 1st, that the two points Pq, on any line Ai, are the

double points of an involution, in which the points Pi, P2,i form one pair of

conjugates, while the two other pairs are of the common form, P2,4, P255 ; and

Ilnd, that the two points Pi and P2,i, on any such line Ai, are the double points of

a second involution^ obtained by pairing the two points of each of the three other
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groups. Also each of the two points Po, on a line Ai, is the harmonic conjugate

of one of the two points P2,5 on that line, with_ respect to the other point of

the same group, and to the point Pi on the same line ; thus,

(ba'ai^^a^^) = (caV'Ai^^) = - 1.

(9.) It remains to consider briefly three other groups of points Pj, each

group containing sixtp points, which are situated, two by two, on the thirty

lines A2,2, and six by six in the ten planes IIi. Confining our attention to

those which are in the plane abc, and denoting them by their ternary

symbols, we have thus, on the line b'c', the three new typical points, of the

three remaining groups, P2,6, P2,7, ^2,8

:

A^" = (12l) ; A^"^ = (321) ; a« = (231)

;

with which may be combined these three others, of the same three types, and

on the same line b'c' :

Ai^" = (112) ; Ai"" = (312) ; Ai« = (213).

Considered as intersections of a line A2,2 with lines As in the same plane n„

or with planes IIz (in which latter character alone they belong to the second

construction), the three points a^", &c., may be thus denoted

:

A''" = b'c' • Bb'' • CB'"' • AA'^^ = b'c' ' BCiAzAiCj ;

/''*vA^"i = B C • DiB • AB A^ = B C * DjCiAi ' D1C2A2 ;

Ai* = b'c' • a'CoBi'^Cj^B^' • BA'^B,"B,"^ = b'c' ' a'CiCj ;

with the harmonic equation,

(CoA'Ci^A") = - 1,

and with analogous expressions for tlie tliree other points, a/", «S;c. The line

bV thus intersects one plane 112,1 (or its trace bb'' on the plane abc), in the

point a"^" ; it intersects two planes 02,2 (or their common trace Djb") in a'^"'
;

and one other plane 1X2,2 (or its trace a'Co) in a'^ : and similarly for the other

points, Ai"^", &c., of the same three groups. £ach plane U^ti contains twelve

points P2,6, eight points P2,7, and eight points P2,8 ; while every plane 1X2,2

contains six points P2,6, twelve points P2,7, and nine points P2,s. Each point P2,c

is contained in one plane IXi ; in three planes 1X2,1 ; and in two planes 1X2,2.

Each point P2,7 is in one plane IXi, in two planes 1X2,1, and in four planes 1X2,2.

And each point P2,8 is situated in one plane IXi, in two planes 1X2,1, and in

three planes 1X2,2.

(10.) The points of the three last groups are situated only on lines A2,2

;

but, on each such line, two points of each of those three groups are situated
;
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which, along with one point of each of the two former groups, P2,i and P2,2,

and with the two points Pi, whereby the line itself is determined, make up a

system of ten points upon that line. For example, the line b'c' contains,

besides the six points mentioned in the last sub-article, the four others:

b' = (101) ; c' = (110) ; a" = (Oil) ; a."' = (211).

Of these ten points, the two last mentioned, namely the points P2,i and P2,2

upon the line A2,2> are the double points (eomp. sub-art. 8) of a neio involution^

in which the two points of each of the four other groups compose a conjugate

pair, as is expressed by the harmonic equations,

(a'^bVo') = (a''a^"a'''ai^") = (a^'a^"'a'"ai^"0 = (a'VVax^^) =- 1.

And the analogous equations,

(bVc'a''0 = (bV"cV"0 = (b'a/"c'Ai^'") = - 1,

show that the two points Pi on any line A2,2 are the double points of another

involution (comp. again sub-art. 8), whereof the two points P2,,, P2,j on that

line form one conjugate pair, while each of the two points P2,6 is paired

with one of the points P2,7 as its conjugate. In fact, the eight-rayed pencil

(a . c'bVW"^a^"Ai^"'a/") coincides in position with the pencil (a . bcaV
a"^a"^^Ai^a/'), and may be said to be a pencil in double involution; the third and

fourth, the fifth and sixth, and the seventh and eighth rays forming one invo-

lution, whereof the first and second are the two double* rays ; while the first

and second, the fifth and seventh, and the sixth and eighth rays compose

another involution, whereof the double rays are the third and fourth of the

pencil.

(11.) If we proceeded to connect systematically the points P2 among them-

selves, and with the points Pi and Po, we should find many remarkable lines and

planes of third construction (88), besides those which have been incidentally

noticed above ; for example, we should have a group 113,2 of ttventy new planes,

exemplified by the two following,

[eJ = [11103], [dJ = [11130],

which have the same common trace A3,i, namely the line a^'b'V'', on the plane

*abc, as the two planes AiBiCi, AzBaC?, and the two planes [d], [e], of the groups

112,2 and 113,1, which have been considered in former sub-articles ; and each

of these new planes 113,2 would be found to contain one point p,,, three points

* Compare page 172 of the OSom. Superieure of M. Chasles.
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P2,i, six points P2,2, and three points P2.3. It might be proved also that these

twenty new planes are the twenty faces of five neio pyramids R3, which are the

exscrihed homologues of the five old pyramids Ri (89), with the five given points

Po for the corresponding centres of homology. But it would lead us beyond

the proposed limits, to pursue tliis discussion further : although a few additional

remarks may be useful, as serving to establish the completeness of the emimera-

tion above given, of the lines, planes, and points of second construction.

93. In general, if there be any n given points, whereof no four are situated

in any common plane, the number iVof the derived points, which are immediately

obtained from them, as intersections A • IT of line with plane (each line being

drawn through two of the given points, and each plane through three others),

or the number of points of the form ab • cde, is easily seen to be,

so that N = 10, as before, when n = 5. But if we were to apply this formula

to the case n = 15, we should find, for that case, the value,

N = f (15) = 15 . 14 . 13 . 11 = 30030
;

and thus fifteen given and independent points of space would conduct, by what

might (relatively to them) be called a First Construction (comp. 88), to a system

of more than thirty thousand points. Yet it has been lately stated (92), that

from the fifteen points above called p©, Pi, there can be derived, in this way,

only two hundred and ninety points Pj, as intersections of the form* A . 11

;

and therefore feicer than three hundred. That this reduction of the number of

derived points, at the end of what has been called (88) the Second Construction

for the net in space, arising from the dependence of the ten points Pi on the five

points Po, would be found to be so considet^able, might not perhaps have been

anticipated ; and although the foregoing examination proves that all the eight

types (92) do really represent points Pj, it may SLTp-pear possible, at this stage, that

some other type of such points has been omitted, A study of the manner in which

the types ofpoints result, from tliose of the lines and planes of which they are

the intersections, would indeed decide this question ; and it was, in fact, in

that way that the eight types, or groups, P2,i, . . P2,8, of points of second

construction for space, were investigated, and found to be sufficient : yet it

* T he definition (88) of the points Pj admits, indeed, intersections A . A of complanar lines, when
they are not already points pq or Pi ; but all such intersections are also points of the form A . H ; so

that no generality is lost, by confining ourselves to this last form, as in the present discussion we
propose to do.

Hamilton's Elements of Quaternions. l«
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may be useful (compare the last sub-art.) to verify^ as below, the completeness

of the foregoing enumeration.

(1.) The fifteen points^ Po, Pi, admit of 105 binary, and of 455 ternary combi-

nations ; but these are far from determining so many distinct lines and planes.

In fact, those 15 points are connected by 25 collineations, represented by the

25 lines Ai, Az, i ; which lines therefore count as 75, among the 105 binary

combinations of points : and. there remain only 30 combinations of this sort,

which are constructed by the 30 other lines, A2,2. Again, there are 25 ternary

combinations of points, which are represented (as above) by lines, and therefore

do not determine any plane. Also, in each of tlie ten planes IIi, there are 29

(= 35 - 6) triangles Ti, Ti, because each of those planes contains 7 points p,,, Pi,

connected by 6 relations of collinearity. In like manner, each of the fiftee^i

planes IIz,! contains 8 (= 10 - 2) other triangles T%, because it contains 5 points

Po, Pi, connected by two collineations. There remain therefore only 20

(= 455 - 25 - 290 - 120) ternary combinations of points to be accounted for

;

and these are represented by the 20 planes 112,2. The completeness of the

enumeration of the lines and planes of the second construction is therefore

verified; and it only remains to verify that the 305 points, Pq, Pi, Pg, above

considered, represent all the intersections A . H, of the 55 lines Ai, A2, with the

45 planes Hi, Ha.

(2.) Each plane Hi contains three lines of each of the three groups, Ai,

A2,i, A2,2 ; each plane Ha,! contains two lines A2,i, and four lines A2,2 ; and

each plane 112,2 contains three lines A2,2. Hence (or because each line Ai is

contained in three planes Hi ; each line A2,i in two planes Hi, and in two

planes 112,1 ; and each line A2,i in one plane Hi, in two planes 112,1, and in

two planes 112,2), it follows that, without going beyond the second construc-

tion, there are 240 (= 30 + 30 + 30 + 30 + 60 + 60) cases of coincidence of line

and plane ; so that the number of cases of intersection is reduced, hereby, from

55 . 45 = 2475, to 2235 (= 2475 - 240).

(3.) Each point Po represents twelve intersections of the form Ai * IIi

;

because it is common to four lines Ai, and to six planes IIi, each plane contain-

ing two of those four lines, but being intersected by the two others in that

point Po ; as the plane abc, for example, is intersected in a by the two lines,

AD and AE. Again, each point Po is common to three planes Il2,i, no one of

which contains any of the four lines Ai through that point ; it represents

therefore a system of twelve other intersections, of the form Ai ' Il2,i. Again,

each point Po is common to three lines A2,i, each of which is contained in two

of the six planes IIi, but intersects the four others in that point Pq ; which
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therefore counts as twelve intersections, of the form A^,! • IIi. Finally, each

of the points Pq represents three intersections, A2,i * IIo,! ; and it represents

no other intersection, of tlie form A ' U, within the limits of the present

inquiry. Thus, each of the five given points is to be considered as represent-

ing, or constructing, thirty-nine (= 12 + 12 -i- 12 + 3) intersections of line

with plane ; and there remain only 2040 (= 2235 - 195) other cases of such

intersection A * 11, to be accountedfor (in the present verification) by the 300

derived jmnts, p,, p^.

(4.) For this purpose, the nine columm, headed as I. to IX. in the follow-

ing Tahkf contain the numbers of such intersections which belong respectively

to the nine/brfnSf

Ai * 111, Al * Il2,l, Ai ' n2>2
; Aa,! * 111,

A2>2 * Hi,

for each of the nine typical derived points, a'. .

. . P2,8. Column X. contains, for each point, the sum of the nine numbers,

thus tabulated in the preceding columns ; and expresses therefore the entire

number of intersections, which any one such point represents. Column XI.

states the number of the points for each ty2}e ; and column XII. contains the

product of the two last numbers, or the number of intersections A . II which

are represented (or constructed) by the group. Finally, the sum of the

numbers in each of the two last columm is written at its foot ; and because

the 300 derived points, of first and second constructions, are thus found to

represent the 2040 intersections which were to be accounted for, the verification

18 seen to be complete: and no new type, of points P2, remains to he discovered.

A2,l * Il2,l, A2,l ' Il2,2
j

A2}2 ' Il2,l, A2,2 * Il2j2j

A'^, of the nine groups Pi, P2,i,

(5.) Table OF Intersections A-n.

Type. I. n. m. IV. V. VI. VII. vni. IX. X. XI. XII.

a' 1 6 6 6 12 18 18 24 24 115 10 1160
a" 3 6 6 3 12 30 10 300
A- 2 2 1 2 7 30 210

I

A- 2 2 30 60
a" 3 3 20 60
A" 1 1 20 20
A"' 1 1 60 60

j

A- 2 2 60 120
1 A-'
1

1 1 60 60

300 2040

L 2
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(6.) It is to be remembered that we have not admitted, by our definition

(88), any points which can onli/ be determined by intersections of three planes

III, Ha, as belonging to the second construction : nor have we counted, as lines

A2 of that construction, any lines which can onl// be found as intersections of

two such planes. For example, we do not regard the traces aa", &c., of certain

planes A2,i considered in recent sub-articles, as among the lines of second con-

struction, although they would present themselves early in an enumeration of

the lines A3 of the third. And any point in the plane abc, which can onhj be

determined (at the present stage) as the intersection of two such traces, is not

regarded as a point P2. A student might find it however to be not useless, as

an exercise, to investigate the expressions for such intersections ; and for that

reason it may be noted here, that the ternary types (comp, 81) of the forty-four

traces oi planes IIi, Hz, on the plane abc which are found to compose a system

of only twenty-two distinct lines in that plane, whereof nine are lines Ai, A2, are

the seven following (comp. 38) :

[100], [Oil], [111], [111], [Oil], [211], [2ll];

which, as ternary symbols, represent the seven lines,

BC, AA', b'o', a''b"c", AA", DiA", a'Cq.

(7.) Again, on the same principle, and with reference to the same defini-

tion, that new point, say f, which may be denoted by either of the two con-

gruent quinary symbols (71),

F = (43210) - (01234),

and which, as a quinary type (78), represents a new group of sixty points of

space (and of no more, on account of this last congruence, whereas a quinary

type, with all its five coeflScieuts unequal, represents generally a group of 120

distinct points) , is not regarded by us as a point Ps ; although this new point

F is easily seen to be the intersection of three jjlanes of second construction,

namely, of the three following, which all belong to the group Ilg,!

:

[Ollll], [lIOll], [lillO],

or aa'diCiB2, cc'diBiAs, eb'b2c'c2. It may, however, be remarked in passing,

that each plane. Da,! contains ticelve points P3 of this new group : every such

point being common (as is evident from what has been shown) to three such

planes.

94. From the foregoing discussion it appears that the five given jmnts i\

and the three hundred derived points Pi, Pa, are arranged in space, upon the fifty-
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five lines Ai, Az, and in the forty-five planes Hi, Hz, as follows. Each line Ai

contains eight of the 305 points, forming on it what may be called (see the

sub-article (8.) to 92) a double involution. Each line Aoji contains seven points^

whereof one, namely the given point, Pq, has"been seen (in the earlier sub-art.

(6.)) to be a double point of rmo^/<cr involution, to wliich the three derived pairs of

points, Pj, Pz, on the same line belong. And each line A2,2 contains ten

points, forming on it a new involution ; while eight of these ten points, with

a different order of succession, compose still another involution* (92, (10.)).

Again, each jo/awe IIi contains ^^i(^-^e(?o points, namely three given points, four

points of first, and 45 points of second construction. Each plane ITz,! con-

tains forty-seven points, whereof one is a given point, four are points Pi, and

42 are points P2 : of which last, 88 are situated on the six lines A2 in the plane,

* These tbeorems respecting the relations of involution, of given and derived points on lines of

first and second constructions, for a net in space, are perhaps new ; although soine of the harmonic

relations, above mentioned, have been noticed under other forms by Mobiua : to whom, indeed, as has

been stated, the conception of such a net is due. Thus, if we consider (compare the note to page 66)

the two intersections,

El = DB • AiBiCl, E2 = DB • A2B2C2,

we easily find that they may be denoted by the qiiinary symbols,

El = (00012), E2 = (OOO2T)

;

they are, therefore, by Art. 92, the two points P2,5 on the line de : and consequently, by the theorem

stated at the end of sub-art. (8.), the harmonic conjugate of each, taken with respect to the other and to

the point Di, must be one of the two points d, e on that line. Accordingly, we soon derive, by comparison

of the symbols of fkese Jive points, dediEiEz, the two following harmonic equations, which belong to

the same type as the two last of that sub-art. (8.)

:

(D1DE2E1) = - 1 ;
(D1EE1E2) = - 1 ;

but these two equations have been assigned (with notations slightly different) in the formerly cited

page 290 of the Barycentric Calculus. (Comp. again the recent note to page 66.) The geometrical

meaning of the ksl equation may be illustrated, by conceiving that abcd is a regular pyramid, and

that E is its mean point ; for then (comp. 92, sub-art. (2.) ), di is the mean point of the base abc; diD

is the altitude of the pyramid ; and the three segments diE, diEi, D1E2 are, respectively, the quarter,

the third part, and the half oi that altitude; they compose therefore (as the formula expresses) a

harmonic progression ; or Di and ei are conjugate points, with respect to e and E2. But in order to

exemplify the double involution of the same sub-art. (8.), it would be necessary to consider three other

points P2, on the same line de ; whereof one, above called d'j, belongs to a known group ¥z,\ (92, (2.) )

;

but the two others are of the group P2,4, and do not seem to have been previously noticed. As an

example of an involution on a line of third construction, it may be remarked that on each line of the

group A3,3, or on each of the sides of any one of the ten triangles ^3,2, in addition to one given point

Po, and one derived point P2,i, there are two points P2,2, and two points P2,6 ; and that the two first

points are the double points of an involution, to which the two last pairs belong : thus, on the side

aqbco of the exscribed triangle AoBqCo, or on the trace of the plane BC1A2A1C2, we have the two
harmonic equations,

(baob"co) = (ba"'b"ci'") = - 1.

Again, on the trace a'cq of the plane a'ciC2 (which latter trace is a line not passing through any one

of the given points), co and bi" are the double points of an involution, wherein a' is conjugate to Ci''

and A'* to b^'. But it would be tedious to multiply such instances.
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but four are intersections of that plane 112,1 with four other lines of second

construction. Finally, each plane 112,2 passes through no given point, but

Qoni9.ms, forty-three derivedpoints, whereof 40 are points of second construction.

And because the planes oi first construction alone contain specimens of all the ten

groups of]wints, Po,Pi, t?2,\, • 1*2,8, given or derived, and of a/l the three gronps

of lines, Ai,A2,i, A2,2, at the close of that second construction (since the types

1*2,4, 1*2,5, Ai are not represented by any points or lines in any plane 112,1, nor

are the types Pn, Ai, A2,i represented in a plane 112,2), it has been thought

convenient to prepare the annexed diagram (fig. 30), which may serve to

illustrate, by some selected instances, the arrangement of the fifty-two points

Po, P], P2 in a plane IIi, namely, in the plane abc ; as well as the arrangement

of the nine lines Ai, A2 in that plane, and the traces A3 of other planes upon it.

View of the Arrangement of the Principal Points and Lines in a Plane of

First Construction.

In this figure, the triangle abc is supposed, for simplicity, to be the equi-

lateral base of a regular pyramid abcd (comp. sub-art. (2.) to 92) ; and Di,

again replaced by o, is supposed to be its mean point (29). T\\e first inscribed

triangle, a'b'c', therefore, bisects the three sides ; and the axis of homology

a^'e'V is the line at infinity (38) : the number 1 , on the line c'b' prolonged,

being designed to suggest that the point ti!\ to which that line tends, is of the

type Pjji, or belongs to the first group of points of second construction. A
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second inscribed triangle, a'"b"'c"', for which fig. 21 may be consulted, is only

indicated by the number 2 placed at the middle of the side b'c', to suggest that

this bisecting point a"' belongs to tlie second group of P2. The mme number 2,

but with an accent, 2', is placed near the corner Ao of the exscrihed triangle

AoBoCo, to remind us that this corner also belongs (by a syntypical relation in

space) to the group P2,2. The point a'^, which is now infinitely distant, is

indicated by the number 3, on the dotted line at the top ; while the same

number with an accent, lower down, marks the position of the point Ai'^.

Finally, the ten other numbers, unaccented or accented, 4, 4', 5, 6', 6, 6', 7, 7',

8, 8', denote the places of the ten points, a^ a/, a^', Ai", a^", Ai^", a^"', Ai^'",

A^^, Ai". And the principal harmonic relations, and relations of involution,

above mentioned, may be verified by inspection of this Diagram.

95. However far the series of construction of the net in space may be

continued, we may now regard it as evident, at least on comparison with the

analogous property (42) of the plane net, that every point, line, or plane, to

which such constructions can conduct, must necessarily be rational (77) ; or

that it must be rationally related to the system of ^^five given points : because

the anharmonic co-ordinates (79, 80) of every net-point, and of every net-plane,

are equal or proportional to whole numbers. Conversely (comp. 43) every point,

line, or plane, in space, which is thus rationally related to the system of points

ABODE, is a point, line, or plane of the net, which those five points determine.

Hence (comp. again 43), every irrational point, line, or plane (77), is indeed

incapable of being rigorously constructed, by any processes of the kind above

described : but it admits of being indefinitely approximated to, by points, lines,

or planes of the net. Every anharmonic ratio, whether of a group of net-points,

or of a pencil of net-lines, or of net-planes, has a rational value (comp. 44),

which depends only on the processes of linear construction employed, in the

generation of that group or pencil, and is entirely independent of the arrange-

ment, or configuration, of the five given points in space. Also, all relations of

collineation, and of complanarity, are pi^eserved, in the passage from one net to

another, by a change of the given system of points ; so that it may be briefly

said (comp. again 44) that all geometrical nets in space are homographic figures.

Finally, any five points* of such a net, of which no four are in one plane, are

* These general properties (95) of the space-net are in substance taken from Mobius, although (as

has been remarked before) the analysis here employed appears to be new : as do also most of the

theorems above given, respecting the points of second construction [92), at least alter we pass beyond

thti Jirst group P2,i of ten such points, which (as already stated) have been known comparatively

long.
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sufficient (oomp. 45) for the determination of the whole net, or for the linear

construction of all its points, including the five given ones.

(1.) As an Example, let the five points AiBiCDi and e be now supposed to

be given ; and let it be required to derive the four points abcd, by linear con-

structions, from these new data. In other words, we are now required to

exscrihe o. pyramid abcd to a given pyramid AiBiCiD,, so that it may be homo-

logous thereto, with the point e for their given centre of homology. An

obvious process is (comp. 45) to inscribe another homologous pyramid, A3B3C3D3,

so as to have A3 = eAi ' BiCiDi, &c. ; and then to determine the intersections of

correspondingfaces, such as AiBjCi and A3B3C3 ; for ih.Qm four lines of intersection

will be in the common plane [e] of homology of the three pyramids, and will be

the traces on that plane of ihefour sought planes, abc, &c., drawn through the

four given points Di, &c. If it were only required to construct one corner a

of the exscribed pyramid, we might find the point above called a'"^ as the

common intersection of three planes, as follows,

A''' = AiBiCi • AiDiE • A3B3C3

;

and then should have this other formula of intersection,

A = EAi • DiA'"^.

Or the point a might be determined by the anharmonic equation,

(EAA1A3) = 3,

which for a regular pyramid is easily verified.

(2.) As regards the general passage from one net in space to another, let

the symbols Pi = [x^ . . v^, . . P5 = (a^a . . v-^ denote any five given points, whereof

no four are complanar; and let a'h'c'd'e^ and u' be six coefficients, of whieli

the five ratios are such as to satisfy the symbolical equation (comp. 71,72),

«'
(pO + V (p^) + c' (P3) + d' (p,) + e' (p«) = - w' (tT)

:

or the five ordinary equations which it includes, namely,

a'x^ + . . + e'xf, = . . a^Vi + . . + e^Vo = - u\

Let p' be any sixth point of space, of which the quinary symbol satisfies the

equation,

(p') = xa' (p,) + yb' (Pa) + zc' (P3) + wd' (p*) + ve' (pj) + u' (U)

;

then it will be found that this last point p' can be derived from the five

points Pi . . Ps by precisely the same constructions, as those by which the

point P = [xyztcv] is derived from the five points abode. As an example, if

v' = X -It y ¥ z + w - ^v, then the point [xyzwv') is derived from AiBiCiDiE,
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by the same constructions as ixyzwv) from abode ; thus a itself may be

constructed from A] . . e, as the point p = (30001) is from a . . e ; which would

conduct anew to the anharmonio equation of the last sub-article.

(3.) It may be briefly added here, that instead of anharmonic ratios, as

connected with a net in space, or indeed generally in relation to spatial

problems, we are permitted (comp. 68) to substitute products (or quotients) of

quotients of volumes of pyramids; as & specimen of which substitution, it may

be remarked, tliat the anharmonic relation, just referred to, admits of being

replaced by the following equation, involving one such quotient of pyramids,

but introducing no auxiliary point

:

EA ; AiA = 3eBiCiDi : AiBiCiDi.

In general, if xyzw be (as in 79, 83) the anharmonic co-ordinates of a point p

in space, we may write,

X PBCD
^
EBCD

^

y PCDA ' ECDA
'

with other equations of the same type, on which we cannot here delay.

SECTION 5.

On Barycentres of Systems of Points ; and on Simple and Complex
Means of Yectors.

96. In general, when the sum 2a of any number of co-initial vectors,

ax = OAi, . . am = Ohm,

is divided (16) by their number, m, the resulting vector

^

u = CM = - 2a = - 2oA,mm
is said to be the Simple Mean of those m vectors ; and the point m, in which

this mean vector terminates, and of which the position (comp. 18) is easily seen

to be independent of the position of the common origin o, is said to be the Mean

Point (comp. 29), of the system of the m points, Ai, . . a^. It is evident that

we have the equation,

= (a, - /u) + . . + (om - ju) = 2 (a - /u) = 2mA ;

or that the sum of the m vectors, drawn /row the mean point m, to the points a

of tlie system, is equal to zero. And hence (comp. 10, 11, 30), it follows 1st,

that these m vectors are equal to the m successive sides of a closed polygon

;

Ilnd, that if the system and its mean point be projected, by any parallel

Hamilton's Elements of Quaiernions. M
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ordinates, on any a,s&waied plane (or line), the projection u', of the mean point u,

is the mean point of the projected system : and Ilird, that the ordinate mm', of

the mean point, is the mean of all the ot/ier ordinates, Aia'i, . . AmA^m. It follows,

also, that if n be the mean point of another system, Bi, . . Bh ; and if s be the

mean point of the total system, Ai . . b,j, of the m + n = s points obtained by

combining the two former, considered as partial systems; while v and a may

denote the vectors, on and os, of these two last mean points : then we shall

have the equations,

mfi = Sa, nv = S|3, sor = Sa + S/3 = mfx + nv,

m (or - in) = n {v - (t), m.MS =n . sn
;

so that the general mean point, s, is situated on the right line mn, which connects

the two partial mean points, m and n ; and divides that line (internally), into

two segments ms and sn, which are inversely proportional to the two whole

numbers, m and n.

(1.) As an Example, let abcd be a gauche quadrilateral, and let e be its

mean point ; or more fully, let

OE = ^ (OA + OB + OC + OD),

or c = I" (a + /3 + 7 + S)

;

that is to say, \eta = b = c = d,\TL the equations of Art. 65. Then, with notations

lately used, for certain derived points Di, &o., if we write the vector formulce,

OAi = ai = I (/3 + 7 + 8), . . 8i = i (a + /3 + 7),

0A2 = 02 = I (a + S), . . . 72=i(T + ^)j

0A' = «'=^(/3 + 7),.. / = H«+/3),

we shall have seven different expressions for the mean vector, £ ; namely, the

following

:

£ = i (a + 3aO = . . i (8 + 38,)

= i (a + az) = . . i (7'+ 72).

And these conduct to the seven equations between segtnentSf

AE = 3eAi . . DE = 3eDi ;

a'e = EA2, . . c'e = EC2

;

which prove (what is otherwise known) that the four right lines, here denoted

by AAi, . . DD,, whereof each connects a corner of the pyramid abcd witli the

mean point of the opposite face, intersect and quadrisect each other, in one

common point, e ; and that the three common bisectors a'a^, b'bj, c'cj, of pairs of
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opposite edges, such as bc and da, intersect and bisect each other, in the same

mean point: so that ihefour middle points, c', a', C2, A2, of tlie four successive

sides AB, &o., of the gauche quadrilateral abcd, are situated in one common

plane, which bisects also the cofumon bisector, b'bj, of the two diagonals, ao

and BD.

(2.) In this example, the numher s of the points a . . d being fourj the

number of the derived Hues, which thus cross eacli other in tlieir general mean

point E is seen to be seven ; and the number of tlie derived planes through that

point is nine : namely, in the notation lately used for the net in space, four

lines Ai, three lines A2,i, six planes Hi, and three planes Fla,!. Of these nine

p)lanes, the six former may (in the present connexion) be called triple planes,

because eacli contains three lines (as the plane abe, for instance, contains the

lines AAi, BBi, c'c2), all passing through the mean point e ; and the three latter

may be said, by contrast, to be non-triple planes, because each contains only

two lines through that point, determined on the foregoing principles.

(3.) In general, let ^ (s) denote the number of the lines, through the general

mean points s of a total system of s given points, which is thus, in all possible

ways, decomposed inio partial systems ; let/ (5) denote tlie number of the triple

planes, obtained by grouping the given points into three such partial systems

;

let ip (s) denote tlie number of non-triple planes, each determined by grouping

those s points in two different ways into ttco partial systems ; and let f (s)

= / (s) + 'A (s) represent the entire number of distinct planes through the

point s : so that

0(4) =7, /(4) = 6, 1^(4) =3, F(4) = 9.

Then it is easy to perceive that if we introduce a new point c, each old line mn
furnishes two new lines, according as we group the new point with one or

other of the two old partial systems, {M) and {N) ; and that there is, besides,

one other new line, namely cs: we have, therefore, the equation infinite differences

,

(s + 1) = 2^ (s) + 1

;

wliich, with the particular value above assigned for (4), or even with the

simpler and more obvious value, (2) = 1, conducts to the general expression,

ij> {s) = 2'-' - 1.

(4.) Again, if (Jf) (iV) (P) be any three partial systems, which jointly

make up the old or given total system (S) ; and if, by grouping a new point a

with each of these in turn, we form three neiv partial systems, {M') {N') {P') ;

then each old triple plane such as mnp, will furnish three new triple planes,

m'np, mn'p, mnp';

M 2
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while each old line, kl, will give one new triple plane, cki, : nor can any new

triple plane be obtained in any other way. We have, therefore, this new

equation in differences

:

But we have seen that <p {s + 1) = 2^ (s) + 1

;

if then we write, for a moment,

/(s)+0(s) = x(s),

we have this other equation in finite differences,

X(s + l)=3x(«) + l.

Also, /(3) = 1, ^(3) =3, x(3)=4:

therefore, 2x (s) = ^"^ - 1,

and 2/(s) = 3*-» -2^ + 1.

(5.) Finally, it is clear that we have the relation,

3/(s) +^{s)= U (s) . (^ (s) - 1) = (2*- - 1) (2*- - 1)

;

because the triple planes, each treated as three, and the wow-triple planes, each

treated as one, must jointly represent all the binary combinations of the linest

drawn through the mean point s of the whole system. Hence,

2^p (s) = 2'"' + 3 .
2'-^ - 3* - 1

;

and F (s) = 2'"-' + 2*-' - 3«-'

;

so that F (s + 1) - 4f (s) = 3*-» - 2'-\

and ^(s + 1) -4^(s) =3/(s);

wliich last equation in finite differences admits of an independent geometrical

intei-pretation.

(6.) For instance, these general expressions give,

<p{6)=15; /(5)=25; ;/. (5) = 30 ; f (5) = 55
;

80 that if we assume a gauche pentagon, or a system oiffve points in space, a . . e,

and determine the mean point f of this system, there will in general be a set

of fifteen lines, of the kind above considered, all passing througli this sixth

point F : and these will be arranged generally in fifty-five distinct planes,

whereof twenty-five will be what we have called triple, the thirty others being

of the non-triple kind.

97. More generally, if aj . . am be, as before, a system of m given and co-

initial vectors, and if a^, . . a^ be any system of m given scalars (17), then that
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new co-initial vector j3, or ob, which is deduced from these by the formula,

^ «ia + . . + amam 2«a 2ffOA
R = = —— , or OB = -——

,

•^
iTi + . . + <?,„ 2« S«

or by the equation

2fl (o - /3) = 0, or 2aBA = 0,

may be said to be the Complex Mean of those m given vectors a, or da, con-

sidered as affected (or combined) with that system of given scalars, a, as

coefficients^ or as multipliers (12, 14). It may also be said that the derived

t)oini B, of which (comp. 96) the position is independent of that of the origin o,

is the Barycentre (or centre of gravity) of the given system of points Ai . . .,

considered as loaded with the given weights «i . .
.

; and theorems of intersections

of lines and planes arise, from the comparison of these complex means, or bary-

centres, of partial and total systems, which are entirely analogous to those

lately considered (96), for simple means of vectors and of points.

(1.) As an example, in the case of Art. 24, the point c is the barycentre

of the system of the ttco points, A and b, with the weights a and b ; wliile,

under the conditions of 27, the origin o is the barycentre of the three points

A, B, c, with the three weights a, b, c; and if we use the formula for p,

assigned in 34 or 36, the same three given points a, b, c, when loaded with

xa, yb, zc as weights, have the point p in their plane for their barycentre.

Again, with the equations of 65, e is the barycentre of the system of the,four

given points, a, b, c, d, with the weights a, b, c, d ; and if the expression of

79 for the vector op be adopted, then xa, yb, zc, wd are equal (or proportional)

to the weights with which the same four points a . . d must be loaded, in

order that the point p of space may be their barycentre. In all these cases,

the weights are thus proportional (by 69) to certain segments, or areas, or volumes,

of kinds which have been already considered ; and what we have called the

anharmonic co-ordinates of a variable point p, in a plane (36), or in space (79),

may be said, on the same plan, to be quotients of quotients of loeights.

(2.) The circumstance that the position of a barycentre (97), like that of a

simple mean point (96), is independent of the position of the assumed origin of

vectors, might induce us (comp. 69) to suppress the symbol o of that arbitrary

and foreign point ; and therefore to write* simply, under the lately supposed

conditions,

b = or Jb = SaA, if 6 = 2«.
2a

* We should thus have some of the principal notations of the Barycentric Calculus : but used

mainly with a reference to vectors. Compare the note to page 50.
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It is easy to prove (comp. 96), by principles already established, that tbe

ordinate of the harycentre of any given system of points is tlie complex mean (in

the sense above defined, and witli the same system of weights), of the ordinates

of the points of that system, with reference to any given plane : and that the

projection of the harycentre^ on any such plane, is the harycentre of the projected

system.

(3.) Without any reference to ordinates, or to any foreign origin, the

harycentric notation b = may be interpreted, by means of onv fundamental

convention (Art. 1) respecting the geometrical signification of the symbol b - a,

considered as denoting the vector from a to b : together with the rides for

multiplying such vectors by scalars (14, 17), and for taking tlie sums (6, 7, 8, 9)

of those (generally new) vectors, which are (15) i\\Q products of such multipli-

cations. For we have only to write the formula as follows,

Sa (a - b) = 0,

in order to perceive that it may be considered as signifying, that the system

of the vectors from the harycentre b, to the system of the given points Ai, Aa, . .

when multiplied respectively by the scalars (or coefficients) of the given system

tti, «a, . . becomes (generally) a new system of vectors with a null sum : in

such a manner that these last vectors, ai

.

bAi, ^z.bAz, . . can be made (10) the

successive sides of a closed polygon, by transports without rotation.

(4.) Thus if we meet the formula,

b = i (Ai + Aj)',

we may indeed interpret it as an abridgedform of the equation,

OB = i (OAi + 0A2)

;

which implies that if o be any arbitrary point, and if o' be the point which

completes (comp. 6) the parallelogram AiOAjo', then b is the point which bisects

the diagonal 00', and therefore also the given line A1A2, which is here the other

diagonal. But we may also regard the formula as a mere symbolical transfor-

mation of the equation,

(A2 - b) + (ai - b) = ;

which ( by the earliest principles of tlie present Book) expresses that the two

vectors, from b to the two given points Ai and A2, have a null sum; or that

they are equal in length, but opvosite in direction : which can only be, by b

bisecting AiA,, as before.
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(5.) Again, tlie formula, Bi = -i^ (ai + Az + A3), may be interpreted as an

abridgment of the equation,

OBi = \ (OAi + OA2 + OA3),

which expresses that the point b ti'uects the diagonal 00' of the paraUelepiped

(comp. 62), which has oaj, 0A2, 0A3 for three co-initial edges. But the same

formula may also he considered to express, in full consistency with the foregoing

interpretation, that the sum of the three vectors, from b to the three points

Ai, A2, A3, vanishes : which is the characteristic property (30) of the mean point of

the triangle A1A2A3. And similarly in more complex cases : the legitimacy of such

transformations being here regarded as a consequence of the original interpre-

tation (1) of the symbol b - a, and of the rules for operations on vectors, so far

as they have been hitherto established.

SECTION 6.

On Anharmonic Equations, and ITector JGxpressions of Surfaces

and Curves In Space.

98. When, in the expression 79 for the vector p of a variable point p of

space, the four variable scalars, or anharmonic co-ordinates, xyztv, are connected

(comp. 46) by a given algebraic equation,

fp {x, y, z, w) = 0, or briefly /= 0,

supposed to be rational and integral, and homogeneous of the p*^ dimension,

then the point p has for its locm a surface of the p^^ order, whereof/= may

be said (comp. 56) to be the local equation. For if we substitute instead of

the co-ordinates x . . w, expressions of the forms,

X = tXo + UXi, . . W = tWo + UWi,

to indicate (82) that p is collinear with two given points Po, Pi, the resulting

algebraic equation in ^ : w is of the p*'' degree ; so that (according to a received

modern mode of speaking), the surface may be said to be cut in p points

(distinct or coincident, and real or imaginary*), by any arbitrary right line p^Pi.

* It is to be observed, that no interpretation is here proposed, for imaginary intersections of this

kind, such as those of a sphere with a right line, which is wholly external thereto. The language of

modem geometry requires that such imaginary intersections should he upohen of, and even that they

should be enumerated : exac tly as the language of algebra requires that M'e should totmt what are called

the imaginary roots of an equation. But it would be an error to confound geometrical imaginaries, of

this sort, with those square roots of negatives, for M'hich it will soon be seen that the Calculus of

Quaternions supplies, from the outset, a defnite and real interpretation.
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And in like raamner, when the four anharmonio co-ordinates Imnr of a variable

plane 11 (80) are connected by an algebraical equation of the form,

Vq {I, m, 11, r) = 0, or briefly r = 0,

where p* denotes a rational and integral function, supposed to be homogenous

of the q^^ dimension, then this plane n has for its envelope (corap. 56) a

surface of the q*^ class, with f = for its tangential equation : because if we make

I = tlo + nil, ... r = tr^-^ m\,

to express (comp. 82) that the variable plane n passes through a given right

line rio ' 111, we are conducted to an algebraical equation of the q^^ degree, which

gives q (real or imaginary) values for the ratio t : u, and thereby assigus q

(real or imaginai'y*) tangent planes to the surface, drawn through any such

given but arbitrary right line. We may add (comp. 51, 56), that if the

functions/and r be only homogeneous (without necessarily being rational and

integral), then

is the anharmonic symbol (80) of tlie tangent plane to the surface / = 0, at the

point {xyzw) ; and that

(D;F, d«f, d«f, d^f)

is in like manner, a symbol for the^om^ of contact of the plane [/mwr], with

its enveloped surface, f = ; Bx, . . T)i, . . being characteristics of partial deri-

vation.

(1.) As an example, the surface of the second order, which passes through

the nine points called lately

A, C', B, a', C, C2, D, Ajj, e,

has for its local equation,

=./ = xz - yw;

which gives, by differentiation,

I = Da;/'= z; m = Djt/= - w
;

n =-dJ'=x', r =-D,„f=-y',

so that [s, ~ w, X, - y]

is a symbol for the tangent plane, at the point {x, y, z, ic).

* As regards the im interpreted character of such imaginary contacts in geometry, the preceding

note to the present Article, respecting imaginary intersections, may be consiiUed.
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T = (a;00i?f),

(2.) In fact, the surface here considered is the ruled (or hyperbolic) hyper-

holoid, on which the gauche quadrilateral abcd is superscribed, and which passes

also through the point e. And if we write

p = {oeyzw)y Q = {xyOO), r = (0«/sO), s = (OOzm'),

then Qs and rt (see the annexed figure 31 ), namely, the

lines drawn through p to intersect the two pairs, ab,

CD, and BC, da, of opposite sides of that quadrilateral

ABCD, are the two generating lines, or generatrices,

through that point ; so that their plane, qrst, is the

tangent plane to the surface, at the point p. If, then,

we denote that tangent plane by the symbol [/w«r],

we have the equations of condition,

= lx + my = my + nz = nz-\-rw = rw + lx\

whence follows the proportion,

I : m : n '. r = x~'^ '. - y~^ '. z"^ : - vr^
',

I : m : n : r = z : - w : X : - y,

Fig. 31.

or, because xz = yw,

as before.

(3.) At the same time we see that

(ac'bq) = - = - = (dcjCs) ;
^ y z

so that the variable generatrix qs divides (as is known) the tivo fixed generatrices

AB and DC homographically* ; ad, bc, and c'ca being three of its positions.

Conversely, if it were proposed to find the locus of the right line qs, which thus

divides homograpliieally (comp. 26) two given right lines in space, we might take

AB and DC for those two given lines, and ad, bc, c'cz (with the recent meanings

of the letters) for three given positions of the variable line ; and then should

have, for the two variable but corresponding (or homologous) points q, s them-

selves, and for any arbitrary point p collinear with them, anharmonic symbols

of the forms,

q = {s, w, 0, 0), s = (0, 0, M, s), p = {st, tu, uv, vs)
;

because, by 82, we should have, between these three symbols, a relation of

the form

(p) = i^(Q)+^(s):

if then we write p = {x, y, z, w), we have the anharmonic equation xz = yiv, as

* Compare 298 of the Oiometrie Superieure,

Hamilton's Elehbnts of Quaternions. If
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before ; so that the locus^ whether of the line qs, or of the point p, is (as is

known) a ruled surface of the second order.

(4.) As regards the known double generation of that surface, it may suffice

to observe that if we write, in like manner,

R = {QtvO), T = {tOOv), (p) = w (k) + s (t),

we shall have again the expression,

p = [sti tu, uv, vs), giving xz = yw,

as before : so that the same hyperboloid is also the locus of that other line rt,

which divides the other pair of opposite sides bc, ad of the same gauche quadri-

lateral ABCD homographically ; ba, cd, and a'az being three of its positions

;

and the lines a'az, c'cg being still supposed to intersect each other in the

given point e.

(5.) The symbol of an arbitrary point on the variable line rt is (by sub-

art. 2) of the form, t (0, y, z, 0) + u {ce, 0, 0, w), or {ux, ty, tz, uw) ; while the

symbol of an arbitrary point on the given line c'c2 is (^, f, u\ u'). And these

two symbols represent one common point (comp. fig. 31),

p'= RT'c'C3 = (2/,y, S,l5),

when we suppose tf = y, u^ = z, t = l, w = - = - •

Hence the known theorem results, that a variable generatrix, rt, of one system,

intersects three fixed lines, bc, ad, c'cz, which are generatrices of the other system.

Conversely, by the same comparison of symbols, for points on the two lines rt

and c'cz, we should be conducted to the equation xz = yw, as the condition for

their intersection ; and thus should obtain this other known theorem, that the

locus ofa right line, which intersects three given right lines in space, is generally

an hyperboloid with those three lines for generatrices. A similar analysis

shows that qs intersects a'az, in a point (comp. again fig. 31) which may be

thus denoted :

p'' = QS • a'az = (xyyx).

(6.) As another example of the treatment of surfaces by their anharmonic

and local equations, we may remark that the recent symbols for p' and p'',

combined with those of sub-art. (2.) for p, q, r, s, t ; with the symbols of 83,

86 for c", a', C2, A2, e ; and with the equation xz = yiv, give the expressions

:

fp) = (q) 4- (s) = (r) + (t)
; (pO = y (c') + z (c^) = (k) + ^ (t)

;

(e) = (o') + (C2) = (aO + (A2)
; (p'O

= y (aO + x (a,) = (q) + ^(s)
;

IS
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whence it follows (84) that the two points p', p", and the sides of the quadri-

lateral ABCD, divide the four generating lines through p and e in the following

anharmonic ratios

:

(c'eCzP') = (qp'^SP) = - = (ba'cr) = (AAaDx)
;

%

(a'eAzP'O = (rp'tp) = - = (bc'aq) = (cczDs)

;

so that (as again is known) the variable generatrices, as well as the Jixed ones,

of the hyperboloid, are all divided homographically.

(7.) The tangential equation of the present surface is easily found, by the

expressions in sub-art. (1.) for the co-ordinates Imnr of the tangent plane, to

be the following

:

= T = In - mr;

which may be interpreted as expressing, that this hyperboloid is the surface of

the second class, which touches the nine planets,

[1000], [0100], [0010], [0001], [1100], [0110], [0011], [1001], [1111];

or with the literal symbols lately employed (comp. 86, 87),

BCD, CDA, DAB, ABC, CDC", DAA'^, ABC'j, BCa'j, and [e].

Or we may interpret the same tangential equation f = as expressing (comp.

again 86, 87, where q, l, n are now replaced by t, r, q), that the surface is

the envelope of a plane qrst, which satisfies either of the two connected conditions

of homography

:

(bo'aq) = = - - = (cCjDs)
;

^ ' m n ^

(ca'br) = = - - = (dAjAt)
;

a double generation of the hyperboloid thus showing itself in a new way. And
as regards the passage (or return), from the tangential to the local equation

(comp. 56), we have in the present example the formulae :

X = DiF = w
; y = DmP = - r ; s = d„f = / ; w = DrF - - m\

whence xz - yw - 0, as before.

(8.) More generally, when the surface is of the second order, and therefore

also of the second class, so that the two functions / and r, when presented

N 2
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under rational and integral forms, are both, homogeneous of the second dimen-

sion, then whether we derive I . . r from x . . w hy the formulae,

OT X . . w from I . . rhy the converse formulae,

X = I>iF, y = D«F, 2 = D„r, W = D;.F,

the point p = (xi/zw) is, relatively to that surface, what is usually called (comp.

52) the pok of the pla)W H = [/»?wr] ; and conversely, the plane 11 is the polar

of the point p ; wherever in space the point p and plane 11, thus related to each

other, may be situated. And because the centre of a surface of the second

order is known to be (comp. again 52) the pole of (what is called) the plane at

infinity ; while (comp. 38) the equation and the symbol of this last plane are,

respectively,

ax + by + cz + dw = 0, and [a, b, c, c?],

if the four constants abed have still the same significations as in 65, 70, 79,

&c., with reference to the system of the five given points abcde : it follows

that we may denote this centre by the symbol,

K = (DaFo, DftFo, DgFo, D<^Fo) ;

where Fq denotes, for abridgment, the function f (abed), and d is still a scalar

constant.

(9.) In the recent example, we have ¥o = ac - bd; and the anharraonic

symbol for the centre of the hyperboloid becomes thus,

K = (c, - d, a, - b).

Accordingly if we assume (comp. sub-arts. (3.), (4.),)

p = {st, tu, uv, vs), p' = {sY, - fu', wV, - v's'),

where s, t, u, v are any four scalars, and p' is a new point, while

s' = 6^ + cv, f = cu + dsy xC = dv \- at, v' = as + bu;

if also we write, for abridgment,

e' = ac - bd, w' = ast + btu + cm + dvs j

we shall then have the symbolic relations,

.'(p) + (p')=t.'(K), / (P) - (P') = (O,
if -p"= (^"if'z"w") be that new point, of which the co-ordinates are,

«"= 2e'st - cw\ y''= 2e'tu + dw\ z"= 2e'uv - aw', w"= 2evs + bw',

and therefore, ax"^- by" ^- cz"+ dw"= 0.
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That is to say, if pp' be any chord of the hpperboloid, which passes through the

fixed point k, and if p" be the harmonic conjugate of that fixed point, with

respect to that variable chord, so that (pkp'p") = - 1, then this conjugate

point p" is on the infinitely distant plane [ahcd'\ : or in other words, the fixed

point K bisects all the chords pp' which pass through it, and is therefore (as above

asserted) the centre of the surface.

(10.) With the same meanings (65, 79) of the constants a, b, c, d, the

mean point (96) of the quadrilateral abcd, or of the system of its corners, may

be denoted by the symbol,
M = {a-\ b-\ c-\ d-') ;

if then this mean point be on the surface^ so that

ac - bd = 0,

the centre k is on the jjlane [a, b, c, d'] ; or in other words, it is infinitely

distant: so that the surface becomes, in this case, a ruled (or hyperbolic)

paraboloid. In general (comp. sub-art. (8.)), if Fq = 0, the surface of the

second order is a paraboloid of some kind, because its centre is then at infinity,

in virtue of the equation

{aT>a + b-Di + CT>e + di>d) Fq = ;

or because (comp. 50, 58) the plane [abcd~\ at infinity is then one of its tangent

planes, as satisfying its tangential equation, f = 0.

(11.) It is evident that a curve in space may be represented by a system of

two anharmonic and local equations ; because it may be regarded as the inter-

section of two surfaces. And then its order, or the number of points (real or

imaginary*), in which it is cut by an arbitrary plane, is obviously the product

of the orders of those two surfaces ; or the product of the degrees of their two

local equations, supposed to be rational and integral.

(12.) A curve of double curvature may also be considered as the edge of

regression (or arete de rebroussement) of a develojmble surface, namely of the

locus of the tangents to the curve ; and this surface may be supposed to be cir-

cumscribed at ouce to two given surfaces, which are envelopes of variable planes

(98), and are represented, as such, by their tangential equations. In this view,

a curve of double curvature may itself be represented by a system of two

anharmonic and tangential equations; and if the class of such a curve be

defined to be the number of its osculating planes, which pass through an arbitrary

point of space, then this class is the product of the classes of the two curved sur-

* Compare the notes to pagea 87, 88.
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faces just now mentioned : or (what comes to the same thing) it is i\iQ product

of the dimensions of the two tangential equations, by which the curve is (on this

plan) symbolized. But we cannot enter further into these details ; the

mechanism of calculation respecting which would indeed be found to be the

same, as that employed in the known method (comp. 41) of quadriplanar co-

ordinates.

99. Instead of anharmonic co-ordinates, we may consider anp other system

of n variable scalars, Xi, . . Xn, which enter into the expression of a variable

vector, p; for example, into an expression of the form (comp. 96, 97),

p = Xiai + Xza^ + . . = ^xa.

And then, if those n scalars x be all functions of one independent and variable

scalar, t, we may regard this vector p as being itself a function of that single

scalar ; and may write,

I. . . p =
<^ (0-

But if the n scalars a; . . be functions of two independent and scalar variables,

t and w, then p becomes a function of those two scalars, and we may write

accordingly,

II. . . jO = {t, u).

In the 1st case, the term p (comp. 1) of the variable vector p has generally for

its locus a curve in space, which may be plane or of double curvature, or may

even become a right line, according to the form of the vector-function (p ; and p

may be said to be the vector of this line, or curve. In the Ilnd case, p is the

vector of a surface, plane or curved, according to the form of ^ {t, u) ; or to the

manner in which this vector p depends on the tivo independent scalars that enter

into its expression.

(1.) As examples (comp. 25, 63), the expressions,

T a + tQ
-r

a + ^j3 + wy
^ \ -r t

^
1 + t + U

signify, Ist, that p is the vector of a variable point p on the right line ab ; or

that it is the vector of that line itself, considered as the locus of a point ; and

Ilnd, that p is the vector of the plane abc, considered in like manner as the

locus of an arbitrary point p thereon.

(2.) The equations,

I. . . p = jpa + y/3, 11. ,. p = xa + y^ + zy,

with ar + y^ = 1 for the Ist, and x'^+ f+ z" = 1 for the Ilnd,

signify Ist, that p is the vector of an ellipse, and Ilnd, that it is the vector of
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an elUpsoidy with the origin o for their common centrCy and with oa, ob, or oa,

OB, DC, for conjugate semi-diameters.

(3.) The equation (comp. 46),

p = i5^a + «2/3+ {t + uYy,

expresses that p is the vector of a cone of the second ordery with o for its vertex

(or centre) y which is touched hy the three planes obc, oca, oab ; tlie section of

this conCy made hy the plane abc, being an ellipse (comp. fig. 25), which is

inscribed in the triangle abc ; and the middle points a', b', c', of tlie sides of that

triangle, being the points of contact of those sides with that conic.

(4.) The equation (comp. 53),

p = tr^a + u'^(5 + «;-^7, with t + u + v = Oy

expresses that p is the vector of another cone of the second order, with o still for

vertex, but with oa, ob, oc for three of its sides (or rays). The section by the

plane abo is a new ellipse, circumscribed to the triangle abc, and having its

tangents at the corners of that triangle respectively parallel to the opposite sides

thereof.

(5.) The equation (comp. 54),

p = t^a + u^(5 + V^y, with t +U + V = 0,

signifies that p is the vector of a cone of the third order, of which the vertex is

still the origin ; its section (comp. fig. 27) by the plane abc being a cubic

curvBy whereof the sides of the triangle abc are at once the asymptotes, and the

three (real) tangents of inflexion; while the mean point (say o") of that triangle

is a conjugate point of the curve ; and therefore the right line oo', from the

vertex o to that mean point, may be said to be a conjugate ray of the cone.

(6.) The equation (comp. 98, sub-art. (3.) ),

staa + tub^ + uvcy + vsd^
P =

sta + tub + live + vsd

s t
in which - and - are two variable scalars, while a, b, c, d are still four

u V

constant scalars, and a,
ft, y, 8 are four constant vectors, but p is still a

variable vector, expresses that p is the vector of a ruled (or single-sheeted)

hyperboloid, on which the gauche quadrilateral abcd is superscribed, and which

passes through the given point e, whereof the vector e is assigned in 65.

(7.) If we make (comp. 98, sub-art. (9.) ),

, _ s't'aa - t'u'bft + u'v'cy - v's'dB

^ s'fa - tfu'b + u'v'c - vVd~'

wliere s' = bt + cv, f = cu + ds, u' = dv + at, v' = as + bu^ ,



96 ELEMENTS OF QUATERNIONS. [I. m. §§ 6, 7.

then /o'= op' is the vector of another point p' on the same hyperholoid; and

because it is found that the sum of these two last vectors is constant,

2{ac - od)

it follows that k is the vector of a fixed point k, which bisects every chord pp'

that passes through it : or in other words (comp. 52), that this point k is the

centre of the surface.

(8.) The three vectors, k,
^ , 9~»

are termino-coUinear (24) ; if then a gauche quadrilateral abcd be superscribed

on a ruled hyperboloid, the common bisector of the two diagonals^ ac, bd, passes

through the centre k.

(9.) When ac = bdy or when we have the equation,

sta + tu^ + uvy + vs^

st + tu + uv + vs
'

or simply, p = sta { tu^ + uvy + vsd, with s + u = t + v = l,

p is then the vector of a ruled paraboloid, of which the centre (comp. 52, and 98,

sub-art. (10.) ), is infinitely distant, but upon which the quadrilateral abcd is

still superscribed. And this surface passes through the mean point m of that

quadrilateral, or of the system of the four given points a . . d ; because, when

s = t = u = v = ^, the variable vector p takes the value (comp. 96, sub-art. (1.) ),

iU = i(a-'-^ + 7 + S)-

(10.) In general, it is easy to prove, from the last vector-expression for p,

that this paraboloid is the locus of a right line, which divides similarly the two

opposite sides ab and do of the same gauche quadrilateral abcd ; or the other

pair of opposite sides, bc and ad.

SECTION 7.

On Differentials of ¥eetors.

100. The equation (99, 1.),

P =
<P (0»

in which p = ore is, generally the vector of a point p of a curve in space, pq . . .

,

gives evidently, for the vector oq of another point q of the same curve, an

expression of the form

P + A/0 = ^ (^ + A^)

;
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BO that the chord pq, regarded as being itself a vector^ comes thus to be

represented (4) by the finite difference,

PQ = A/) = A0 it) = (}) {t + At) -
<j> (t).

Suppose now that the other j&nite difference, At, is

the w'* part of a new scalar, u ; and that the chord

A/0, or PQ, is in like manner (comp. fig. 32), the

n^^ part of a new vector, any or pr ; so that we may W-^

wiite. Fig. 32.

nAt = u, and nAp = w . pq = o-„ = pr.

Then, if we treat the two scalars, t and u, as constant, but the number n as

variable [the form of the vector-Junction (ji, and the origin o, being given), the

vector p and the point p will be fixed: but the two points q and r, the two

differences At and A/o, and the multiple rector nAp, or (t«, will (in general)

varp together. And if this number n be indefinitely increased, or made to tend

to infinity, then each of the two differences A^, Ap will in general tend to zero;

such being the common limit, of n'^ii, and of (^ + n~^ u) -
<}> [t] : so that the

variable point q of the curve will tend to coincide with the fixed point p. But

although the chord pq will thus be indefinitely shortened, its «'* multiple, pr or ern,

will ^<?W£/ (generally) to a finite limit,* depending on the supposed continuity of

iihQ function (j) (t) ; namely, to a certain definite vector, pt, or <j^, or (say) r,

which vector pt will evidently be (in general) tangential to the curve : or, in

other words, the variable point r will tend to a fixed position t, on the tangent to

that curve at p. We shall thus have a limiting equation, of the form

T = PT = lim. PR = <T^ = lim. nA<j> (t), if nAt = u
;

t and u being, as above, ttvo given and (generally) finite scalars. And if we

then agree to call the second of these two given scalars the differential of the

first, and to denote it by the symbol d^, we shall define that the vector-limit, t or

CT^, is the (corresponding) differential of the vector p, and shall denote it by the

corresponding symbol, dip ; so as to have, under the supposed conditions,

u = dt, and t = dp.

Or, eliminating the two symbols u and t, and not necessarily supposing that p

is a point of a curve, we may express our Definition-^ of the Differential of a

* Compare Newton's Principia. \ Compare the Note to page 35.

Hamilton's Elements of Quaternions. O
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Vector p, considered as a Function ^ of a Scalar t, by the following General

Formula

:

dfj =d(l>{t) = lim.w \(pU + —
j
- <j){t)\,

in which t and dt are two arbitrary and independent scalars, both generallyfinite

;

and dp is, in general, a neio and finite vector, depending on those two scalars,

according to a laiv expressed by the formula, and derived from that given law,

whereby the old orformer vector, p or ^ {t) depends upon the single scalar, t.

(1.) As an example, let the given vector-function have the form,

p = ^{t) = ^t^a, where a is a given vector.

Then, making At = -, where ti is any given scalar, and n is a variable whole
n

number, we have

(Tn = n^p = aw
I ^ + Q~

J
5 ''x = n^w

>

and finally, writing d^ and dp for u and a^.

dp = d(i>{t) = d(^) = atdt.

(2.) In general, let ^ (t) = af{t), where a is still a given or constant vector,

and f{t) denotes a scalar function of the scalar variable, t. Then because a is

a common factor within the brackets
{ } of the recent general formula (100)

for dp, we may write,

dp = d0(O = d.a/(O=ad/(O;

provided that we now define that the differential of a scalar function, f{t), is a

new scalar function of two independent scalars, t and d^, determined by the

precisely similar formula

:

d/(0.1im.«j/(.4')-/«j;

.which can easily be proved to agree, in all its consequences, with the usual rules

for differentiatingfunctions of one variable.

(3.) For example, if we write dt = nh, where h is a new variable scalar,

namely, the n^^ part of the given and (generally) finite differential, dt, we shall

thus have the equation,

m) _^^ f{i + h)- f{t).

dt h=o' h

in which the first member is here considered as the actual quotient of two finite
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scalars, df{t) : d^, and not merely as a differential coefficient. We may, however,

as usual, consider this quotient^ from the expression of which the differential dt

disappears, as a derivedfunction of the former variable, t; and may denote it, as

such, by either of the two usual symbals,

fit) and D,/(0.

(4.) In like manner we may write, for the derivative of a vector-function,*

^ {t)y the formula

:

these two last forms denoting that actual and finite vector, p or ^\t), which is

obtained, or derived, by dividing (comp. 16) the not less actual (or finite) vector,

dp or d^(^), by the finite scalar, dt. And if again we denote the n^^ part of

this last scalar by h, we shall thus have the equally generalformula :

,.. ,. <b{t + h)-6{t)
Dtp = Btcp {t) = hm. ^ 7-^^^^

J

A=o n

with the equations

dp = Dtp . d^ = pdt ; d^ (t) = Bttj} if) . d^ = (^'{t) . dt,

exactly as if the vector-function, p or 0, were a scalar function, f.

(5.) The particular value, dt = 1, gives thus dp = p'; so that the derived

vector p is (with our definitions) a particular but important case of the diffe-

rential of a vector. In applications to mechanics, if t denote the time, and if the

term p of the variable vector p be considered as a moving point, this derived

vector p may be called the Vector of Velocity : because its length represents

the amount, and its direction is the direction of the velocity. And if, by setting

off vectors ov = p' (comp. again fig. 32) from one origin, to represent thus the

velocities of a point moving in space according to any supposed law, expressed

by the equation p = <p{t), we construct a new curve vw . . of which the corre-

sponding equation may be written as p' = (}>\t), then this new curve has been

defined to be the HoDOGRAPH,t as the old vci , . may be called the orbit of the

motion, or of the moving point.

* In the theory of Differentials of Functions of Quaternions, a definition of the differential d^ [q)

will be proposed, which is expressed by an equation of precisely the sameform as those above assigned,

for d/(i), and for d^{<) ; but it will be found that, for quaternions, the quotient d<p {q): dq is not

generally independent of dq ; and consequently that it cannot properly be called a derived function,

such as <p'{q), of the quaternion q alone. (Compare again the Note to page 35.) [See 327.]

t The subject of the Hodograph will be resumed at a subsequent stage of this work. In fact, it

almost requires the assistance of Qtiaternions, to connect it, in what appears to be the best mode, with

Newton's Law of Gravitation. [Compare 419.]

O 2
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(6.) We may differentiate a vector-function twice (or oftener), and so obtain

its successive differentials. For example, if we differentiate the derived vector p\

we obtain a result of the form,

d/o'= /o"d^, where p^= J)tp'= Bt^p,

by an obvious extension of notation ; and if we suppose that the second differential,

ddt or d'^^, of the scalar t is zero, then the second differential of the vector p is,

d-p = dd|ti = d . p'dt = dp\ dt = p'\ df
;

where d^, as usual, denotes (d;^)^ ; and where it is important to observe that,

with the definitions adopted, d^/o is as finite a vector as dp, or as p itself. In

applications to motion, if t denote the time, p" may be said to be the Vector of

Acceleration.

(7.) We may also say that, in mechanics, the finite differential dp, of the

Vector of Position p, represents, in length and in direction, the right line

(suppose PT in fig. 32) which would have been described, by a freely moving point

p, in the finite interval of time dt, im.m.QdiQiQ\y following the time t, if at the end

of this time t allforeign forces had ceased to act.*

(8.) In geometry, if p = (j>{t) be the equation of a curve of double curvature,

regarded as the edge of regression (comp. 98, (12.)) of a developable surface, fhen

the equation of that surface itself, considered as the locus of the tangents to the

curve, may be thus written (comp. 99, II.) :

p = (j>{t) + u<^'{t) ; or simply, p = (f){t) + d<j)(t),

if it be remembered that u, or d^, may be any arbitrary scalar.

(9.) If any other curved surface (comp. again 99, II.) be represented by an

equation of the form, p = <i)(ic,y), where (p now denotes a vectorf^unction of two

independent and scalar variables, x and y, we may then differentiate this equation,

or this expression for p, with respect to either variable separately, and so obtain

what may be called two partial (but finite) differentials, d^p, dyp, and two

partial derivatives, D^p, Hyp, whereof the former are connected with the latter,

and with the two arbitrary (hut finite) scalars, dx, dy, by the relations,

dxp = T>xp . d^' ; dyp = Dy/o . dy.

And these two differentials (or derivatives) of the vector p of the surface

denote two tangential vectors, or at least two vectors parallel to two tangents to

* As is well illustrated by Atvood's machine.
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that surface at the point p : so that their plane is (or is parallel to) the tangent

plane at that point.

(10.) The mechanism of all such diferentiations of vector-fimctmis is, at the

present stage, precisely the same as in the usual processes of the Differential

Calculus ; because the most generalform of such a vector-function, which has

been considered in the present Book, is that of a sum ofproducts (comp. 99)

of the form xa, where a is a constant vector, and a; is a variable scalar : so that

we have only to operate on these scalar coefficients x . ., by the usual rules of the

calculus, the vectors a. .being treated as constant factors (comp. sub-art. 2).

But when we shall come to consider quotients ot products of vectors, or generally

tliose new functions of vectors which can only be expressed (in our system) by

Quaternions, then some few new rules of differentiation become necessary,

although deduced from the same (or nearly the same) dejinitions, as those

which have been established in the present section.

(11.) As an example of partial differentiation (comp. sub-art. 9) of a vector

function (the word " vector " being here used as an adjective) of two scalar

variables, let us take the equation

p = (l>{x,i/) =i{x''a + fl5 + {x + pYy};

in which p (comp. 99, (3.)) is the vector of a certain cone of the second order ; or,

more precisely, the vector of one sheet of such a cone, if x and y be supposed

to be real scalars. Here, the two partial derivatives of p are the following :

Ti^=^xa^{x^y)-i', T)yp = yft+{!«+y)y;
and therefore,

2(0 = xB^p + y-Dyp
;

so that the three vectors, p, Bxp, Byp, if drawn (18) from one common origin, are

contained (22) in one common plane ; which implies that the tangent plane to

the surface, at any point p, passes through the origin o : and thereby verifies

the conical character of the locus of i]idX point p, in which the variable vector p,

or OP, terminates.

(12.) If, in the same example, we make a; = l, y = - 1, we have the values,

p = i(a + /3), T)xp=a, Dyp=-^',

whence it follows that the middle point, say c', of the right line ab, is one of

the points of the conical locus ; and that (comp. again the sub-art. 3 to Art.

99, and the recent sub-art. 9) the right lines oa and ob are parallel to two of

the tangents to the surface at that point; so that the cone in question is
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touched hy the plane aob, along the side (or ray) oo^ And in like manner it

may be proved, that the same cone is touched by the two other planes bog and

COA, at the middle points a' and b' of the two other lines bc and ca ; and

therefore along the two other sides (or rays) , oa'' and ob' : which again agrees

with former results.

(13.) It will be found that a vector function of the sum of two scalar

variables^ t and di^, may generally be developed^ by an extension of Taylor's

Series, under the form,

<l>{t + dt) = cp{t) + d<i>{t) +idV(0 +^ d'<}>{t) + .

.

= (l+d + ^ +^ + ..)^(O=£^0(O;

it being supposed that d^^ = 0, dH = 0, &c. (comp. sub-art. 6) . Thus, if

^t = ^af^ (as in sub-art. 1), where a is a constant vector, we have d^t= atdt,

d^^^ = adt\ d^<j>t = 0, &c. ; and

(}>{t + dt) - ^a(t + dty=^Ui^ + atdt + ^ adt\

rigorously, without any supposition that d^ is small.

(14.) When we thus suppose At = dt, and develop the finite difference, A<^(^)

= ^(t + dt) -<l){t), the first term of the development so obtained, or the term of

first dimension relatively to d^, is hence (by a theorem, which holds good for

vector-functions, as well as for scalar functions) the frst differential d^t of the

function ; but we do not choose to define that this Differential is (or means)

that frst term: because the Formula (100), which we prefer, does not

postulate the possibility, nor even suppose the conception, of any such development.

Many recent remarks will perhaps appear more clear, when we shall come to

connect them, at a later stage, with that theory of Quaternions, to which we

next proceed.

[Compare generally III. ii. Two elementary illustrations of Hamilton's

method are given in § 2 of the Chapter cited. It may be of interest to refer

to Art. xxvm. of J. Clerk Maxwell's " Matter and Motion." " Another

mode of obtaining the diagram of velocities of a system at a given instant is

to take a small interval of time, say the «'* part of the unit of time, so that

the middle of this interval corresponds to the given instant. Take the

diagram of displacements corresponding to this interval and magnify all its

dimensions n times. The result will be a diagram of the mean velocities of

the system during the interval. If we now suppose the number n to increase

without limit the interval will diminish without limit, and the mean velocities
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will approximate to the actual velocities at the given instant. Finally, when
n becomes infinite the diagram will represent accurately the velocities at the

given instant." The unit of time is of course not necessarily small : compare

sub-art. (5). In a letter to De Morgan, dated April 26th, 1852 (Grraves's Life,

vol. III., p. 629), Hamilton says :
— " I lay no stress on the infinitely great

value of n. It would suit me almost as well to define

d/q = lim. X-' [f{q + xdq) - f{q) ]

,

x=o

though I think the other form a little clearer. But the important thing is

that I avoid—1st, commutation of factors ; 2nd, development in series

;

3rcl, smallness of differentials."]
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ON QUATERNIONS, CONSIDERED AS QUOTIENTS OF VECTORS, AND AS

INVOLVING ANGULAR RELATIONS.
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CHAPTER I.

FUNDAMENTAL PRINCIPLES RESPECTING QUOTIENTS OF
VECTORS.

SECTION L

Introductory Remarks ; First Principles adopted from Alf^ebra.

Art. 101.—The only angular relations^ considered in the foregoing Book, have

been those of j!?«r«/H«"sw between rectors (Art. 2, &c.) ; and the only j-Mo^/ew^s,

hitherto employed, have been of the three following kinds:

I. Scalar quotients of scalars, such as the arithmeticalfraction - in Art. 14

;

Q
II. Vector quotients, of vectors divided hij scalars, as - = a in Ait. 16

;

III. Scalar quotients of vectors, with directions either similar or opposite, as

3— = a; in the last cited Article. But we now propose to treat of other geometric
a
Quotients (or geometric Fractions, as we shall also call them), such as

OTl Li— =-= q, with j3 not \\ a (comp. 15) ;OA a

for each of which the Divisor (or denominator), a or oa, and the Dividend (or

numerator), j3 or ob, shall not only both be Vectors, but shall also be inclined

to each other at an Angle, distinct (in general) hovazero, and from tico* right

angles.

102. In introducing this new conception, of a General Quotient of Vectors, with

Angular Relations in a given plane, or in space, it will obviously be necessary

to employ some properties of circles and spheres, which were not wanted for

* More generally Bpeaking, from every even multiple of a right angle.

B 2
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the purpose of the former Book. But, on the other hand, it will be possible

and useful to suppose a much less degree of acquaintance with many important

theories* of modern geometry, than that of which the possession was assumed,

in several of the foregoing sections. Indeed it is hoped that a very moderate

amount of geometrical, algebraical, and trigonometrical preparation will be

found sufficient to render the present Book, as well as the early parts of the

preceding one, fully and easily intelligible to any attentive reader.

103. It may be proper to premise a few general principles respecting

quotients of vectors, which are indeed suggestedhj algebra, but are here adopted

by definition. And 1st, it is evident that the supposed operation of division

(whatever its/w// geometrical import may afterwards be found to be), by which

we here conceive ourselves to pass from a given divisor-line a, and from a given

dividend-line /3, to what we have called (provisionally) their geometric quotient,

q, may (or rather must) be conceived to correspond to soine converse act (as yet

not fulli/ known) of geometrical multip)lication : in which new act the former

quotient, q, becomes a Factor, and operates on the line a so as to 2^roduce (or

generate) the line /3. We shall therefore write, as in algebra,

/3 = g- . a, or simply, /3 = qa, when j3 : a = g ;

even if the two lines a and /3, or oa and ob, be supposed to be inclined to each

other, as in fig. 33. And this very simple and natural notation (comp. 16)

will then allow us to treat ajs identities the two following formulae :

\ a J a a

although we shall, for the present, abstain from writing also such formulsef as

the following :

^ = /3, -a=q,
a a

where a, /3 still denote two rectors, and q denotes their geometrical quotient

:

* Such as homology, homography, involution, and generally whatever depends on anharmonic ratio :

although all that is needful to he known respecting such ratio, for the applications subsequently made,

may he learned, without reference to any other treatise, from the defitiitions incidentally given, in

Art. 25, &c. It was, perhaps, not strictly necessary to introduce any of these modern geometrical

theories, in any part of the present work ; hut it Mas thought that it might interest one class, at least,

of students, to see how they could be combined with that fundamental conception of the Vectou, which

the First Book was designed to develop.

t It will be seen, however, at a later stage, that these two formulae are permitted, and even

required, in the development of the Quartemion System.

H
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because we have not yet even begun to consider the multiplication of one vector

hy another, or the division of a quotient by a line.

104. As a Ilnd general principle, suggested by algebra, we shall next lay

it down, that if

ff=2 and a=a, then i3'
=

i3;
a a

or in words, and under a slightly varied form, that unequal vectors, divided by

equal vectors, give unequal quotients. The importance of this very natural and

obvious assumption will soon be seen in its applications.

105. As a Ilird principle, which indeed may be considered to pervade the

whole of mathematical language, and without adopting which we could not

usefully speak, in any case, of equality as existing between any two geome-

trical quotients, we shall next assume that two such quotients can never be equal

to the same third* quotient, without being at the same time equal to each other :

or in symbols, that

if / = q, and q" = q, then q" = q\

106. In the IVth place, as a preparation for operations on geometrical

quotients, we shall say that any two such quotients, ox fractions (101), which

have a common divisor-line, or (in more familiar words) a common denominator,

are added, subtracted, or divided, among themselves, by adding, subtracting, or

dividing their numerators : the common denominator being retained, in each

of the two former of these three cases. In symbols, we thus define (comp. 14)

that, for any three (actual) vectors, a, j3, y,

7 3_7 + /3. y /3 7-/3
.

-t- —
,

—
,

a a a a a a
and

1:^ = 1.
a a /3

aiming still at agreement with algebra.

107. Finally, as a Yth principle, designed (like the foregoing) to assimilate,

so far as can be done, the present Calculus to Algebra, in its operations on

geometrical quotients, we shall define that the following formula holds good

:

\j3 a y j3 a a

* It is scarcely necessary to add, what is indeed included in this Ilird principle, in virtue of the

identity q = q, that if q' = q, then q = q'
\ or in words, that we shall never admit that any two

geometrical quotients, q and (f , are equal to each other in one order, without at the same time admitting

that they are equal, in the opposite order also.
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or that if two geometricalfractions ^ q and q\ he so related, that the denominator,

/3, of the multiplier q' (here written towards the left-hand) is equal to the

numerator of the multiplicand q, then the product, q' . q or (^q, is that third

fraction, whereof the " numerator is the numerator y of the multiplier, and the

denominator is the denominator a of the multiplicand '. all such denominators,

or divisor- lines, being still supposed (16) to be actual (and not null) vectors.

SECTION 2.

First motive for naming the Quotient oftwo ITectors a Quaternion.

108. Already we may see grounds for the application of the name.

Quaternion, to such a Quotient of tico Vectors as has been spoken of in recent

articles. In the first place, such a quotient cannot generally be what we have

called (17) a Scalar : or in other words, it cannot generally be equal to any

of the (so-called) reals of algebra, whether of tlie positive or of the negative

kind. For let x denote any such (actual*) scalar, and let a denote any

(actual) vector ; then we have seen (15) that tlie product xa denotes another

(actual) vector, say /3', which is either similar or opposite in direction to a,

according as the scalar coefficient, or factor, x, is positive or negative ; in

neither case, then, can it represent any vector, such as |3, which is inclined to a,

at any actual angle, whether acute, or right, or obtuse : or in other words

(comp. 2), the equation jS' = /3, or xa = j3, is impossible, under the conditions

here supposed. But we have agreed (16, 103) to write, as in algebra,

OOCL— = X', we must, therefore (by the Ilnd principle of the foregoing section,
" 3
stated in Art. 104), abstain from writing also — = x, under the same conditions:

a
X still denoting a scalar. Whatever else a quotient of two inclined vectors may
be found to be, it is thus, at least, a Non-Scalar.

109. Now, in forming the conception of the scalar itself, as the quotient of

two parallelf vectors (17), we took into account not only relative length, or ratio

of the usual kind, but also relative direction, under the form of siniilariiy or

opposition. In passing from o to xa, we altered generally (15) the length of

• By an actual scalar, as by an actual vector (comp. 1), we mean here one that is different from
zero. An actual vector, multiplied Ly a null scalar, has for product (15) a null vector; it is therefore

unnecessary to prove that the quotient of two actual vectors cannot be a null scalar, or zero.

t It is to be remembered that we have proposed (15) to extend the use of this term parallel, to

the case of two vectors which are (in the usual sense of the word) parallel to one common line, even

when they happen to be parts of one and the same rijjht Uue,
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the line a, in the ratio of ± a? to 1 ; and we preserved or reversed the direction

of that line, according as the scalar copfficient x was positive or negative. And

in like manner, in proceeding to form, more definitely than we have yet done,

the conception of the non-scalar quotient (108), g = j3 : a = ob : oa, of two in-

clined vectors, which for simplicity may be supposed (18) to be co-initial, we

have still to take account both of the relative length, and of the relative direction,

of the two lines compared. But while tlie former element of the complex

relation here considered, between these two lines or vectors, is still represented

by a simple Ratio (of the kind commonly considered in geometry), or by a

number* expressing that ratio ; the latter element of the same complex relation

is now represented by an Angle, aob : and not simply (as it was before) by

an algebraical sign, + or -.

110. Again, in estimating this angle, for the purpose of distinguishing one

quotient of vectors from another, we must consider not only its magnitude (or

quantity), hut also its Plane: since otherwise, in violation of the principle

stated in Art. 104, we should have ob': oa = ob : oa, if ob and ob' were two

distinct rays or sides of a co)ie of revolution, with oa for its axis', in which

case (by 2) they would necessarily be unequal vectors. For a similar reason,

we must attend also to the contrast between two ojyposite angles, of equal

magnitudes, and in one common plane. In short, for the purpose of knowing

fully the relative direction of two co-initial lines oa, ob in q)ace, we ought to know

not only hoiomany degrees, or other parts of some angular

unit, the angle aob contains ; but also (comp. fig. 33)

the direction of the rotation from oa to ob : including a ^--"''^

knowledge of the plane, in which the rotation is per-
^'

formed ; and of the hand (as right or left, when viewed

from a known side of the plane), toicards which the rotation is directed.

111. Or, if we agree to select some one fixed hand (suppose the rights hand),

and to call all rotations positive when they are directed towards this selected

* This number, which we shall presently call the tensor of the quotient, may be wJiole or frac-
tional, or even incommensurable with unity ; but it may always be equated, in calculation, to & positive

scalar: although it might perhaps move properly be said to be a signless number, as being derived solely

from comparison of lengths, without any reference to directions.

t If right-handed rotation be thus considered as positive, then the positive axis of the rotation aob
in fig. 33, must be conceived to be iivQctei downward, or belovj the plane of the paper. [Compare tlie

Note to 295 (2), and Art. 23 of Clerk Maxwell's Electricity and Magnetism. Hamilton compared the

positive axis to a handle or turnscrew used in screwing a right-handed screw into a nut. It is now
usual to regard the positive axis as drawn in the direction of the translation of a right-handed screw
moving in a fixed nut, or Hamilton's left-handed rotation is now called right-handed.']
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hand, but all rotations negative when they are directed towards the other hand,

then, for any given angle aob, supposed for simplicity to be less than two right

angles, and considered as representing a rotation in a given plane from oa to

OB, we may speak of one perpendicular oc to that plane aob as being- the positive

axis of that rotation ; and of the opposite perpendicular oc' to the same plane as

being the negative axis thereof : the rotation round the positive axis being

itself positive, and vice versa. And then the rotation aob may be considered to

be entirely knoivn, if we know, 1st, its quantity, or the ratio which it bears to a

right rotation ; and Ilnd, the direction of its positive axis, oc : but not without

a knowledge of these two things, or of some data equivalent to them. But
whether we consider the direction of an Axis, or the aspect of a Plane, we find

(as indeed is well known) that the determination of such a direction, or of such

an aspect, depends on two polar co-ordinates,* or other angular elements.

112. It appears, then, from the foregoing discussion, ihoXfor the complete

determination, of what we have called the geometrical Quotient o/^m;o co -initial

Vectors, a System of Four Elements, admitting each separately of numerical

expression, is generally required. Of these four elements, one serves (109) to

determine the relative length of the two lines compared ; and the other three

are in general necessary, in order to determine fully their relative direction.

Again, of these three latter elements, one represents the mutual inclination, or

elongation, of the two lines ; or the magnitude (or quantity) of the angle be-

tween them ; while the two others serve to determine the direction of the axis,

perpendicular to their common plane, round which a rotation through that

angle is to be performed, in a sense previously selected as the positive one (or

towards a fixed and previously selected hand), for the purpose of passing (in

the simplest way, and therefore in the plane of the two lines) from the direc-

tion of the divisor-line, to the direction of the dividend-line. And no more than

four numerical elements are necessary, for our present purpose : because the

relative length of two lines is not changed, when their two lengths are altered

proportionally, nor is their relative direction changed, when the angle which

they form is merely turned about, in its oivn plane. On account, then, of this

essential connexion of that complex relation (109) between two Hues, which is

compounded of a relation of lengths, and of a relation of directions, and to which

we have given (by an extension from the theory of scalars) the name of a

* The actual (or at least the frequent) use of stwh co-ordinates is foreign to the spirit of the

present System : hut the mention of them here seems likely to assist a student, by suggesting an

appeal to results, Mrith which his previous reading can scarcely fail to have rendered him familiar.
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geometrical quotient^ with a System of Four numerical JEkments, we have

already a motive* for saying, that " the Quotient of two Vectors is generally

a Quaternion."

Fig. 34.

SECTION 3.

Additional Illustrations.

113, Some additional light may be thrown, on this first conception of a

Quaternion, by the annexed figure

34. In that figure, the letters

CDEFG are designed to indicate

comers of a prismatic desk, resting

upon a horizontal table. The

angle hcd (supposed to be one of

thirty degrees) represents a (left-

handed) rotation, whereby the

horizontal ledge cd of the desk is

conceived to be elongated (or re-

moved) from a given horizontal line

CH, which may be imagined to be an edge of the table. The angle gcf

(supposed here to contain forty degrees) represents the slopef of the desk, or

the amount of its inclination to the table. On the face cdef of the desk are

drawn two similar and similarly turned triangles, aob and a'o'b', which are

supposed to be halves of two equilateral triangles ; iu such a manner that

each rotation, aob or a'o'b' is one of sixty degrees, and is directed towards one

common hand (namely the right hand in the figure) : while if lengths alone be

attended to, the side ob is to the side oa, in one triangle, as the side o'b' is to

the side o'a', in the other ; or as the number two to one.

114. Under these conditions of construction, we consider the two quotients,

or the two geo7netric fractions,

, , OB oV
OB : OA and ob : oa , or — and -7-7,

OA o A

as being equal to each other ; because we regard the two lines, oa and ob, as

having the same relative length, and the satne relative direction, as the ttco other

* Several other reasons for thus speaking will offer themselves, in the course of the present work,

t These two angles, hcd and GCi', may thus be considered to correspond to longitude of node, and

inclination of orbit, of a planet or comet in astronomy.

Hamilton's Elements of Quaternions. Q
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lines, o'a' and ()'B^ And we consider and speak of each Quotient, or Fraction,

as a Quaternion : because its complete construction (or determination) depends,

for all that is essential to its conception, and requisite to distinguish it from

others, on a system oi four numerical elements (comp. 112) ; which are, in this

Example, the four numbers,

2, 60, 30, and 40.

115. Of these four elements (to recapitulate what has been above supposed),

the 1st, namely the number 2, expresses that the length of the dividend- line, ob

or o'b', is double of the length of the divisor-line, oa or oV. The Ilnd

numerical element, namely 60, expresses here that the angle aob or a'o'b', is

one of sixty degrees ; while the corresponding rotation, from oa to ob, or

from o'a' to o'b', is towards a knoicn hand (in this case the right hand, as seen

by a person looking at iheface cdef of the desk), which hand is the same for

both of these two equal angles. The Ilird element, namely 30, expresses that

the horizontal ledge cd of the desk makes an angle of thirty degrees with a

known horizontal line ch, being removed from it, by that angular quantity,

in a known direction (which in this case happens to be towards the left hand,

as seen from above) . Finally, the IVth element, namely 40, expresses here

that the desk has an elevation oi forty degrees as before.

116. Now an alteration in any one of these Four Elements, such as an altera-,

tion of the slo2)e or aspect of the desk would make (in the view here taken) an

essential change in the Quaternion, which is (in the same view) the Quotient of

the two lines compared : although (as the figure is in part designed to suggest)

no such change is conceived to take place, when the triangle aob is merely turned

about, in its own plane, without being turned over (comp. fig. 36) ; or when

the sides of that triangle are lengthened or shortened proportionally, so as to

preserve the ratio (in the old sense of that word), of any one to any other of

tliose sides. We may then briefly say, in this mode of illustrating the notion

of a Q/UATERNioN* in geometry, by reference to an angle on a desk, that the

Four Elements which it involves are the following :

Ratio, Angle, Ledge, and Slope ;

although the two latter elements are in fact themselves angles also, but are not

immediately obtained as such, from the simple comparison of the two lines, of

which the Quaternion is the Quotient.

* As to the mere word, Quaternion, it signifies primarily (as is well known), like its Latin original,

'* Quaternio," or the Gieek noun TeTpoucrvs, a Set of Four: but it is obviously used here, and else-

where iu the present work, in a technical sense.

J
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SECTION 4.

On Equality of Q,uaternions ; and on the Plane of a ttiuaternion.

117. It is an immediate consequence of the foregoing conception of a

Quaternion, that two qnafeniions, or two quotients of vectors, supposed for

simplicity to be all co-initial (18), are regarded as being equal to each other,

or that the equation,

8 3 CD OB
- = ^, or — = —

,

7 a OC OA

is by us considered and defined to hold good, when the

tiro triangles, aob and cod, ai'C similar and similarly

turned, and in one common plane, as represented in the

annexed fig. 35 : the relative length (109), and the

RELATIVE direction (110), of the two lines, oa, ob,

being then in all respects the same as the relative length and the relative

direction of the two other lines, oc, od.

118. Under the same conditions, we shall write the following formula of

direct similitude,

A AOB a COD

;

reserving this other formula,

Aaobcc'aob', or A a'ob oca'ob',

which we shall call a formula of inverse similitude, to denote that

the two triangles, aob and aob', or a'ob and a^ob', although

otherwise similar (and even, in this case, equal,* on account of

their having a common side, oa or oa'), are oppositely turned

(comp. fig. 36), as if one were the reflexion of the other in a

mirror ; or as if the one triangle were derived (or generated) from the other,

by a rotation of its plane through two right angles. We may therefore write,

Fig. 35.

Fig. 36.

OB OD .. ^
= , II A AOB a COD.

OA OC

119. When the vectors are thus all drawn from one common origin o,

the plane aob of any two of them may be called the Plane of the Quaternion

* That is to say, eqtial in absolute amount of area, but with opposite algebraic signs (28). The two

quotients ob : oa, and ob' : oa, although not equal (110), will soon be defined to be conjugate quater-

nioHs. Under the same conditions, we shall write also the formula,

A aob' « ' COD.

Q 2
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(or of the Quotient), ob : oa ; and of course also the plane of the inverse (or

reciprocal) quaternion (or of the inverse quotient), oa:ob. And anp two qua-

ternions, which have a common plane (through o), may he said to be Complanar*

Quaternions, or complanar quotients, or fractions ; but any two quaternions

(or quotients), which have different planes [intersecting therefore in a right line

through the origin), may be said, by contrast, to be Diplanar.

120. Any two quaternions, considered as geometric fractions (101), can be

reduced to a common denominator without change of the value'\ of either of

them, as follows. Let — and — be the two given fractions, or quaternions

;

OA oc °

and if they be complanar (119), let oe be any line in their common plane
',
but

if they be diplanar (see again 119), then let oe be any assumed part of the

line of intersection of the two planes : so that, in each case, the line oe is

situated at once in the plane aob, and also in the plane cod. We can then

always conceive tico other lines, of, og, to be determined so as to satisfy the

two conditions of direct similitude (118),

A EOF oc AOB, A EOG CC COD
;

and therefore also the two equations between quotients (117, 118),

OF OB OG OD^

OB Oa' oe oc'

and thus the required reduction is effected, oe being the common denominator

sought, while of, og are the new or reduced numerators. It may be added

that if H be a new point in the plane aob, such that A hoe a aob, we shall

have also,

OE OB of

oh oa oe '

and therefore, by 106, 107,

OD ob og + of od ob og od ob _ o g
^

oc oa oe ' oc'oA of' oc
'

oa oh

whatever two geometric quotients (complanar or diplanar) may be represented

by OB : OA and od : oc

* It is, however, convenient to extend the use of this word, complanar, so as to include the case

of quaternions represented by angles in parallel planes. Indeed, as all vectors which have equal

lengths, and similar directions, are equal (2), so the quaternion, which is a quotient of itfo such vectors,

ought not to be considered as undergoing any change, when either vector is merely changed in position,

by a transport without rotation.

t That is to say, the new or transformed quaternions will be respectively equal to the old or

given ones.
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121. If now the two triangles aob, cod are not only complanar but directly

similar (118), so that A aob a cod, we shall evidently have A eof a eog ; so

that we may write of=og for f = g, by 20), the two new lines of, og (or the

two new points f, g) in this case coinciding. The general construction (120),

for the reduction to a common denominator, gives therefore here only one

new triangle, eof, and one new quotient, of : oe, to which in this case each

(comp. 105) of the two given eqttal and complanar quotients, ob : oa and

OD : oc, is equal.

122. But if these two latter symbols (or the fractionalforms corresponding)

denote two diplanar* quotients, then the two new numerator-lines, of and og,

have different directions, && being situated in two di^erent planes, drawn through

the new denominator-line oe, without having either the direction of that line

itself, or the direction opposite thereto ; they are therefore (by 2) unequal

vectors, even if they sliould liappen to be equally long ; whence it follows

(by 104) that the two new quotients, and therefore also (by 105) that the two

old or given quotients, are unequal, as a consequence of their diplanarity. It

results, then, from this analysis, that diplanar quotients of vectors, and there-

fore that Diplanar Quaternions (119), are always unequal; a new and compara-

tively technical process thus confirming the conclusion, to which we had

arrived by general considerations, and in (wliat might be called) a popular

way before, and which we had sought to illustrate (comp. fig. 34) by the con-

fiideration of angles on a desk : namely, that a Quaternion, considered as the

quotient of tico mutually inclined lines in space, involves generally a Plane, as

an essential part (comp. 110) of its constitution, and as necessary to the com-

pleteness of its conception.

123. We propose to use the mark

111

as a Sign of Complanarity, whether of lines or of quotients ; thus we shall

write the formula,

7lll«,/3,

to express that the three vectors, a, /3, y, supposed to be (or to be made)

co-initial (18), are situated in one plane ; and the analogous formula,

t'\\\h or
^111

1

* And therefore non-scalar (108) ; for a scalar, considered as a quotient (17), has no determined

plane, but must be considered as complanar tritk every geometric quotient ; since it may be represented

(or constructed) by the quotient of two similarly or oppos>tely directed Hues, in ani/ proposed plane

what«ver.
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to express that the two quaternions, denoted here by q and q', and therefore

that the four vectors^ a, /3, y, S, are complanar (119). And because we have

just found (122) that diplanar quotients are unequal, we see that one equation

of quaternions includes tivo complanarities of vectors', in such a manner that we

may write, 5; o

y|I|«,/3, and S|l|a,/3, if -=^',
y a

the equation of quotients, — = — , being impossible, unless all the four lines

from o be in one common plane. We shall also employ the notation

Y III ^,

to express that the vector y is in (or parallel to) the plane of the quaternion q.

124. With the same notation for complanarity, we may write generally,

xa
111

a, ^ ;

a and j3 being any two vectors, and x being any scalar ; because, if a = oa and

/3 = OB as before, then (by 15, 17) xa = oa', where a' is some point on the

indefinite right line through the points o and a : so that the plane aob contains

the line ok'. For a similar reason, we have generally the following formula

of complanarity of quotientSy

whatever two scalars x and y may be ; a and j3 still denoting any two vectors.

125. It is evident (comp. fig. 35) that

if A AOB a COD, ,then A boa oc doc, and AAOcaBOo;

whence it is easy to infer that for quaternions, as well as for ordinary or

algebraic quotients,

if - = -, then, inversely, 75 = -k» ^^^ alternately, - = tj ;ay p o a j5

it being permitted now to establish the converse of the last formula of 118, or

to say that

., OB CD ,,

if — = —, then A aob oc cod.
OA oc

Under the same condition, by combining inversion with alternation, we have

also this other equation, — = ^»
y o
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126. If the sides, oa, ob, of a triangle aob, or those sides either way-

prolonged, be cut (as in fig. 37) by any parallel, a'b'

or a''b", to the base ab, we have evidently the rela-

tions of direct similarity (118),

A a'ob' a aob, a a'^ob" a aob
;

whence (comp. Art. 13 and fig. 12) it follows that

we may write, for quaternions as in algebra, the

general equation, or identity,

^=2;
^'

Pig. 37.

xa a

where x is again any scalar, and o, j3 are any tioo vectors. It is easy also to

see, that for any quaternion q, and any scalar x, we have the product (comp.

107),

xQ 8 xQ Q B a

pa a x^a a x^a

so that, in the multiplication of a quaternion by a scalar (as in the multipli-

cation of a vector by a scalarj 15), the order of the factors is indifferent.

SECTION 5.

On the Axis and Angle of a Q,uaternlon ; and on the Index
of a Right Q,aotient, or Ctuaternion.

127. From what has been already said (111, 112), we are natxirally led

to define that the Axis, or more fully that the positive axis, of any quaternion

(or geometric quotient) ob : oa, is a right line perpendicular to the plane aob of

that quaternion ; and is such that the rotation round this axis, from the divisor'

line oA, to the dividend-line ob, is positive : or (as we shall henceforth assume)

directed totcards the right-hand,* like the motion of the hands of a watch.

128. To render still more definite this conception of the axis of a qua-

ternion, we may add, 1st, that the rotation, here spoken of, is supposed (112)

to be the simplest possible, and therefore to be in the plane of the two lines (or

of the quaternion), being also generally less than a semi-revolution in that

plane ; Ilnd, that the axis shall be usually supposed to be a line ox drawn

* This is, of course, merely conventional, and the reader may (if he pleases) substitute the left-

hand throughout. [The axis is supposed to be drawn outwards from the face of the watch. See

Note, page 111.]
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from the assumed origin o ; and Ilird, that the length of this line shall be

supposed to be given, ov fixed, and to be equal to some assumed unit of length:

so that the term x, of this aocis ox, is situated (by its construction) on a given

spheric surface described about the origin o as centre, which surface we may

call the surface of the unit-sphere.

129. In this manner, for every given non-scalar quotient (108), or for

every given quaternion q which does not reduce itself (or degenerate) to a

mere positive or negative number, the axis will be an entirely definite vector,

which may be called an unit-vector, on account of its assumed length, and

which we shall denote,* for the present, by the symbol Ax . q. Employing

tlien the usual sign of perpendicularity, ±, we may now write, for any two

vectors a, j3, the formula :

Ax .^±2±a; Ax.@_Lfl; or briefly. Ax . 2 ± i^
a a a (a

130. The Angle of a quaternion, such as ob : oa, shall simply be, with us,

the angle aob heticeen the two lines, of which the quaternion is the quotient

;

this angle being supposed here to be one of the usual kind (such as are con-

sidered by Euclid) : and therefore being acute^ 6r right, or obtuse (but not of

any class distinct from these), when the quaternion is a non-scalar (108). "We

shall denote this angle of a quaternion q, by the symbol, L q ; and thus shall

have, generally, the two inequalities f following

:

L q> 0', L q <iT\

where tt is used as a symbol for tioo right angles.

131. When the general quaternion, q, degenerates into a scalar, x, then the

axis (like the planet) becomes entirely indeterminate in its direction ; and the

angle takes, at the same time, eitlier zero or two right angles for its value,

according as the scalar is positive or negative. Denoting then, as above, any

such scalar by x, we have :

Ax .x = Q.n indeterminate unit-vector

;

Z. a? = 0, if ic > ; Lx = ir, \i x < 0.

* At a later stage, reasons will be assigned for denoting this axis. Ax . q, oi & quaternion q, by

the less arbitrary (or more systematic) symbol, J5Yq ; but for the present, the notation in the text may
suffice. [See 291.]

t In some investigaticms respecting complanar quaternions, and powers or roots of quaternions, it

is convenient to consider negative angles, and angles greater than two right angles : but these may then

be called amplitudes ; and the word " Angle," like the word " Ratio," may thus be restricted, at

least for the present, to its ordinary geometrical sense. [See 235.] .

X Compare the Note to page 117. The angle, as well as the axis, becomes indeterminate, when

the quaternion reduces itself to zero; unless we happen to know a law, according to which the

dividend-line tends to become nuU, in the transition from - to -.
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132. Of non-scalar quaternions^ the most important are those of which the

angle is rights as in the annexed figure 38 ; and when we have b

thus,

OB , ,
TT

a = —, and ob ± oa, or L q = h,
OA ^2

^
Athe quaternion q may then be said to be a Right Quotient ;

* u

or sometimes, a Right Quafeniion.
^^'

(1.) If then a = OA and p = op, where o and a are two given {ox fixed)

points, but p is a variable pointy the equation

/P = -
a 2

expresses that the locus of this point p is the plane through o, perpendicular to

the line oa ; for it is equivalent to the formula ofperpendicularity p ± a (129).

(2.) More generally, if /3 = ob, b being any third given point, the equation,

a a

expresses that the locus of p is &ne sheet of a cone of revolution, with o for

vertex, and oa for axis, and passing through the point b ; because it implies

that the angles aob and aop are equal in amount, but not necessarily in one

common plane.

(3.) The equation (comp. 128, 129),

Ax.^ = Ax.2
a a

expresses that the locus of the variable point p is the given plane aob ; or

rather the indefinite half-plane, which contains all the points p that are at

once complanar with the three given points o, a, b, and are also at the same side

of the indefinite right line oa, as the point b.

(4.) The system of the two equations,

lP=a^, Ax.^ = Ax.^.
a a

expresses that the point p is situated, either on the finite right line ob, or on that

line prolonged through b, but not through o ; so that the locus of p may in this

case be said to be the indefinite half-line, or rat/, which sets out from o in the

* Reasons will afterwards be assigned, for equating such a quotient, or quaternion, to a Vector
;

namely to the line which will presently (133) be called the Index of the Right Quotient. [See 290.]

Hamilton's Elements of Quaternions, R.
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direction of the vector ob or j3 ; and we may write p = x[3, x > {x being

understood to be a scalar), instead of the equations assigned above.

(5.) This other system of two equations,

^e=.--A Ax.^ = -Ax.e,
a a a a

expresses that the locus of p is the opposite ray from o

;

or that p is situated on the prolongation of the revector bo P'''

,
Fig. 33, Us.

(1) ; or that p = ajp, a; < ; or that

p = x^\ x>i), if i3'=OB'=-/3.
(Comp. fig. 33, his.)

(6.) Other notations, for representing these and other geometric loci, will

be found to be supplied, in great abundance, by the Calculus of Quaternions

;

but it seemed proper to point out these, at the present stage, as serving

already to show that even the two sytnhols of the present section. Ax. and Z,

wlien considered as Characteristics of Operation on quotients of vectors, enable

us to express, very simply and concisely, several useful geometrical conceptions.

133. If a third line, oi, be drawn in the direction of the axis ox of such a

right quotient (and therefore perpendicular, by 127, 129, to each of the two

given rectangular lines, oa, ob) ; and if the length of this new line oi bear to

the length of that axis ox (and therefore also, by 128, to the assumed unit of

length) the same ratio, which the leugth of the dividend-line, ob, bears to the

length of the divisor-line, oa ; then the line oi, thus determined, is said to be

the Index of the Right Quotient. And it is evident, from this definition of

such an Index, combined with our general definition (117, 118) of Equality

between Quaternions, that tico right quotients are equal or unequal to each other,

according as their two index-lines (or indices) are equal or unequal vectors.

SECTION 6.

On the Reciprocal, Conjugate, Opposite, and IVorm of a
tiuaternion ; and on ]%[ull 4|,uaternlons.

134. The Reciprocal (or the Inverse, comp. 119) of a quaternion, such

(isq=—, is that other quaternion,
a , a

which is formed by interchanging the divisor-line and the dividend-line ; and in

thus passing from any non-scalar quateraion to its reciprocal, it is evident that
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the angle (as lately defined in 130) remains unchanged, but tliat the axis (127,

128) is reversed in direction : so that we may write generally,

p o. p a

135. ThQ product oi kco reciprocal quaternions is always equal to positive

unity ; and each is equal to the quotient of unity divided by the other ; because

we have, by 106, 107,

1:^ = -:^! = -, and ^.^ = - = 1.
a a a p pan

It is therefore unnecessary to introduce any new or peculiar notation, to ex-

press the mutual relation existing between a quaternion and its reciprocal;

since, if one be denoted by the symbol q, the other may (in the present System,

as in Algebra) be denoted by the connected symbol,* 1 : g, or -. We have

thus the two general formulae (comp. 134) :

L - = jL q I Ax . - = - Ax . g.

q q

136. Without yet entering on the general theory of multiplication and

divisions of quaternions, beyond what has been done in Art. 120, it may be

here remarked that if any two quaternions q and q' be (as in 134) reciprocal to

each other, so that / . 17
= 1 (by 135), and if q" be any third quaternion, then

(as in algebra), we have the general formula,

q'':q = q".q'=r.-^\

because if (by 120) we reduce q and q'^ to a common denominator a, and denote

the new numerators by j3 and 7, we shall have (by the definitions in 106, 107),

// y 3 y y a „ ,q'',q^ -:- = ;t = --75 = ? •/•
a. a p a p

137. When two complanar triangles aob, aob', with a common side oa, are

(as in fig. 36) inversely similar (118), so that the formula A aob' a' aob holds

good, then the two unequal quotients,^ — and — are said to be Conjugate° OA OA

* The symbol q-^, for the reciprocal of a quaternion q, is also permitted in the present Calculus ;

but we defer the use of it, until its legitimacy shall have been established, in connexion with a
general theory of powers of Quaternions. [See 234.]

t Compare the Note to page 116.

R 2



124 ELEMENTS OF QUATERNIONS. [II.i.§6.

Quaternions ; and if the Jirst of them be still denoted by q, then the second,

which is thus the conjugate of that first, or of any other quaternion which is

equal thereto, is denoted by the neto symbol, l^q : in which the letter K may

be said to be the Characteristic of Conjugation. Thus, with the construction

above supposed (comp. again fig. 36), we may write,

OB Ob' -ry TT OB— = q', — = Kq =K—.
OA OA OA

138. From this definition of conjugate quaternions, it follows, Ist, that if

the equation — = K — hold good, then the line ob' may be called (118) the
OA OA °

reflexion of the line ob (and conversely, the latter line the reflexion of the

former), with respect to the line oa ; Ilnd, that, under the same condition, the

line OA (prolonged if necessary) bisects perpendicularly the line bb', in some

point a' (as represented in fig. 36) ; and Ilird, that any ttco conjugate quater-

nions (like any two reciprocal quaternions, comp. 134, 135) have equal angles,

but opposite axes : so that we may write, generally,

L'Kq = Lq\ Ax . Kg- = - Ax . q j

and therefore* (by 135),

LKq = L-', Ax . Kg = Ax . -.

q q

139. The reciprocal of a scalar, x, is simply another scalar, -, or x~^, having
CO

the same algebraic sign, and in all other respects related to x as in

algebra. But the conjugate ILx, of a scalar x, considered as a limit of a quater-

nion, is equal to that scalar x itself \ as may be seen by supposing the two equal

but opposite angles, aob and aob', in fig. 36, to tend together to zero or to

two right angles. We may therefore write, generally,

"Kx = x,\i X be any scalar

;

and conversely,!

q- Q. scalar, if 'Kq = q ;

because then (by 104) we must have ob = ob', bb' = ; and therefore each of

the two (now coincident) points b, b', must be situated somewhere on the

indefinite right line oa.

* It will soon be seen that these two last equations (138) express, that the conjugate and the

reciprocal, of any proposed quaternion q, have always equal versors, although they have in general

unequal tensors. [See 157.]

t Somewhat later it will be seen that the equation Kq = q may also be written asYq = ; and

that this last is another mode of expressing that the quaternion, q, degenerates (131) into a scalar.

[See 204, xiv.]
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140. In general, by the construction represented in the same figure, the

sum (comp. 6) of the ftoo numerators (or dividend-lines, ob and ob'), of the two

conjugate fractions (or quotients, or quaternions), q and Kg' (137), is equal to

the double of the line oa'; whence (by 106), the sum of those two conjugate

quaternions themselves is,

^ ^ 2oa'

this sum is therefore always scalar, being positive if the angle z. g be acute, but

negative if that angle be obtuse.

141. In the intermediate case, when the angle aob is right, the interval

oa' between the origin o and the line bb' vanishes ; and the two lately

mentioned numerators, ob, ob', become two opposite vectors, of which the sum

is null [5). Now, in general, it is natural, and will be found useful,*or rather

necessary (for consistency vfith former definitions), to admit that a null vector,

divided by an actual vector, gives always a Null Quaternion as the quotient
;

and to denote this null quotient by the usual symbol for Zero. In fact, we

have (by 106) the equation,

a a a a

the zero in the numerator of the kft-\iB.iid fraction representing here a null

line (or a null vector, 1, 2); but the zero on the r/"^A^-hand side of the equation

denoting a null quotient (or quaternion). And thus we are entitled to infer

that the sum. Kg + q, or q + Kg, of a right-angled quaternion, or right quotient

(132), and of its co;{;w^a^e, is always equal to zero.

142. We have, therefore, the three following formulae, whereof the second

exhibits a continuity in the transition from the Jirst to the third :

I. . .g + Kg>0, if ^Q<^',

11. ..^ + Kg = 0, if Lq='^;

III. ,.q + Kq<0, if ^q>l.

And because a quaternion, or geometric quotient, with an actual and finite

divisor-line (as here oa), cannot become equal to zero unless its dividend- line

vanishes, because by (104) the equation

iS .

- = = - requires the equation /3 = 0,
o a
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if a be any actual and finite vector, we may infer, conversely, that f/ie sum

q + K(/ cannot vanish, without the line oa' also vanishing ; that is, without

the lines ob, ob' becoming opposite rectors, and therefore the quaternion q

becoming a right quotient (132). We are therefore entitled to establish the

three following converse formulae (which indeed result from the three former)

:

r. . .ii q + Kq> 0, then ^ 2 < « 5

ir. ..if g + K? = 0, then z.q='^',

Iir. . . if g + Kg- < 0, then Lq> -*

143. When two opposite vectors (1), as /3 and - /3, are both divided by one

common (and actual) vector, a, we shall say that the two quotients, thus

obtained are Opposite Quaternions ; so that the opposite of any quaternion

q^ or of any quotient /3 : a, may be denoted as follows (comp. 4)

:

-/3 0-i3 /3 ^

a a a a

while the quaternion q itself moj, on the same plan, be denoted (comp. 7) by

the symbol + q, ot +q. The sum of any two opposite quaternions is zero,

and their quotient is negative unity ; so that we may write, as in algebra

(comp. again 7),

{rq)^q = [+q)+[-q) = 0', (-?):? = - 1 ;
- 2= (- 1) 2 ;

because, by 106 and 141,

a a a a a a p
The reciprocals of opposite quaternions are themselves opposite ; or in symbols

(comp. 126),

1 1 , a - a a— = - -, because —
-^ = -o- = - 75- •

Opposite quaternions have opposite axes, and supplementary angles (comp. fig.

33, bis) ; so that we may establish (comp. 132, . (5.) ) the two following

general formulae,

-^ (-<?)= TT - Z g- ; Ax. (- g) = - Ax . J.

144. We may also now write, in full consistency with the recent formulae

II. and ir. of 142, the equation,

ll\..Kq = -q, if lq=l'.
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and conversely* (comp. 138),

ir'.,.iiKq = -q, then zK^=z? = ^-

In words, the conjugate of a right quotient, or of a right-angled (or right)

quaternion (132), is the right quotient opposite thereto; and conversely, if an

actual quaternion (tliat is, one which is not null) be opposite to its own conjugate

it must he a right quotient.

(1) If then we meet the equation,

KP- =A or^ + K^ = 0,
a a a a

we shall know that p -L a ; and therefore (if a = oa, and p = op, as hefore),

that the locus of the ^^oint p is the plane through o, perpendicular to the line oa

(as in 132, (1.)).

(2.) On the other hand, the equation,

KP= + ^, or^-K^ = 0,
a a a a

expresses (by 139) that the quotient p : a is a scalar ; and therefore (by 131)

that its angle L[p:a) is either or tt ; so that in this case, the locus of p is the

indefinite right line through the two points o and A.

145. As the opposite of (he opposite, or the reciprocal of the reciprocal, so

also the conjugate of the conjugate, of any quaternion, is that quaternion itself;

or in symbols,

-{-q)= + q; l:{l:q)=q; KKq=q=lq;

80 that, by abstracting from the subj'ect of the operation, we may write briefly,

K^ = KK = 1.

It is easy also to prove, tliat the conjugates of opposite quaternions are them-

selves opposite quaternions ; aud that the conjugates ofreciprocals are reciprocal

:

or in symbols, that

I. ..K{-q)^-Kq, or Kq + K{-q) = 0;
aud

ll...K- = l:Kq, or Kq.K- = l.

• It will be seen at a later stage, that the equation "Kq = - q, ov q + TS-q = 0, may be transformed

to this other equation, Sj' = ; and that, under this last form, it expresses that the scalar part of the

quaternion q vanishes : or that this quaternion is a right quotient (132). [See 196, ii.]
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(1.) The equation ^{-q) = - Kg is included (comp. 143) ia this more

general formula, K [xq] = xKq, where « is any ,.- -«^ p

scalar; and this last equation (comp. 126) may /'

be proved, by simply conceiving that the two /
^-^jey^^-^^Zir^

lines OB, ob', in fig. 36, are multiplied by any
j

<;;;;]^^A^a';P
J^l!^f

common scalar ; or that they are both cut by \ /^^b^''^^ i

any parallel to the line bb'. \ I / i

(2.) To prove that conjugates of reciprocals ^''-> --K" /

are reciprocal, or that Kq.K- = 1, we may Fig. 36, Ji«.

conceive that, as in the annexed figure 36, bis, while we have still the relation

of inverse similitude,

AAOB'a'AOB (118, 137),

as in the former figure 36, a new point c is determined, either on the line oa

itself, or on that line prolonged through a, so as to satisfy either of the two

following connected conditions of direct similitude :

A BOG ocaob'; a b'oc oc aob
;

or simply, as a relation between the four points o, a, b, c, the formula,

A BOG a 'aob.

For then we shall have the transformations,

_ 1 _, OA xr °®' °^ °^ 1K - = K. — = K — = — = —-, = tt".
q OB OG OG OB Kq

(3.) The two quotients ob : oa, and 6b : og, that is to say, the quaternion q

itself and the conjugate of its reciprocal, or* the reciprocal of its conjugate^ have

the same angle, and the same axis ; we may therefore write, generally,

1^- = L q; Ax . K - = Ax . g,

q q

(4.) Since oa : ob and oa : ob' have thus been proved (by sub-art. 2) to be

a pair of conjugate quotients, we can now infer this theorem, that any two geo-

metric fractions, -^ and 3>, which have a common numerator a, are conjugate
P P

* It will be Been afterwards, that the common value of these two equal quaternions, K- and=r-
' q Kq,

may be represented by either of the two new symbols, U^ : Tq, or q-.^q; or in words, that it is

equal to the versor divided by the tensor; and also to the quaternion itself divided by the norm. [See

190, (3).]
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quaternions, if the denominator j3' of the second be the reflexion of the denomina-

tor j3 of the Jirst, with respect to that common numerator (comp. ] 38, I.)
;

whereas it had only been previously assumed, as a definition (137), that such

conjugation exists, under the same geometrical condition, between the two other

B Q'
(or inverse) fractions, — and— ; the three vectors a, i3, 6' being supposed to

a a

be all co-initial (18).

(5.) Conversely, if we meet, in any investigation, the formula

OA : ob' = K (oA : ob),

we shall know that the point h' is the reflexion of the point b, with respect to

the line oa ; or that tliis line, oa, prolonged if necessary in either of two

opposite directions, bisects at right angles the line bb', in some point a', as in

either of the two figures 36 (comp. 138, II.).

(6.) Under the recent conditions of construction, it follows from the most

elementary principles of geometry, that the circle, which passes through the

three points a, b, c, is touched at b, hy the right line ob ; and that this line is,

in length, a mean proportional between the lines oa, oc. Let then od be such

a geometric mean, and let it be set off from o in the common direction of the

two last mentioned lines, so that the point d falls between a and c ; also let the

vectors oc, on be denoted by the symbols 7, 8 ; we shall then have ex-

pressions of the forms,

8 = aa, y = a^a,

where a is some positive scalar, « > ; and the vector /3 of b will be connected

(comp. sub-art. 2) with this scalar a, and with the vector a, by the formula

OB -^ OA oc Tr OB a^a ^ 3— = K!— , or— =K— , or-75- = K-.
oc OB OB OA p a

(7.) Conversely, if we still suppose that 7 = a^a, this last formula expresses

the inverse similitude of triangles, A boc a' aob ; and it expresses nothing more :

or in other words, it is satisfied by the vector j3 of every point b, which gives

that inverse similitude. But for this purpose it is only requisite that the

length of ob should be (as above) a geometric mean between the lengths of oa,

oc ; or that the two lines, ob, od (sub-art. 6), should be equally long : or finally,

that B should be situated someivhere on the surface of a sphere, which is described

so as to pass through the point d (in fig. 36, bis), and to have the origin o for

its centre,

Hamilton's Elements of Quaternions. S
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(8.) If then we meet an equation of the form,

— = K -, or - h. - = a\
p a a a

in which a = oa, p = op, and a is a scalar, as before, we shall know that the

locus of the point p is a spheric surface, with its centre at the point o, and with

the vector aa for a radius ; and also that if we determine a point c by the

equation oc = a'^a, this sjiheric locus of p is a common orthogonal to all the circles

APC, which can be described, so as to pass through the ttco fxed points, a and c

:

because everg radius op of the sphere is a tangent, at the variable point p, to the

circle apc, exactly as ob is to abc in the recent figure.

(9.) In the same fig. 36, bis, the similar triangles show (by elementary

principles) that the length of bc is to that of ab in the sub-duplicate ratio

of oc to OA ; or in the simple ratio of od to oa ; or as the scalar a to 1. If

then we meet, in any research, the recent equation in p (sub-art. 8), we shall

know that

length of {p - a'^a) = a x length of{p-a);

while the recent interpretation of the same equation gives this other relation of

the same kind

:

length of p = a x length of a.

(10.) At a subsequent stage [200 (3) ], it will be shown that the Calculus

of Quaternions supplies Rules of Transformation, by which we can pass from

any one to any other of these last equations respecting p, without (at the time)

constructing any Figure, or {immediately) appealing to Geometry : but it was

thought useful to point out, already, hoiD much geometrical meaning* is con-

tained in so simple a formula, as that of the last sub-art. 8.

(11.) The product of two conjugate quaternions is said to be their common

NoRM,t and is denoted thus :

qKq = N^.

• A student of ancient geometry may recognise, in the two equations of sub-art. 9, a sort of

translation, into the language of vectors, of a celebrated local theorem of Apollonius of Perga, which

has been preserved through a citation made by his early commentator, Eutocius, and may be tlius

enunciated : Given any two points (as here a and c) in a plane, and any ratio of inequality (as here

that of 1 to a), it is possible to construct a circle in the plane (as here the circle bob'), such that the

(lengths of the) two right lines (as here ab and cb, or ap and cp), which are inflected from the two
given points to any common point (as b or p) of the circumference, shall be to each other in the given

ratio. (Avo SoBfvruv ffij/jifluv, k.t.\. Puge II of Halley's Edition of Apollonius, Oxford, mdccx.)

t This name, Norm, and the corresponding characteristic, N, are here adopted, as sug<;estions

from the Theory of Numbers ; but, in the present work, they will not be often icanted, although it

may occasionally be convenient to employ them. For we shall soon introduce [in 187] the conception,
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It follows that WKq = Nq ; and that the norm of a quaternion is generally a

positive scalar : namely, the square of the quotient of the lengths of the two lines

of which (as vectors) the quaternion itself is the quotient (112). In fact we

have, by sub-art. 6, and by the definition of a norm^ the transformations

:

_j OB
-J

Ob' OC Ob' _ DC OB _ GO _ /odV
^

OA OA ob' ' OA OB ' OA OA \0Ay
'

N,-N2 = gK2 = (^i£^Y.
a a a \length of aJ

As a limit, we may say that the norm of a null quaternion is zero ; or iu symbols,

N0 = 0.

(12.) With this notation, the equation of the spheric locus (sub-art. 8), which

has the point o for its centre, and the vector aa for one of its radii, assumes

the shorter form :

N^ =a^ orN-^=l.
a aa

SECTION 7.

On Radial Quotients ; and on the Square of a Quaternion.

146. It was early seen (comp. Art. 2, aud fig. 4) that any two radii, ab,

AC, of any one circle, or sphere, are necessarily unequal vectors ; because their

directions differ. On the other hand, when we are attending only to relative

direction (110), we may suppose that all the vectors compared are not merely

co-initial (18), but are also equally long ; so that if their common length be taken

for the unit, they are all radii, oa, ob, . . of what we

have called the Unit-Sphere (128), described round

the origin as centre ; and may all be said to be Unit-

Vectors (129). And then the quaternion, which is ^,^^\
the quotient of any one such vector divided by any

^'

other, or generally the quotient of any two equally long

vectors, may be called a Radial Quotient ; or sometimes simply a Radial.

(Compare the annexed figure 39.)

and the characteristic, of the Tensor, Tg, of a quaternion, which is of greater geometrical utility than

the Norm, hut of which it will he proved that this norm is simply the square,

qKq = Nq = {Tqf.
Compare the Note to sub-art. 3.

S2
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147. Tiie two JTnit-Scalars, namely, Positive and Negative Unitt/, maybe

considered as limiting cases of radial quotients, corresponding to the two extreme

mluesy and tt, of the angle aob, ov Lq (131). In the inter-

mediate case, when aob is a right angle, or Z g- = ^, as in

fig-. 40, the resulting quotient, or quaternion, may be called

(comp. 132) a Right Radial Quotient ; or simply, a Right

Radial. The consideration of such right radials will be o*^

found to be of great- importance, in the whole theory and

practice of Quaternions.

148. The most important general property of the quotients last mentioned

is the following : that the Square of evert/ Right Radial is equal to Negative

Unity ; it being understood that we write generally, as in algebra,

q.q = qq = q\

and call this product of two equal quaternions the square of each of them.

Fig. 40.

Fig. 41, bis.

For if, as in fig. 41, we describe a semicircle aba', with o for centre, and with

OB for the bisecting radius^ then the two right quotients, ob : oa, and oa' : ob,

are eqital (comp. 117) ; and therefore their common square is (comp. 107) the

product,

^obV oa' ob _ oa'_
^ ^

^Oh.) ob ' oa oa
*

where oa and ob may represent any two equally long, hut mutually rectangular

lines. More generally, the Square of every Right Quotient (132) is equal to a

Negative Scalar ; namely, to the negative of the square of the number, which

represents the ratio of the lengths* of the two rectangular lines compared ; or

to zero minus the square of the number which denotes (comp. 133) the length of

the Index of that Right Quotient : as appears from fig. 41, his, in which ob is

Hence, by 145 (11.), y2= - Ng, H L q
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only an ordinate, and not (as before) a radius, of the semicircle aba' ; for we

have thus,

f?5Y. 2i' . . f'f^'A^Y if o« X OA.
\0A/ OA \length ofokJ

149. Thus everij Right Radial is, in the 'present System, one of the Square

Roots of Negative Unity ; and may therefore be said to be one of the Values of

the Symbol ^- 1 ; which celebrated symbol has thus a certain degree of

vagueness, or at least of indetermination, of meaning in this theory, on account

of which we sliall not often employ it. For althougli it thus admits of a

perfectly clear and geometrically real Interpretation, as denoting wliat has been

above called a Right Radial Quotient, yet the Plane of that Quotient is arbitrary;

and therefore the symbol itself must be considered to have (in the present

system) indefinitely many values ; or in other words the Equation, q^ = - 1,

has (in the Calculus of Quaternions) indefinitely many Roots,* which are all

Geometrical Reals : besides any other roots^^ of a purely symbolical character,

which the same equation may be conceived to possess, and which may be

called Geometrical Itnaginaries.f Conversely, if q be any real quaternion,

which satisfies the equation q^ = -l, it must be a right radial] for if, as in

fig. 42, we suppose that A aob a boc, we shall have

, fOBY 00 OB oc
Q =(— ]

= — .— ;

\0A/ OB OA OA

and this square of q cannot become equal to negative unity,

except by oc being = - oa, or = oa' in fig. 41 ; that is, by

the line ob being at right angles to the line oa, and being

at the same time equally long, as in fig. 40.

(1.) If then we meet the equation,

)=-•
where a = oa, and p = op, as before, we shall know that the locus of the point

* It will be subsequently shown [in 222], that if a:, y, z be any three scalars, of which the sum of

the squares is unity, so that

a;2 + y2 + z2 = 1 ;

and if i, J, k be any three right radials, in three mutually rectangularplanes ; then the expression,

q = ix +jy 4- kz,

denotes another right radial, which satisfies {as such, and by symbolical laws to be assigned) the

equation q- = — I ; and is therefore one of the geometrically real values of the symbol V — 1.

t Such imaginaries will be found to offer themselves, in the treatment by Quaternions (or rather

by what will be caWeABiqiialernions), oi ideal intersections, and of ideal contacts, in geometry [see 214] ;

but we confine our attention, for the present, to geometrical reals alone. Compare the Notes to pages

87 and 88,
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p is the circumference of a circle, with o for its centre, and with a radius which

has the same length as the line oa ; while the plane of the circle is perpendicular

to that given line. In other words, the locus of p is a great circle, on a sphere

of which the centre is the origin ; and the given point a, on the same

spheric surface, is one of the poles of that circle.

(2.) In general, the equation q'^ = - a^, where a is any (real) scalar, requires

that the quaternion q (if real) should be some right quotient (132) ; the

number a denoting the length of the index (133), of that right quotient or

quaternion (comp. Art. 148, and fig. 41, bis). But the plane of q is still

entirely arbitrary ; and therefore the equation

q' = - a\
. >?

like the equation (f'
= -1, which it includes; must be considered to have (in

the present system) indefinitely many geometrically real roots.

(3.) Hence the equation,

in which we may suppose that a>0, expresses that the bcus of the point p is a

(new) circular circumference, with the line oa for its axis,* and with a radius of

which the length = a x the length of oa.

150. It may be added that the index (133), and the axis (128), of a right

radial [1^7], are the same, and that its reciprocal (134), its conjugate (137),

and its opposite (143), are all equal to each other. Conversely, if the reciprocal

of a given quaternion q be equal to the opposite of that quaternion, then q is a

right radial ; because its square, q^, is then equal (comp. 136) to the quaternion

itself, divided by its opposite ; and therefore (by 143) to negative unity. But

the conjugate of every radial quotient is equal to the reciprocal of that quotient;

because if, in fig. 36 [p. 115], we conceive that the three lines oa, ob, ob'

are equally long, or if, in fig. 39, we prolong the arc ba, by an equal arc ab', we

have the equation,

^ ob' oa 1

OA OB q
And conversely,!

if Kq = -, or if qKq = 1,

q

then the quaternion g- is a radial quotient.

* It being understood, that the axis of a circle is a right line perpendicular to the plane of that

circle, and passing through its centre.

t Hence, in the notation of norms (145, (11.)), if N^ = 1, then q ia a. radial; and conversely, the

norm of a radial quotient, is always equal to positive unity.
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SECTION 8.

On the Tersor of a Ctuaternion, or of a ITector; and on
some General Formulee of Transformation.

151. When a quaternion q = (5:a is thus a radial quotient (146), or when

tlie lengths of tlie two lines a and /3 are equal, the effect of this quaternion q^

considered as a Factor (103), in the equation qa = /3, is simply the turning of

the multiplicand-line a, in the plane of q (119), and toicards the hand determined

by the direction of the positive axis Ax . q (129), through the angle denoted by

Z.q (130) ; so as to bring that linaa (or a revolving line which had coincided

therewith) into a neic direction : namely, into that of the product-line /3. And
with reference to this conceived operation of turning, we sliall now say that

everg Radial Quotient is a Veksor.

152. A Versor has thus, in general, a plane, an axis, and an angle
;

namely, those of the Radial (146) to which it corresponds, or is equal : the only

difference between them being a difference in the points of view* from which

they are respectively regarded ; namely, the radial as the quotient, q, in the

formula, g' = /3 : a ; and the versor as the (equal) factor, q, in the converse

formula, (i = q .a; where it is still supposed that the two vectors, a and /3,

are equally long.

153. A versor, like a radial (147), cannot degenerate into a scalar, except

by its angle acquiring one or other of the two limit-values, and tt. In the

first case, it becomes j^ositive unity ; and in the second case, it becomes negative

unity : each of these two unit-scalars (147) being here regarded as 2i factor (or

coefficient, comp. 12), which operates on a line, to preserve or to reverse its

direction. In this view, we may say that - 1 is an Inversor ; and that every

i2»5rA^ Fersor f or versor with an angle = ^ ) is a Semi-inversor :* because it half-

inverts the line on which it operates, or turns it through half of two right angles

* In a slightly metaphysical mode of expression it may be said, that the radial quotient is the

result of an analysis, -wherein tivo radii of one sphere (or circle) are compared, as regards their relative

direction ; and that the equal versor is the instrument of a corresponding synthesis, wherein one radius

is conceived to be generated, by a certain rotation, from the other.

t This word, "semi-inversor," will not be often used ; but the introduction of it here, in passing,

seems adapted to throw light on the vit^v taken, in the present work, of the symbol ^/ - 1, when
regarded as denoting a certain important class (149) of Reals in Geometry. There are uses of that

symbol, to denote Geometrical Lnaginaries (comp. again Art. 149, and the Notes to pages 87 and 88),

considered as connected with ideal intersections, and with ideal contacts; but tvith such uses of V — 1

we have, at present, nothing to do.



136 ELEMENTS OF QTJATEKNIONS. [11. i. § 8.

(comp. fig. 41). For the same reason, we are led to consider every right versor

(like every right radial, 149, from which indeed we have just seen, in 152,

that it differs only as factor differs from quotient), as being one of the square

roots of negative unity : or as one of the values of the symbol^- 1.

164. In fact we may observe that the ej'ect of a right versor, considered

as operating on a line (in its own plane), is to turn that line, towards a given

hand, through a right angle. If then q be such a versor, and if qa = /3, we shall

have also (comp. fig. 41), gjS = - a ; so that, if a be any line in the plane of a

right versor q, we have the equation,

q . qa = — a
;

whence it is natural to write, under the same condition,

as in 149. On the other hand, no versor, which is not right-angled, can be a

value of -y - 1 ', or can satisfy the equation q'^a = - a, as fig. 42 may serve to

illustrate. For it is included in the meaning of this last equation, as applied

to the theory of versors, that a rotation through 2Lq, or through the double of

the angle of q itself, is equivalent to an inversion of direction ; and therefore to

a rotation through two right angles.

155. In general, if a be any tweeter, and if a be used as a temporary*

symbol for the number expressing its length ; so that a is here a, positive scalar,

which bears to positive unity, or to the scalar + 1, the saine ratio as that which

the length of the line a bears to the assumed unit of length (comp. 128) ; then

the quotient a : a denotes generally (comp. 16) a new vector, which has the

same direction as the proposed vector a, but has its length equal to that assumed

unit : so that it is (comp. 146) the Unit-Vector in the direction of a. We shall

denote this unit-vector by the symbol, Ua ; and so shall write, generally,

Ua = -, if a = length of a ;
'

€v

that is, more fully, if a be, as above supposed, the nutnber (commensurable or

incommensurable, but positive) which represents that length, with reference to

some selected standard.

156. Suppose now that 5' = j3 : a is (as at first) a general quaternion, or the

quotient of any two vectors, a and /3, whether equal or unequal in length. Such

a Quaternion will not (generally) be a Versor (or at least not sitnply such),

* We shall soon propose [in 185] a general notation for representing the lengths ofvcctcrs, accord-

ing to -which the symbol To will denote what has been above called a ; but are unwilling to introduce

more than one new characteristic of operation, such as K, or T, or U, &c., at one titne.
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according to the definition lately given ; because its effect^ when operating as

di, factor (103) on a, will not in general be simply to turn that line (151) : but

will (generally) alter the length* as well as the direction. But if we reduce

the two proposed vectors, a and j3, to the two unit-vectors Ua and Uj3 (155),

and form the quotient of these, we shall then have taken account of relative

direction alone : and the result will therefore be a versor, in the sense lately

defined (151). We propose to call the quotient, or the versor, thus obtained,

the versor-element, or briefly, the Veusok, of the Quaternion q ; and shall find

it convenient to employ the samef Characteristic, U, to denote the operation of

faking the versor of a quaternion, as that employed above to denote the opera-

tion (155) of reducing a vector to the unit of length, without any change of its

direction. On this plan, the symbol T^q will denote the versor ofq\ and the

foregoing definitions will enable us to establish the General Formula

:

a Ua

in which the two unit-vectors, Ua and U/3, may be called, by analogy, and for

other reasons which will afterwards appear, the versors+ of the vectors, a and (5.

157. In thus passing from a given quaternion, q, to its versor, \Jq, we have

only changed (in general) the lengths of the two lines compared, namely, by

reducing each to the assumed unit of length (155, 156), witliout making any

change in their directions. Hence the plane (119), the axis (127, 128), and

the angle (130), of the quaternion, remain unaltered in this passage ; so that

we may establish the two following general formulae :

LVq = Lq\ Ax . Ug' = Ax . g.

* By what we shall soon call an act of tension, which will lead us to the consideration of the temor

of a quaternion.

t For the moment, this double use of the characteristic U, to assist in denoting both the unit-

vector Uo derived from a given line a, and also the versor TJq derived from a qtialeniion q, may he

regarded as established here by arbitrary d^Jinition ; but as permitted, because the difference of the

symbols, as here a and q, which serve for the present to denote vectors and quaternions, considered as

the subjects of these two operations U, will prevent such double use of that characteristic from giving

rise to any confusion. But we shall further find that several important analogies aie by anticipation

expressed, or at least suggested, when the prupused notationiB employed. Thus it will be found (comp.

the Note to page 121), that ever;/ rector a may usefully be equated to that right quotient, of which it

is (133) the index; and that then the unit-vector Ua may be, on the same plan, equated to that right

radial (147), which is (iu the sense lately defined) the versor of that right quotient. We shall also find

ourselves led to regard ever;/ unit-vector as the axis of a qtcadrantal (or right) rotation, in a plane

perpendicular to that axis ; which will supply another inducement, to speak of every sitcli vector as a

versor. On the whole, it appears that there will be no inconvenience, but rather a prospective

advantage, in our already reading the symbol Uo as ^^ versor of a^^; just as we may read the analogous

symbol U^, as "t«so>- of q." [Compare 286 and 290.]

X Compare the Note immediately preceding.

Hamilton's Elements of Quaternions. T
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More generally we may write,

L^ = Lq, aud Ax . ^ = Ax . 5-, if U/ = Vq ;

the versor of a quaternion depending solely on, but conversely being sufficient to

determine, the relative direction (166) of the two lines, of which (as vectors) the

quaternion itself is the quotient (112) ; or the axis and angle of the rotation,

in the plane of those two lines, from the divisor to the dividend (128) : so

that any two quaternions, which have equal versors, must also have equal angles,

and equal (or coincident) axes, as is expressed by the last written formula.

Conversely, from this dependence of the versor JJq on relative direction* alone,

it follows that any two quaternions, of which the angles and the axes are

equal, have also equal versors ; or in symbols, that

W = U?» if ^ / = ^ ?> and Ax .
g' = Ax . q.

i^'or example, we saw (in 138) that tlie conjugate and the reciprocal of any

quaternion have thus their angles and their axes the same ; it follows, there-

fore, that the versor of the conjugate is always equal to the versor of the recipro-

cal ; so that we are permitted to establish the following general formula,!

VKq = V--
q

158. Again, because

it follows that the versor of the reciprocal of any quaternion is, at the same

time, the reciprocal of the versor] so that we may write,

ui=:fi-; or TJq,V-=l.
q Uq Q

Hence, by the recent result (157), we have also, generally,

UK^ = :^; or, JJq .VKq = 1.

* The unit-vector TJa, which we have recently proposed (156) to call the versor of the vector a,

depends in like manner on the direction of that vector alone ; which exclusive reference, in each of these

two cases, to Direction, may serve as an additional motive for employing, as we have lately done,

one common name, Versor, and one common characteristic, U, to assist in describing or denoting both

the Unit- Vector TJa itself and the Quotient of two such Unit- Vectors, Hg = U/S : Uo ; all danger of

confusion being sufficiently guarded against (comp. the Note to Art. 156), by the difference of the two

symbols, a and q, employed to denote the vector and the quaternion, which are respectively the subjects

of the two operations U ; while those two operations agree in this essential point, that each serves to

eliminate the quantitative element, of absolute or relative length,

t Compare the Note to Art. 138,
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Also, because the wrsor JJq is always a i'adial quotient (151, 152), it is (by

150) the conjugate of its oicn reciprocal', and therefore, at the same time(comp.

145), the reciprocal of its own conjugate', so that the product of two conjugate

versors, or what we have called (145, (11.) ) their common Norm, is always

equal to positive unity; or in symbols (comp. 150),

NU? = Ug.KU? = l.

For the same reason, the conjugate of the versor of any quaternion is equal to

the reciprocal of that versor, or (by what has just been seen) to the versor of the

reciprocal oi that quaternion; and therefore also (by 157), to the versor of the

conjugate ; so that we may write generally, as a summary of recent results,

the formula

:

K'Uq = r^^V-=XrKq',
*Jq q

each of these four symbols denoting a new versor, which has the same plane,

and the same angle, as the old or given versor JJq, but has an opposite axis, or

an opposite direction of rotation : so that, with respect to that given Versor^ it

may naturally be called a Reversor.

159. As regards the versor itself, whether of a vector or of a quaternion,

the definition (155) of Ua gives,

JJxa = + Ua, or = - Ua, according as a? > or < ;

because (by 15) the scalar coefficient x preserves, in the first case, but reverses,

in the second case, the direction of the vector a; whence also, by the definition

(156) of JJq, we have generally (comp. 126, 143),

JJxq = + JJq, or = - JJq, according as a; > or < 0.

The versor of a scalar, regarded as the limit of a quaternion (131, 139), is equal

to positive or negative unity (comp. 147, 153), according as the scalar itself is

positive or negative ; or in symbols,

JJx = + 1, or = - 1, according as « > or < ;

i]iQ plane and axis of each of these two unit scalars (147), considered as versors

(153), being (as we have already seen) indeterminate. The versor of a null

quaternion (141) must be regarded as wholly arbitrary, unless we happen to

know a law,* according to which the quaternion tends to zero, before actually

reaching that limit ; in which latter case, the plane, the axis, and the angle of

* Compare the Note to Art. 131.

T 2
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the versor* UO may all become determined, as limits deduced from that law.

The versor of a right quotient (132), or of a right-angled quaternion (141), is

always a right radial (147), or a right versor (153) ; and therefore is, as such,

one of the square roots of negative unity (149), or one of the values of the symbol

-v/
- 1 ; while (by 150) the axis and the index of sxich a versor coincide ; and

in like manner its reciprocal, its conjugate, and its opposite are all equal to each

other.

160. It is evident that if a proposed quaternion q be already a versor (151),

in the sense of being a radial (146), the operation of talcing its versor (156)

produces no change ; and in like manner that, if a given vector a be already an

unit-vector, it remains the same vector, when it is divided (155) by its own

length ; that is, in this case, by the number one. For example, we have

assumed (128, 129), that the axis of every quaternion is an unit-vector', we

may therefore write, generally, in the notation of 155, the equation,

U (Ax .q)=Ax.q.

A second operation U leaves thus the result of the first operation U unchanged,

whether the subject of such successive operations be a line, or a quaternion ; we

have therefore the two following general formulae, differing only in the

symbols of that subject:

V\Ja = Va; VTJq = JJq',

whence, by abstracting (comp. 145) from the subject of the operation, we may

write, briefly and symbolically,

U^ = uu = u.

161. Hence, with the help of 145, 158, 159, we easily deduce the follow-

ing (among other) transformations of the versor of a quaternion :

<l

= ui- =UK- = V\ = UKui = UK=^ = (UK)^^;
Kq q

^
q Vq

JJq = JJxq, if a; > ; = - TJxq, if j» < 0.

We may also write, generally,

rrE4 = (^*)'=^(«')=^*''

* When tlie ze7-o in this symbol, UO, is considered as denoting a null vector (2), the symbol itself

denotes generally, by the foregoing principles, an indeterminate unit-vector ; although the direction of

this unit-vector may, in certain questions, become determined, as a limit resulting from a law.
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the parentheses being here unnecessary, because (as will soon be more fully

seen) the symbol JJq^ denotes one common versor, whether we interpret it as

denoting the square of the versor^ or as the versor of the square, of q. The

present Calculus will be found to abound in General Transformations of this

sort; which all (or nearly all), like the foregoing, depend ultimately on very

simple geometrical conceptions) but which, notwithstanding (or rather, perhaps,

on account of) this extreme simplicity of their origin, are often useful, as

elements of a new kind of Symbolical Language in Geometry : and generally, as

instruments of expression, in all those mathematical or physical researches to

which the Calculus of Quaternions can be applied. It is, however, by no

means necessary that a student of the subject, at the present stage, should

make himself ./«;«?7m/' with all the recent transformations of TJq; altliough it

may be well that he should satisfy himself of their correctness, in doing which

the following remarks will perhaps be found to assist.

(1.) To give a geometrical illustration, whiob may also serve as a proof, of

the recent equation,

q'.Kq = iJJq)\ • '

we may employ fig. 36, bis [p. 128] ; in which, by 145, (2.), we have

1 OB OA OB [obV /xtObV /tt \i

Kq OA OB OB \OT)J \ OA/

(2.) As regards the equation, T}{q^) = (U$?)^ we have only to conceive that

the three lines oa, ob, oc, of fig. 42, are cut (as in fig. 42, bis)

in three new points, a', b', c', by an unit-circle (or by a circle

with a radius equal to the unit of length), which is described

about their common origin o as centre, and in their common
plane ; for then if these three lines be called a, j3, 7, the three

new lines oa', ob', oc' are (by 155) the three unit-vectors de-

noted by the symbols, Ua, U/3, U7 ; and we have the trans-

formations (comp. 148, 149),

a J a
" Ua ~

Oa'
"

\oa';
" ^"^^ *

Fig. 42, bis,

(3.) As regards other recent transformations (161), although we have seen

(135) that it is not necessary to invent any new or peculiar symbol, to represent

the reciprocal of a quaternion, yet if, for the sake of present convenience, and

as a merely temporary notation, we write

employing thus, for a moment, the letter E. as a characteristic of reciprocation^
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or of the operation of taking the reciprocal^ we shall then have the symbolical

equations (comp. 145, 158) :

R^ = K^ = 1; RK = KR; RU = UR = KU = UK;

but we have also (by 160), IJ^ = U; whence it easily follows that

U = RUR = RKU = RUK = KUR = KRU = KUK
= URK = UKR = UKUR = UKRU = (UK)^ = &c.

(4.) The equation

U^ =u2 or simply, U/,=U/3,
a a

expresses that the locus of the point p is the indefinite right line, or ray (comp.

132, (4.)), which is drawn /yow o in the direction of ob, but not in the opposite

direction ; because it is equivalent to

U^ = l; or L^ = 0; or p = a;j3, x>0.

(5.) On the other hand the equation,

TJ^=-u2 or U(0 = -Ua
a a

expresses (comp. 132, (5.)) that the locus of p is the opposite ray from o ; or

that it is the indefinite prolongation of the revector bo ; because it may be trans-

formed to

U-5 = -l; or z-5 = 7r; or p = xQ,x<0.
P P

(6.) If a, /3, 7 denote (as in sub-art. 2) the three lines oa, ob, go of fig.

42 (or of fig. 42, his), so that (by 149) we have the equation - =
(
— )> then

this other equation,

expresses generally that the locus of p is the system of the two last loci ; or

that it is the whole indefinite right line, both ways prolonged, through the two

points o and b (comp. 144, (2.)).

(7.) But if it happen that the line 7, or oc, like oa' in fig. 41 (or in fig.

41, bis), has the direction opposite to that of a, or of oa, so that the last

equation takes the particular form.
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tbeu U - must be (by 154) a right versor; and reciprocally, everi/ right versor,
a

with a plane containing a, will be (by 153) a value satisfying the equation.

In this case, therefore, the locus of the point p is (as in 132, (1.), or in 144,

(1.)) the plane through o, perpendicular to the line oa; and the recent equation

itself, if supposed to be satisfied by a real* vector p, may be put under either

of these two earlier but equivalent /orws

:

Z-=^; p±a.

SECTION 9.

On ¥ector-Ares, and ITector-Angles, considered as Representatives

of Yersors of liuaternions ; and on the multiplication and
Division of any one such Yersor by another.

162. Since every unit-vector oa (129), drawn from tlie origin o, terminates

in some point a on the surface of what we liave called the unit-sphere (128),

that term a (1) may be considered as a Representative Point, of which tlie

position on that surface determines, and may be said to represent, the direction

of the line oa in space ; or of that line multiplied (12, 17) by ani/ positive scalar.

And then the Quaternion which is the quotient (112) of any two such unit-

vectors, and which is in one view a Radial (146), and in another view a

Versor (151), may be said to have the arc of a great circle, ab, upon the unit

sphere, which connects the terms of the two vectors, for its Representative Arc.

We may also call this arc a Yector Arc, on account of its having a definite

direction (comp. Art. 1), such as is indicated (for example) by a curved arrow

in fig. 39 [p. 131] ; and as being thus contrasted vfiih. its own opposite, or with

what may be called by analogy the Revector Arc ba (comp. again 1) : this

latter arc representing, on the present plan, at once the reciprocal (134), and

the conjugate (137), of the former versor', because it represents the corre-

sponding Reversor (158).

163. This mode of representation, of versors of quaternions by vector arcs,

would obviously be very imperfect, unless equals were to be represented by

equals. We shall therefore define, as it is otherwise natural to do, that a vector

are, ab, upon the unit sphere, is equal to every other vector arc cd which can be

* Compare 149, (2.) ; also the second Note to the same Article ; and the Notes to pages 87 and 88.
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derived from it, by simply causing (or conceiving) it to 8Ude* in its own great

circle^ without any change of lengthy or reversal of direction. In fact, the two

isosceles and plane triangles aob, cod, which have the origin o for their

common vector, and rest upon the chords of these two arcs as bases, are thus

complanar, similar, and similarly turned ; so that (by 117, 118) we may here

write,
A AOB OC COD,

OA

CD

00
'

the condition of the equality of the quotients (that is, here, of the versors),

represented by the two arcs, being thus satisfied. We shall

sometimes denote this sort of equality of two rector arcs, ab

and CD, by the formula,

A AB = n CD ;

and then it is clear (comp. 125, and the earlier Art. 3) that

we shall also have, by what may be called inversion and

alternation, these two other formulae of arcual equality,
Fig. 36, bis.

r\ BA = A DC
;

A AC = A BD.

(Compare the annexed figure 35, bis.)

164. Conversely, unequal versors ought to be represented (on tlie present

plan) by unequal vector arcs ; and accordingly, we purpose to regard any two

such arcs, as being, for the present purpose, unequal (comp. 2), even when they

agree in quantity, or contain the same number of degrees, provided that they

di^er in direction : which may happen in either of two principal ways, as

follows. For, 1st, they may be opposite arcs of one great circle ; as, for

example, a vector arc ab, and the corresponding revector arc ba ; and so may

represent (162) a versor, ob : oa, and the corre-

sponding reversor, oA : ob, respectively. Or, Ilnd,

the two arcs may belong to different great circles, like

AB and bc in fig. 43 ; in which latter case, they a~

represent two radial quotients (146) in different

planes ; or (comp. 119) two diplanar versors, ob : oa,

and OC : OB ; but it has been shown generally (122),

that di^jlanar quaternions are always unequal : we

consider therefore, here again the arcs, ab and bc, themselves, to be (as has

been said) unequal vectors.

* Some aid to the conception may here be derived from the inspection of fig. 34 [p. 113]; in which

two equal angles are supposed to be traced on the surface of one common desk. Or the four lines oa,

OB, DC, OD, of fig. 35, may now be conceived to be equally long ; or to be cut by a circle with o for

centre as in the modification of that figure, which is given in Article 163, a little lower down.
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165. In this manner, then, we may be led (comp. 122) to regard the

conception of a plane^ or of the position of a great circle on the unit sphere, as

entering, essentially, in general,* into the conception of a vector-arc, considered

as the representative of a versor (162). But even without expressly referring to

versors, we may see that if, in fig. 43, we suppose that b is the middle point

of an arc aa' of a great circle, so that in a recent notation (163) we may

establish the arcual equation,

n AB = A BA',

we ought then (comp. 105) not to write also^

n AB = n BC ;

because the two co-initial arcs, ba' and bc, which terminate differently, must be

considered (comp. 2) to be, as vector-arcs, unequal. On the other hand, if we

should refuse to admit (as in 163) that any two complanar arcs, if equally long,

and similarly (not oppositely) directed, like ab and cd in the recent fig. 35, his,

are equal vectors^ we could not usefully speak of equality between vector-arcs as

existing under any circumstances. We are then thus led again to include,

generally, the conception of a plane, or of one great circle as distinguished from

another, as an element in the conception of a Vector-Arc. And hence an

equation between tivo such arcs must in general be conceived to include two

relations of co-arcuality. For example, the equation n ab = a cd, of Art. 163,

includes generally, as a. part of its signification, the assertion (comp. 123) that

the four points a, b, c, d belong to one common great circle of the unit-sphere;

or that each of the two points, c and d, is co-arcual with the two other points,

a and B.

166. There is, however, a remarkable ease of exception, in which two vector

arcs may be said to be equal, although situated in different planes : namely,

when they are both great semicircles. In fact, upon the present plan, every

great semicircle, aa', considered as a vector arc, represents an inversor (153)

or it represents negative unity (oa' :0A = -a:a = -l), considered as one limit

of a versor ; but we have seen (159) that such a versor has in general an inde-

terminate plane. Accordingly, whereas the initial andfinal pointsy or (comp. 1)

the origin a and the term b, of a vector arc ab, are in general sufficient to

determine the plane of that arc, considered as the shortest or the most direct

path (comp. 112, 128) from the one point to the other on the sphere; in the

particular case when one of the two given points is diametrically opposite to

* We say, in general ; for it will soon be seen that there is a sense in which all great semicircles,

considered as vector arcs, may he said to he equal to each other.

Hamii-ton's Elemknts of Quaternions, U
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the other, as a! to a, the direction of this path becomes, on the contrary, inde-

terminate. If then we only attend to the effect produced^ in the way of change

ofposition of a pointy by a conceived vection (or motion) upon the sphere, we are

permitted to say that all great semicircles are equal vector arcs ; each serving

simply, in the present view, to transport a point from one position to the

opposite; and thereby to reverse (like the factor - 1, of which it is here the

representative) the direction of the radius which is drawn to that point of the

unit sphere.

(1.) The equation, nAA'=ABB',

in which it is here supposed that a' is opposite to a, and b' to b, satisfies

evidently the general conditions of co-arcuality (165) ; because the/owr points

aba'b' are all on one great circle. It is evident that the same arcual equation

admits (as in 163) of inversion and alternation ; so that

A a'a = n b'b, and n ab = n a''b'.

(2.) We may also say (comp. 2) that all null arcs are equal, as producing

no efect on the position of a point upon the sphere; and thus may write

generally,

A aa = A bb = 0,

with the alternate equation, or identity, n ab = a ab.

(3.) Every such null vector arc aa is a representative, on the present plan,

of the other unit scalar, namely positive unity, considered as another limit of a

versor (153) ; and its plane is again indeterminate (159), unless some law be

given, according to which the arcual vection may be conceived to begin, from a

given point a, to an indefinitely near point b upon the sphere.

167. The principal use of Vector Arcs, in the present theory, is to assist

in representing, and (so to speak) in constructing, by means of a Spherical

Triangle, the Multiplication and Division of any two Biplanar Versors (comp.

119, 164). In fact, any two such versors of quaternions (156), considered as

radial quotients (152), can easily be reduced (by the general process of Art.

120) to the forms,

g' = j3 : a = OB : OA, / == y : /3 = oc : ob,

where a, b, o are corners of such a triangle on the unit sphere ; and then (by

107), the former quotient multiplied by the latter will give for product

:

q\ q = y : a = OG: OA.

If then (on the plan of Art. 1) any tivo successive arcs, as ab and bc in fig. 43,

be called (in relation to each other) rector and provector ; while that third arc
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AC, which is drawn from the initial point of the first to the final point of the

second, shall be called (on the same plan) the transvector : we may now say

that in the multiplication of any one versor (of a quaternion) by any other, if

the multiplicand* q be represented (162) by a vector-arc ab, and if the multiplier

/ be in like manner represented by a provector-arc bc, which mode of repre-

sentation is always possible, by what has been already shown, then the product

q' . q, or q'q, is represented, at the same time, by the transvector-arc ac corre-

sponding.

168. One of the most remarkable consequences of this comtruction of the

multiplication ofversors is the following: that the value of the product oftuo

diplanar versors (164) depends upon the order of the factoids ; or that q'q and qq'

are unequal, unless / be complanar (119) with q. For let aa' and cc' be any

two arcs of great circles, in different planes, bisecting each other in the point b,

as fig. 43 is designed to suggest ; so that we have the two arcual equations

(163),
A ab = r. ba', and n bc = n c'b

;

then one or other of the two following alternatives will hold good. Either,

1st, the two mutually bisecting arcs will both be semicircles, in which case the

tico new ares, ac and c'a', will indeed both belong to one great circle, namely

to that of which b is a pole, but will have opposite directions therein ; because,

in this case, a! and c' will be diametrically opposite to a and o, and therefore

(by 166, (1.) ) the equation

r. AC = n aV,
but not the equation

n AC = n c'a',.

will be satisfied. Or, Ilnd, the arcs aa' and cc', which are supposed to bisect

each other in b, will not both be semicircles, even if one of them happen to be

such ; and in this case, the arcs ac, c'a! will belong to two distinct great circles,

so that they will be diplanar, and therefore unequal, when considered as

vector's. (Compare the 1st and Ilnd cases of Art. 164.) In each case, therefore,

AC and cV are unequal vector arcs ; but the former has been seen (167) to

represent the product q'q ; and the latter represents, in like manner, the other

product, qq', of the same two versors taken in the opposite order, because it is

the neiv transvector arc, when c'b (= bc) is treated as the new vector arc, and

BA (= ab) as the new provector arc, as is indicated by the curved arrows in

* Here, as in 107, and elsewhere, M^e write the symbol of the multiplier towards the left-hand, and
that of the multiplicand towards the right.

V 2
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fig. 43. The two products^ qq and qq, are therefore themselves unequal, as

above asserted, under the supposed condition of diplanarity

.

169. On the other hand, when the two factors, q and ([ , are complanar

versors, it is easy to prove, in several different ways, that their products, q'q

and qq', are equal, as in algebra. Thus we may conceive that the arc cc', in

fig. 43, is made to turn round its middle point b, until the spherical angle cba'

vanishes ; and then the two netc transvector-arcs, AC and c'a', will evidently

become not only complanar but equal, in the sense of Art. 163, as being still

equally long, and being noio similarly directed. Or, in fig. 35, bis, of the last

cited Article, we may conceive a point e, bisecting the arc bc, and therefore

also the arc ad, which is commedial therewith (comp. Art. 2, and the second

figure 3 of that Article) ; and then, if we represent the one versor q by either

of the two equal arcs, ae, ed, we may at the same time represent the other

versor ^ by either of the two other equal arcs, ec, be ; so that the one product,

q'q, will be represented by the arc ac, and the other product, q^, by the equal

arc bd. Or, without reference to vector arcs, we may suppose that the two

factors are,

g' = /3 :a = ob:oa, $''= y :a = oc :oa,

DA, OB, DC being any three complanar and equally long right lines (see again

fig. 35, bis) ; for thus we have only to determine a fourth line, S or od, of the

same length, and in the same plane, which shall satisfy the equation

S : 7 = /3 : a (117), and therefore also (by 125) the alternate equation,

^ : ^ = 7 : a ; and it will then immediately follow* (by 107) that

pa. a y a

We may therefore infer, for any tioo versors of quaternions, q and q', the two

following reciprocal relations

:

I...q'q = qq', if /||k (123) ;

IL . .iiq'q = qq', then q'\\\q{ie8);

convertibility offactors (as regards their places in the product) being thus at

once a consequence and a. proof oi complanarity.

170. In the 1st case of Art. 168, i\i.e factors q and q' are both right versors

(153) ; and because we have seen that then their two products, q'q and qq', are

It IS evident that, in this last process of reasoning, we make no use of the supposed equality of
lengths of the four lines compared; so that we might prove, in exactly the same way, that

q q - qq' ii q' \\\q {I2'i), without assuming that these two complanar factors, or quaternions, q and
q', are versort.
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versors represented by equally long but oppositely directed arcs of one great

circle, as in the 1st ease of 164, it follows (comp. 162) that these two products

are at once reciprocal (134), and conjugate (137), to each other; or tliat they

are related as mrsor and reversor (158). We may therefore write, generally,

I. . .qq'= Kq'q, and II. . . qq' = -7-,

if q and / be ani/ two right versors ; because the multiplication of any two

such versors, in two opposite orders, may always be represented or constructed

by a figure such as that lately numbered 43, in which the bisecting arcs aa'

and cc' are semicircles. The Ilnd formula may also be thus written (comp.

135, 154)

:

III. . .Uq'=-1, and q'^ = - 1, then q'q.qq' ^+1;

and under this form it evidently agrees with ordinary algebra, because it

expresses that, under the supposed conditions,

^q.qgf = q\q';

but it will be found that this last equation is not an identity in the general

theory of quaternions.

171. If the two bisecting semicircles cross each other at right angles, the

conjugate products are represented by two quadrants, oppositely turned, of one

great circle. It follows that if tivo right versors, in two mutually rectangular

planes, he multiplied together in two opposite orders, the two resulting products

will be two opposite right versors, in a third plane, rectangular to the twoformer ;

or in symbols, that

ii q"^ =- 1, (f^
= - 1, and Ax . / ± Ax . q,

then (/?)^ = (?/)^ = - 1, q'q = -qq:\

and Ax . ^q ± Ax . q, Ax . q'q 1. Ax . cf.

In this case, therefore, we have what would be in algebra a paradox, namely

the equation,

{q'qy = - q\ q\

if q and (f be any two right versors, in tico rectangular planes ; but we see that

this result is not more paradoxical, in appearance, than the equation

^q = - qq,

which exists, under the same conditions. And when we come to examine what,

in the last analysis, may be said to be the meaning of this last equation, we

find it to be simply this : that any two quadrantal or right rotations, in planes
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perpendicular to each other, compound themselves into a third right rotation, as

their resultant, in a plane perpendicular to each of them : and that this third or

resultant rotation has one or other of tivo opposite directions, according to the

order in which tlie two component rotations are taken, so that one shall be

successive to the other.

172. We propose to return, in the next section, to the consideration of

such a System of Right Versors as that which we have here briefly touched

upon : but desire at present to remark (comp. 167) that a spherical triangle

ABC may serve to construct, by means of representative arcs (162), not only the

multiplication, but also the division, of any one of two diplanar versors (or

radial quotients) by the other. In fact, we have only to conceive (comp.

fig. 43) that the vector arc ab represents a given divisor, say q, oi (5: a, and

that the transvector arc ac (167) represents a given dividend, suppose q'% or

y : a; for then the provector arc bc (comp. again 167) will represent, on the

same plan, the quotient of these ttvo versors, namely q'': q, or -y : j3 (106), or the

versor lately called q'; since we have generally, by 106, 107, 120, for

quaternions, as in algebra, the two identities

:

{q'':q).q-q''; q'qiq-^.

173. It is however to be observed that, for reasons already assigned, we

must not employ, for diplanar versors, such an equation as q . {q'': q) = <?";

because we have found (168) that, for such versors, the ordinary algebraic

identify/, qq' = q'q, ceases to be true. In fact by 169, we may now establish

the two converse formulae :

1. .. q{q'':q)=q'\ if g'' Hk (123) ;

11. ..Uq{q^^:q)=q-, then q^^lWq.

Accordingly, in fig. 43, if q, q', q'^ be still represented by the arcs ab, bc,

AC, the product q {q": q), or qq', is not represented by ac, but by the different

arc cV (168), which as a vector arc has been seen to be unequal thereto:

although it is true that these two last arcs, ac and c'a', are always equally

long, and therefore subtend equal angles at the centre o of the unit sphere ; so

that we may write, generally, for any two versors (or indeed for any two

quaternions),* q and ^', the formula,

.

Lq{f:q)^Lf.
* It -will soon bo seen [see 191] that several of the fonnnlee of the present section, respecting the

multiplication and division of versors, considered as radial quotients (151), require little or no modi-

fication, in the passage to the coiTesponding operations on quaternions, considered as general quotients

of vectors (112).
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174. Another mode of Representation of Versors, or rather two such new

modes, although intimately connected with each other, may be briefly noticed

here.

1st. We may consider the angle aob, at the centre o of the unit-sphere, when

conceived to have not only a definite quantity, but also a determined j9/««<? (110),

and a given direction therein (as indicated by one of the curved arrows in

fig. 39 [p. 131], or by the arrow in fig. 33 [p. Ill]), as being what may be called

by analogy a Vector-Angle ; and may say that it represents, or that it is the

Representative Angle of, the Versor ob : oa, where oa, ob are radii of the unit-

sphere.

Ilnd. Or we may replace this rectilinear angle aob at the centre, by the

equal Spherical Angle ac'b, at what may be called the Positive

Pole of the representative arc ab ; so that c'a and c'b are quad-

rants ; and the rotation, at this pole c\ from the first of these two

quadrants to the second (as seen from a point outside the sphere),

has the direction which has been selected (111, 127) for the

positive one, as indicated in the annexed figure 44 : and then

we may consider this spherical angle as a new Angular Repre-

sentative of the satne versor q, or ob : oa, as before.

175. Conceive now that after employing a first spherical triangle abc, to

construct (as in 167) the multiplication of any one given versor q, by any other

given versor q', we form a second or polar triangle, of which the corners a', b', c'

shall be respectively (in the sense just stated) the posi-

tive poles of the three successive sides, bc, ca, ab, of the

former triangle ; and that then we pass to a third tri-

angle a'b"c', as part of the same lune b'b" with the

second, by taking for b" the point diametrically opposite

to b' ; so that b" shall be the negative pole of the arc

CA, or the positive pole of what was lately called (167)

the transvecfor-arc AC : also let c" be, in like manner,

the point opposite to c' on the unit sphere. Then we

may not only write (comp. 129),

Ax . q = oc'. Ax . q' = oa', Ax . q'q = ob",

but shall also have the equations, Fig. 45.

iq = b"c'a', z ?' = c'a'b", Z q'q = c"b"a'
;

these three spherical angles, namely the ttco base-angles at c' and a', and the

external vertical angle at b", of the new or third triangle a'b"c', will therefore

I
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represent, respectively, on the plan of 174, II., the multiplicand^ q, the multi»

plier, q\ and the product, q'q. (Compare the annexed figure 45.)

176. Without expressly referring to the former triangle abc, we can

connect this last construction of multiplication ofversors (175) with the general

formula (107), as follows.

Let a and /3 be now conceived to be two unit-tangents* to the sphere at cf,

perpendicular respectively to the two arcs c'b" and n"

c'a', and drawn towards the same sides of those arcs ^ 5/y
as the points a' and b' respectively ; and let two X^t ^^a
other unit-tangents, equal to these, and denoted by / T"

the same letters, be drawn (as in the annexed figure / /

45, bis) at the points b'^ and a', so as to be normal /j7-—/C^

'

there to the same arcs cV aud c'a', and to fall y^\\^i
towards the same sides of them as before. Let also / j-^'^a \^

two other unit-tangents, equal to each other, and / ^'

each denoted by y, be drawn at the two last points p- ^^ j^^^

b" and a', so as to be both perpendicular to the arc

aV, and to fall towards the same side of it as the point c'. Then (comp.

174, II.) the two quotients, j3 : a and y : j3, will be equal to the two versors, q

and g-', which were lately represented (in fig. 45) by the two base angles, at c'

and a', of the spherical triangle a'b"c' ; the product, q'q, of these two versors,

is therefore (by 107) equal to the third quotient, y.a', and consequently it is

represented, as before, by the external vertical angle c"b"a' of the same triangle,

which is evidently equal in quantity to the angle of this third quotient, and

has the same axis ob", and the same direction of rotation, as the arrows in fig.

45, his, may assist to show.

177. In each of the two last figures, the internal vertical angle at b" is thus

equal to the Supplement, tt - z <?'?, of the angle of the product ; and it is im-

portant to observe that the corresponding rotation at the vertex ^",from the

side b"a' to the side b'V, or (as we may briefly express it) from the point a' to

the point c', is positive ; a result which is easily seen to be a general one, by the

reasoning of the foregoing Article.! We may then infer, generally, that

when the multiplication of any two versors is constructed by a spherical triangle,

of which the two base angles represent (as in the two last Articles) the factors,

* By an unit tangent is here meant simply an unit line (or unit vector, 129) so drawn as to be

tangential to the unit-sphere, and to have its origin, or its initial point (I), on the surface of that

sphere, and not (as we have usually supposed) at the centre thereof.

t If a person be supposed to stand on the sphere at b", and to look towards the arc a'c', it would
appear to him to have a right-handed direction, which is the one here adopted as positive (127).
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while the external vertical angle represents the product, then the rotation round

the axis (ob") of that product q^q, from the axis (oa') of the multiplier q', to the

axis (oc') of the multiplicand q, is positive : whence it follows that the rotation

round the axis Ax . q' of the multiplier, from the axis Ax . q of the multipli-

cand, to the axis Ax . q'q of the product, is also positive. Or, to express the

same thing more fully, since the only rotations hitherto considered have heen

plane ones (as in 128, &c.), we may say that if the two latter axes he projected

on a plane perpendicular to the former^ so as still to have a common origin o,

then the rotation round Ax . ((^from the projection of Ax . q to the projection

of Ax . qq, will he directed (with our conventions) towards the right hand.

178. We have therefore thus a neiv mode of geometricalhj exhibiting the

inequality of the two products^ q'q and qq'y of two diplanar versors (168), when

taken as factors in two different orders. For this purpose, let

Ax . g = OP, Ax . q' = OQ, Ax . q'q = or
;

and prolong to some point s the arc pr of a great circle on the unit sphere.

Then, for the spherical triangle pqr, hy principles lately established, we shall

have (comp. 175) the following values of the two internal base angles at p

and Q, and of the external vertical angle at r :

RPQ = Lq'i PQR = /. q ', SRQ = Lqq]

and the rotation at q, from the side qp to the side qr will be right-handed.

Ijet fall an arcual perpendicular, rt, from the vertex r on

the base pq, and prolong this perpendicular to r', in such a

manner as to have

r> RT = A tr'
;

also prolong pr' to some point s'. We shall then have a

new triangle pqr', which will be a sort of rejlexion (comp.

138) of the old one with respect to their common base pq;

and this new triangle will serve to construct the neio product

j

qq. For the rotation at p from pq to pr' will be right-

handed, as it ought to be ; and we shall have the equations,

qpr' = Lq; r'qp = Z g-'
; QR's' = iqq' ; or' = Kn.q^

\

so that the new external and spherical angle, qr's', will represent the new versor,

qq\ as the old angle srq represented the old versor, qq, obtained from a different

order of the factors. And although, no doubt, these two angles, at u and r',

Hamilton's Elements of Quaternions. X



154 ELEMENTS OF aUATERNIONS. [II. i. § 9.

are always equal in quantity^ so that we may establish (comp. 173) the general

formula,

Lq'q = L qq\

yet as vector angles (174), and therefore as representatives ofversors, they must

be considered to be unequal : because they have different planes, namely, the

tangent planes to the sphere at the tico vertices r and r' ; or the two planes

respectively parallel to these, which are drawn through the centre o.

179. Division of Versors (comp. 172) can be constructed by means of Re-

presentative Angles (174), as well as by rejyresentative arcs (162). Thus to

divide q' by q, or rather to represent such division geometrically, on a plan

entirely similar to that last employed for multiplication, we have only to

determine the two points p and r, in fig. 46, by the two conditions,

OP = Ax . g-, OR = Ax . (^\

and then to find a third point q by the two angular equations,

RPQ = Z g, QRP = 77 - z <i\

the rotation round p from pr towards pq being positive ; after which we shall

have,

Ax . (/' : g) = OQ ; l [f : q) = pqr.

(1.) Instead of conceiving, in fig. 46, that the dotted line rtr', which con-

nects the vertices of the two triangles, with pq for their common base (178),

is an arc of a great circle, perpendicularly bisected by that base, we may

imagine it to be an arc of a small circle, described with the point p for its

positive pole (comp. 174, II.). And then we may say that the passage (comp.

173) from the versor q'\ or q'q, to the unequal versor q {q''.q), or qq, is geo-

metrically performed by a Conical Rotation of the Axis Ax . q'\ round the axis

Ax . q, through an angle = 2 iq, without any [quantitative) change of the angle L cf'',

so that we have, as before, the general formula (comp. again 173),

Lq{q^'iq)=Lf-

(2.) Or if we prefer to employ the construction of multiplication and

division by representative arcs, which fig. 43 [p. 144] was designed to illus-

trate, and conceive that a new point c" is determined in that figure by the

condition a a'c" = n c'a.', we may then say that in the passage from the versor

q", which is represented by ac, to the versor q {q" : q), represented by c'a' or by

aV, the representative arc of q" is made to move, without change of length, so as
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to preserve a constant inclination* to the representative arc ab of q, while its

initial point describes the double of that arc ab, in passing from A to a'.

(3.) It may be seen, by these few examples, that if, even independently

of some neiv characteristics of operation, such as K and U, netv combinations of

old symbols, such as q[q":q), occur in the present Calculus, which are not

wanted in algebra, they admit for the most part of geometrical interpretations,

of an easy and interesting kind ; and in fact represent conceptions, which can-

not well be dispensed with, and which it is useful to be able to express, with

so much simplicity and conciseness. (Compare the remarks in Art. 1 61 ; and

the sub-articles to 132, 145.)

180. In connexion with the construction indicated by the two figures 45,

it may be liere remarked, that if abc be any spherical triangle, and if a', b', c'

be (as in 175) the positive poles of its three successive sides, bc, ca, ab, then the

rotation (comp. 177, 179) round a' from b' to c\ or that round b' from c to a',

&c., ia positive. The easiest way, perhaps, of seeing the truth of this assertion

is to conceive that if the rotation round a from b to c be not already positive,

we make it such, by passing to the diametrically opposite triangle on the sphere^

which will not cliauge the poles a\ b', c'. Assuming then that these poles

are thus the near ones to the corresponding corners of the given triangle, we

arrive without any difficulty at the conclusion stated above : which has been

virtually employed in our construction of multiplication (and division) of versors,

by means of Representative Angles (175, 176) ; and whicli may be otherwise

justified (as before), by the consideration of the unit-tangents of fig. 45, bis.

(1.) Let then a, /3, 7 be any three given unit vectors, such that the rotation

round the first, from the second to the third, is positive (in the sense of Art.

177) ; and let a', /3', 7' be three other unit vectors, derived from these by the

equations,

a'- Ax . (7 : j3), i3'= Ax . (a : 7), 7'= Ax . (/3 : a)

;

then the rotation round a, from j3' to 7', will be positive also ; and we shall

have the converse formulae,

a = Ax . (/ :i3'), /3 = Ax . (a' : 7'), 7 - Ax. (j3': a').

(2.) If the rotation round a from j3 to 7 were given to be negative, a, /3', 7'

being still deduced from those three vectors by the same three equations as

before, then the sigiis of a, /3, 7 would all require to be changed, in the three

* 111 a manner analogous to the motion of the equator on the ecliptic, by luni-solar precession, in

astl•OllOInJ^

X 2



156 ELEMENTS OF QUATERNIONS. [11. i. §§ 9, 10.

la^t (or reciprocal) formulsB ; but the rotation round a, from j3' to y\ would

still be positive.

(3.) Before closing this section, it may be briefly noticed, that it is some-

times convenient, from motives of analogy (comp. Art. 5), to speak of the

Transvector-Arc (167), which has been seen to represent a product of two

versors, as being the Arcual Sum of the two successive vector-arcs, which

represent (on the same plan) the factors ; Provector being still said to he added

to Vector : but the Order of such Addition of Diplanar Arcs being not now

indifferent (168), as the corresponding order had been early found (in 7) to

be, when the vectors to be added were right lines. [Thus in fig. 43, a bc

+ A AB = A AC and A ba' + a c'b = a c'a'. But a ba' = a ab and a c'b = a bc,

consequently a ab + a bc = a c'a'. If a and j3 are any two vector arcs, and if

X is any scalar, x [a ±^) is not equal to xa ± x^. Compare 14, and notice

that the property there proved depends on the possibility of constructing

similar plane triangles of different sizes.]

(4.) We may also speak occasionally, by an extension of the same analogy,

of the External Vertical Angle of a spherical triangle, as being the Spherical

Sum of the two Base Angles of that triangle, taken in a suitable order of sum-

mation (comp. fig. 46) ; the Angle which represents (174) the Multiplier being

then said to be added (as a sort of Angular Provector) to that other Vector-

Angle which represents the Multiplicand', whilst what is here called the sum

of these two angles (and is, with respect to them, a species of Transvector-

Angle) represents, as has been proved, the Product.

(5.) This conception of angular transvection becomes perhaps a little more

clear, when (on the plan of 174, I.) we assume the centre o as the common

vertex of three angles aob, boc, aoc, situated generally in three different planes.

For then we may conceive a revolving radius to be either carried by two

successive angular motions, from oa to ob, and thence to oc; or to be trans-

ported immediately, by one such motion, from the first to the third position.

(6.) Finally, as regards the construction indicated by fig. 45, his, in which

tangents instead of radii were employed, it may be well to remark distinctly

here, that a^b^'c', in that figure, may be any given spherical triangle, for which

the rotation round ^" from a' to c' is, positive (177) ; and that then, if the two

factors q and q', be defined to be the two versors, of which the internal angles at

c' and a" are (in the sense of 174, II.) the representatives, the reasonings of

Art. 176 will prove, without necessarily referring, even in thought, to any other

triangle (such as abc), that the external angle at b" is (in the same sense) the

representative of the product, q'q, as before.
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SECTION 10.

On a System ofThree Right ¥ersors, in Three Rectangular

Planes; and on the liaws of the fSymbols, i, j, k.

181. Suppose that oi, oj, ok are any three given and co-initial but

rectangular unit-lines, the rotation round the first from tlie second to the

third being positive ; and let oi', oj', ok' be the three unit-vectors respectively

opposite to these, so that

01 = - 01, OJ = - OJ, OK = - OK.

Let the three new symbols i,J, k denote a system (comp. 172) of three right

versors, in three mutually rectangular planes, with the

three given lines for their respective axes ; so that

Ax . i = 01, Ax .j = oj, Ax . k = ok,

and
i = OK : oj, y = 01 : ok, /c = oj : oi.

as figure 47 may serve to illustrate. We shall then

have these other expressions for the same three

versors

:

i = oj' : ok = ok' : oj' = oj : ok'

Fig. 47.

J = OK : 01 = 01 : OK = ok : oi
;

k = oi' : OJ = oj' : oi' = oi : oj';

while the three respectively opposite versors may be thus expressed :

- i = OJ : ok = ok' : oj = oj' : ok' = ok : oj'
;

-J = OK : 01 = oi' : ok = ok' : oi' = oi : ok';

- k = 01 : OJ = oj' : oi = oi' : oj' = oj : oi'.

And from the comparison of these different expressions several important

symbolical consequences follow, which it will be worth while to enunciate

separately here, although some of them are virtually included in the results

of former sections.

182. In thefrst place, since

i^ = (oj': ok) . (ok : oj) = oj': oj, &c.,

we deduce (comp. 148) the following equal values for the squares of the new
symbols

:

I...i^=-1; /=-l; k' = -l;
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as might indeed have been at once inferred (154), from the circumstance

that the three radial quotients, (146), denoted here by «,y, k, are all right

versors (181).

In the second place, since

i .j = (oj : ok') . (ok' : oi) = oj : oi, &o.,

we have the following values for the products of the same three symbols, or

versors, when taken two by two, and in a certain order of succession (comp.

168, 171)

:

II. . . ij =k', Jk = i; ki=j.

But in the third place (comp. again 171), since

y .
^ = (oi : ok) . (ok : oj) = oi : oj, &c.,

we have these other and contrasted formulae, for the binary products of the

same three right versors, when taken as factors with an opposite order :

III. . . ji = - k; kj = -i; ik = -/.

Hence, while the square of each of the three right versors, denoted by these

three new symbols, ijk, is equal (154) to negative unity, the

product of any tico of them is equal either to the third itself,

or to the opposite (171) of that third versor, according as the

multiplier precedes or follows the multiplicand, in the cyclical

succession,

hJi h hj\ • • • Fig. 4.1, bis.

which the annexed figure 47, bis, may give some help towards remembering.

(1.) To connect such multiplications of i, j, k with the theory of repre-

sentative arcs (162), and of representative angles (174), we may regard any

one of the four quadrantal arcs, jk, kj', j'k', k'j, in fig. 47, or any one of the

four spherical right angles, jik, kij', j'ik', k'ij, which those arcs subtend at

their common pole i, as representing the versor i ; and similarly for j and k,

with the introduction of the point i' opposite to i, which is to be conceived as

being at the back of the figure.

(2.) The squaring of i, or the equation *^ = - 1, comes thus to be geome-

trically constructed by the doubling (comp. Arts. 148, 154, and figs. 41, 42) of

an arc, or of an angle. Thus, we may conceive the quadrant kj' to be added

to the equal arc jk, their sum being the great semicircle jj', which (by 166)

represents an inversor (153), or negative ^<«^Yy considered as & factor. Or we

may add the right angle kij' to the equal angle jik, and so obtain a rotation
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through ttvo right angles at the pole i, or at the centre o ; which rotation is

equivalent (comp. 154, 174) to an inversion of direction, or to a passage from

the radius oj, to the opposite radius o/.

(3.) The multiplication oij by i, or the equation ij = Ic, may in like manner

be arcually constructed, by the addition of k'j, as a provector-arc (167), to ik'

as a vector-arc (162), giving u, which is a representative of h, as the transvectov'

arc, or arcual-sum (180, (3.)). Or the same multiplication may be angularly

constructed, with the help of the spherical triangle ijk ; in which the hase-

angles at i and J represent respectively the multiplier, i, and the multiplicand,

j, the rotation round i from j to k being positive : while their spherical sum

(180, (4.)), or the external vertical angle at k (comp. 175, 176), represents the

same product, k, as before.

(4.) The contrasted multiplication of i by j, or of j into* i, may in like

manner be constructed, or geometrically represented, either by the addition of

the arc ki, as a neio provector, to the arc jk as a new vector, which new process

gives Ji (instead of u) as the new transvector ; or with the aid of the new

triangle ijk' (comp. figs. 46, 47), in which the rotation round i from j to the

new vertex k' is negative, so that the angle at i represents now the multiplicand,

and the resulting angle at the new pole k' represents the new and opposite

product, ji = - k.

183. Since we have thus ji = - ij (as we had q^q = - qq' in 171), we see

that the laws of combination of the new symbols, i, j, k, are not in all respects the

same as the corresponding laws in algebra ; since the Commutative Property of

Multiplication, or the convertibility (169) of the places of the factors without

change of value of the product, does not here hold good : which arises (168)

from the circumstance, that the factors to be combined are here diplanar

versors (181). It is therefore important to observe, that there is a respect in

which the laws ofi,j, k agree with usual and algebraic laws: namely, in the

Associative Property of Multiplication ; or in the property tliat the new symbols

always obey the associative formula (comp. 9),

whichever of them may be substituted for i, for k, and for X ; in virtue of

which equality of values we may omit the point, in any such symbol of a

* A multiplicand is said to be multiplied 5y the multiplier ; while, on the other hand, a multiplier

ia said to he multiplied into the multiplicand : a distinction of this sort between the two factors being

necessary, as we have seen, for quaternions, although it is not needed for algebra.

I
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ternary product (whether of equal or of unequal factors), and write it simply

as ticX. In particular we have thus,

i .jk = i .i = t^ = - 1; ij .k = k .h - k^ = -1]
or briefly,

ijk = - 1.

We may, therefore, by 182, establish the following important Formula :

«2 =f = k'' = ijk = -l; (A)

to which we shall occasionally refer, as to " Formula A," and which we shall

find to contain (virtually) all the laws of the symbols ijk, and therefore to be a

sufficient symbolical basis for the whole Calculus of Quaternions :* because it

will be shown that every quaternion can be reduced to the Quadrinomial Form,

q = w + ix +jy + kz,

where w, x, y, z compose a system of four scalars, while e, /, k are the same

three right versors as above. [See 221.]

(1.) A direct proof of the equation, ijk = - 1, may be derived from the

definitions of the symbols in Art. 181 , In fact, we have only to remember

that those definitions were seen to give,

i = o/ : OK, y = OK : oi', ^ = oi' : oj

;

and to observe that, by the general formula of multiplication (107), whatever

four lines may be denoted by a, j3, y, S, we have always,

8 yg^g 2 = ^=^ 2 = ^1 @.
7j3a y a a/3a y/Ba'

or briefly, as in algebra,

i 1 ^ = ?
7 /3 a o

the point being thus omitted without danger of confusion : so that

ijk = oj' : oj = - 1, as before.

* This formula (A) was accordingly made the basis of that Calculus in the first communication on
the subject, by the present writer, to the Eoyal Irish Academy in 1843 ; and the letters t, j, k,

continued to be, for some time, the only peculiar symbols of the Calculus in question. But it was
gradually found to be useful to incorporate with these a few other notations (such as K and U, &c.),

for representing Operations on Quaternions. It was also thought to be instructive to establish the

principles of that Calculus, on a more geometrical (or less exclusively symbolical) /otmdation than at

first ; which was accordingly afterwards done, in the volume entitled : Lectures on Quaternions

(Dublin, 1853) ; and is again attempted in the present work, although with many differences in the

adopted plan of exposition, and in the applications brought forward, or suppressed.



Aets. 183, 184.] LA.WS OF THE SYMBOLS I, J, K. 161

Similarly, we have these two other ternary products

:

jici = (ok' : oi) (oi : oj') (oj' : ok) = ok' : ok = - 1
;

kij = (oi' : oj) (oj : ok') (ok' : oi) = oi' : oi = - 1.

(2.) On the other hand,

kji = (oj : oi) (oi : ok) (ok : oj) = oj : oj = + 1

;

and in like manner,
ikj = + 1, and jik = + 1.

(3.) The equations in 182 give also these other ternary products, in which

the law of association offactors is still obeyed :

i . ij = ik = -j = «7 = a . J, iij = -y

;

i .j'i = i . - k = - ik -j- ki = ij . «, iji = +J',

i'JJ =i.-l = -i = kj = ij.j, ijj = - «;

with others deducible from these, by mere cyclical permutation of the letters,

on the plan illustrated by fig. 47, bis.

(4.) In general, if the Associative Law of Combination exist for any three

symbols whatever of a given class, and for a given mode of combination, as for

addition of lines in Art. 9, or for multiplication of ijk in the present Article,

the same km exists for any four (or more) symbols of the same class, and

combinations of the same kind. For example, if each of the four letters *, fc,

X, ju denote some one of the three symbols ^,y, k (but not necessarily the same

one), we have the formula,

(5.) Hence, any multiple (or complex) product of the symbols ijk, in any

manner repeated., but taken in one given order, may be interpreted, with one

definite result, by any mode of association, or of reduction to partial factors,

which can be performed toithout commutation, or change of place of the given

factors. For example, the symbol ijkkji may be interpreted in either of the

two following (among other) ways

:

ij .kk . ji = ij . -ji = i . -j^ .i = ii = - 1 ; ijk . kji = - 1 . 1 = - 1.

184. The formula (a) of 183 includes obviously the three equations (I.) of

182. To show that it includes also the six other equations, (II.), (III-)> of

the last cited Article, we may observe that it gives, with the help of the

Hamilton's Elbmenxs of Quaternions, Y
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associative principle of multiplication (which may be suggested to the memory

by the absence of the j^om^ in th.e symbol ijk)j

ij = - ij . kk = - ij'k .k = + k; jk = - i . ijk = + i

;

ji = J . jk =fk = -k', ik = i . if = tj = -j;

kj= ij . j = if = -i; ki = - ¥'j = - ji" = + j.

And then it is easy to prove, without any reference to geometry, if the foregoing

laws of the symbols be admitted, that we have also,

jki = kij = - 1, kji =jik = ikj = + 1,

as otherwise and geom,etrically shown in recent sub-articles. It may be added

that the mere inspection of the formula (a) is sufficient to show that the three*

square roots of negative unity ^ denoted in it by e,/, k, cannot be subject to all the

ordinary rules of algebra : because that formula gives, at sight,

«yF = (- I)' = - 1 = - [ijkY ;

the non-commutative character (183), of the multiplication of such roots among

themselves, being thus put in evidence.

[Conversely if three symbols i, j, and k satisfy the equations

j'k + kJ = 0, ki + ik = 0, iJ +Ji = ;

and if the associative property hold good,

^^ y = i.ij = - i. ji = -ij .i--j . i\

i^ is therefore commutative in multiplication with i, j, and k and with pro-

ducts formed from them, and cannot be distinguished from a scalar. Assum-

ing therefore that the squares of the symbols are scalars, and that the symbols

have been multiplied by suitable numerical coefficients so that their squares

are equal, i^ =j'^ = B = P.

Again i .jk = -i.kj= kij = - kji -jki = -jik = Q suppose,

and iQ = i . ijk - P .jk =jki . i = Qi.

The product Q is likewise commutative with «, j, and k, and is indistinguish-

able from a scalar. Also Q^ = - ijk . kji = - F^, so ii F = - 1, Q = ± 1.

* It is evident that — i, —J, — k are also, on the same principles, values of the symbol V — 1

;

because they also are riffht versors (153) ; or because (- q)^ = q^. More generally (comp. a Note to

page 133), iix,y,z be any three scalars which satisfy the condition x^ + y^ + 2^ = 1, it will be proved,

at a later stage, that

(»a;+yy + Ar)2 = -.l.
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Mr. Oliver Heaviside takes P = + l hut i=jk,j = ki and k = ij, and

consequently i'^-j=j but i.ij = ik = -j, and in his system the associative

property does not hold, or the product of three symbols has no definite mean-

ing (see Art. 25 of a paper " On the Forces in the Electro-magnetic Field,"

Trans. Eoy. Soc. A., 1892).

Grassmann supposes P = 0, and his progressive multiplication is associa-

tive, but his regressive multiplication is not. Q is taken as a scalar differing

from zero. Hamilton (p. 61 of the preface to the "Lectures on Quaternions")

refers to the octaves of Messrs. J. T. Graves and Arthur Cayley as not obey-

ing the associative principle. See Prof. Cayley's paper " On the 8-square

Imaginaries," Am. Jour, of Math., 1881. When the associative principle

does not hold, a distinct operation of grouping must be combined with multi-

plication to render a product definite.]

SECTION 11.

On the Tensor of a Vector, or of a ituaternion ; and on the

Product or iinotient of any two itnaternions.

185. Having now sufficiently availed ourselves, in the two last sections,

of the conceptions (alluded to, so early as in the First Article of these Ele-

ments) of a vector-arc (162), and of a vector-angle (174) in illustration* of the

laws of multiplication and division of versors of quaternions; we propose to

return to that use of the word, Vectoii, with wliich alone the First Book, and

the first eight sections of this First Chapter of the Second Book, have been

concerned: and shall therefore henceforth mean again, exclusivelyy by that

word " vector," a Directed Right Line (as in 1). And because we have already

considered and expressed the Direction of any such line, by introducing the

conception and notation (155) of the Unit-Vector, Uo, which has the same

direction with the line a, and which we have proposed (156) to call the Versor

of that Vector, a ; we now propose to consider and express the Length of the

same line a, by introducing the new name Tensor, and the new 8ymbol,f Ta

;

* One of the chief uses of such vectors, in connexion with those laws, has heen to illustrate the

non-commutative property (168) of multiplication of versors, by exhibiting a corresponding property of

what has been called, by analogy to the earlier operation of the same kind on linear vectors (5), the

addition of arcs and angles on a sphere. Compare 180, (3.), (4.).

t Compare the Note to Art. 155.

Y 2
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which latter symbol we shall read, as the Tensor of the Vector a : and shall

dejine it to be, or to denote, the Number (comp. again 155) ichich represents the

Length of that line a, by expressing the Eatio which that length bears to some

assumed standard, or Unit (128).

186. To connect more closely these two conceptions, of the versor and the

tensor of a vector, we may remember that when we employed (in 155) the

letter « as a temporary symbol for the number which thus expresses the

length of the line a, we had the equation, TJa = a: a, as one form of the

definition of the unit-vector denoted by TJa. We might therefore have written

also these two other forms of equation (comp. 15, 16),

a = a . TJa, a = a : TJa,

to express the dependence of the vector, a, and of the scalar, a, on each other,

and on what has been called (156) the versor, TJa. For example, with the

construction of fig. 42, bis (comp. 161, (2.)), we may write the three equations,

a = OA : oa', b = OB : ob', c = oc : oc',

if a, b, c be thus the three positive scalars, which denote the lengths of the three

lines, OA, ob, oc ; and these three scalars may then be considered as factors,

or as coefficients (12), by which the three unit-vectors TJa, TJj3, U7, or oa', ob',

oc' (in the cited figure), are to be respectively multiplied (15), in order to

change them into the three other vectors a, j3, 7, or oa, ob, oc, by altering

their lengths, without any cliange in their directions. But such an exclusive

Operation, on the Length (or on the extension) of a line, may be said to be an

Act of Tension ;* as an operation on direction alone may be called (comp. 151)

an act of version. We have then thus a motive for the introduction of the

name. Tensor, as applied to the positive number which (as above) represents the

length of a line. And when the notation Ta (instead of a) is employed for

such a tensor, we see that we may write generally, for amj vector a, the

equations (compare again 15, 16)

:

Ua = a:Ta; Ta = a:Ua; a = Ta .Ua = TJa . Ta.

For example, if a be an unit-vector, so that Ua = a (160), then Ta = 1 ; and

therefore, generally, whatever vector may be denoted by a, we have always,

Tira = l.

* Compare the first Note in page 137.
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For the same reason, whatever quaternion may be denoted by q^ we have always

(comp. again 160) the equation,

T(Ax.g) = l.

(1.) Hence the equation

Tp = l,

where p = op, expresses that the locus of the variable point p is the surface of

the unit sphere (128).

(2.) The equation Tp = Ta expresses that the locus of p is the spheric

surface with o for centre, which passes through the point a.

(3.) On the other hand, for the sphere through o, which has its centre at

A, we have the equation,

T(p-a) = Ta;

which expresses that the lengths of the two lines, ap, ao, are equal.

(4.) More generally, the equation,

T (/, - a) = T (/3 - a),

expresses that the locus of p is the spheric surface through b, which has its

centre at a.

(5.) The equation of the Apollonian* Locus, 145, (8.), (9.), may be written

under either of the two following forms :

T{p- a'a) = «T Go - a) ; T/o = aTa

;

from each of which we shall find ourselves able to pass to the other, at a later

stage, by general Rules of Trans/ormationy without appealing to geometry

(comp. 145, (10.) [and 200 (3.), (4.)]).

(6.) The equation, T (p + a) = T (p - a),

expresses that the locus of p is the plane through o, perpendicular to the line

OA ; because it expresses that if oa' = - oa, then the point p is equally distant

from the two points a and A^ It represents therefore the same locus as the

equation,

^^ = |,ofl32, (1.);

or as the equation.

^ + K^ = 0, of 144, (1.);
a a

or as

U^J = -1, of 161, (7.);

Compare the fii-st Note to page 130.
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or as the simple geometrical formula, p ± a (129). And in fact it will be

found possible, by General Rules of this Calculus, to transform any one of these

five formulae into any other of them ; or into this sixth form,

a

which expresses that the scalar part* of the quaternion - is zero, and therefore
a

that this quaternion is a right quotient (132).

(7.) In like manner, the equation

T(^-/3) = T(^-a)

expresses that the locus of p is the plane which perpendicularly bisects the

line AB ; because it expresses that p is equally distant from the two points

A and B.

(8.) The tensor, Ta, being generally a positive scalar, but vanishing (as a

limit) with a, we have,

Txa = ± xTa, according as ic > or < ;

thus, in particular,

T(-a)=Ta; and TOa = TO = 0.

(9.) That
T (/3 + a) = Tj3 + Ta, if Uj3 = Ua,

but not otherwise (a and /3 being any two actual vectors), will be seen, at a

later stage, to be a symbolical consequence from the rules of the present

Calculus ; but in the mean time it may be geometrically proved, by conceiving

that while a = oa, as usual, we make j3 + a = oc, and therefore j3 = oc - oa = AC

(4) ; for thus we shall see that while, in general, the three points o, a, c are

corners of a triangle, and therefore the length of the side oc is less than the sum

of the lengths of the two other sides oa and ac, the former length becomes,

on the contrary, equal to the latter sum, in the particular case when the

triangle vanishes, by the point a falling on the finite line oc ; in which case, oa

and AC, or a and j3, have one common direction, as the equation Ua = U/3

implies.

(10.) If a and /3 be any actual vectors, and if their versors he unequal

(Ua not = U/3), then

T (/3 + a) < Tj3 + Ta

;

an inequality which results at once from the consideration of the recent

* Compare the Note to page 127 ; and the following Section of the present Chapter.
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triangle oac ; but whioli (as it will be found) may also be symboUcally proved,

by rules of the calculus of quaternions. [See 210 (15.)]

(11.) If Uj3 = - Ua, then T + a) = ± (T/3 - Ta), according as

Tj3> or < Ta; but

T (/3 + a) > ± (TjS - Ta), if Uj3 «0i5 = - TJa.

187. The quotient, 11/3 : Ua, of the versors of the two vectors, a and j3, has

been called (156) the Versor of the Quotient, or quaternion, q = (i: a; and has

been denoted, as sucli, by the symbol, \Jq. On the same plan, we propose

now to call the quotient, T/3 : Ta, of the tensors of the same two vectors, the

Tensor* of the Quaternion q, or /3 : a, and to denote it by the corresponding

symbol, Tq. And then, as we have called the letter U (in 156) the character-

istic of the operation of taking the versor, so we may now speak of T as the

Characteristic of the (corresponding) Operation of taking the Tensor, whether of

a Vector, a, or of a Quaterniony q. We shall thus have, generally,

T(/3:a) = Ti3:Ta, as we had IT (/3 : a) = U/3 : Ua (156);

and may say that as the versor \Jq depended solely on, but conversely was

sufficient to determine, the relative direction (157), so the tensor Tg depends on

and determines the relative lengthf (109), of the two vectors, a and /3, of which

the quaternion q is the quotient (112).

(1.) Hence the equation T- = 1, like T/» = Ta, to which it is equivalent,
a

expresses that the locus of p is the sphere with o for centre, which passes

through the point a.

(2.) The equation (comp. 186, (6.)),

T^^±^ = l,
p - a

expresses that the locus of p is the plane through o, perpendicular to the

line OA.

• Compare the Note to Art. 109, in page 111 ; and the first Note in page 137.

t It has been shown, in Art. 112, and in the Additional Illustrations of the third section of the

present Chapter (113-116), that Relative Length, as well as relative direction, enters as an essential

element into the very Conception of a Quaternion. Accordingly, in Art. 117, an agreement of relative

lengths (as well a an agreement of relative directions) was made one of the conditions of equality,

between any two quaternions, considered as quotients of vectors : so that we may now say, that tJie

tensors (as well as the versors) of equal quaternions are equal. Compare the first Note to page 138, as

regards what was there called the quantitative element, of absolute or relative length, which was
eliminated from a, or from q, by means of the characteristic U ; whereas, the new characteristic, T,

of the present section, serves on the contrary to retain that element alone, and to eliminate what may
be called by contrast the qualitative element, of absolute or relative direction.
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(3.) Other examples of the same sort may easily he derived from the

suh-articles to 186, hy introducing the notation (187) for the tensor of a

quotient^ or quaternion, as additional to that for the tensor of a vector (185).

(4.) T (j3 : a) >, =, or < 1, according as Tj3 >, =, or < Ta.

(5.) The tensor of a right quotient (132) is always equal to the tensor of its

index (133).

(6.) The tensor of a radial (146) is always positive unity ; thus we have,

generally, by 156,

TU^ = 1

;

and in particular, by 181,

Ti = Tj = T^ = 1.

(7.) Txq = ± ccTq, according as iP > or < ;

thus, in particular, T {- q) = Tq, or the tensors of opposite quaternions are

equal.

(8.) Tec = ± X, according as a; > or < ;

thus, the tensor of a scalar is that scalar taken positively.

(9.) Hence, TTa = Ta, TT^ = T^

;

so that, by abstracting from the subject of the operation T (comp. 145, 160),

we may establish the symbolical equation,

T* = TT = T.

(10.) Because the tensor of a quaternion is generally a positive scalar,

such a tensor is its own conjugate (139) ; its angle is zero (131) ; and its versor

(159) is positive unity : or in symbols,

KT? = T?; £T? = 0; UT^ = 1.

(11.) T (1 : ?) = T (a : /3) = Ta : TjS = 1 : T^;

or in words, the tensor of the reciprocal of a quaternion is equal to the reciprocal

of the tensor.

(12.) Again, since the two lines, ob and ob', in fig. 36 [p. 115], are equally

long, the definition (137) of a conjugate gives

TK? = T^;

or in words, the tensors of conjugate quaternions are equal.

(13.) It is scarcely necessary to remark, that any two quaternions which

have equal tensors^ and eqtial versors, are themselves equal : or in symbols, that

q'=q, if T/=T?, and JJq'^Vq.
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188. Since we have, generally,

a la . Va la Ua Ua la

we may establish the two following general formulse of decomposition of a

quaternion into two factors, of the tensor and versor kinds :

1. . .q = Tq.'[]q\ 11. . .q = Vq.Tq',

which are exactly analogous to the formulse (186) for the corresponding

decomposition of a vector, iwio factors of the same two kinds : namely,

r. . . a = Ta . Ua
;

IF. . . a = Ua . Ta.

To illustrate this last decomposition of a quaternion, q, or ob : oa, into factors,

we may conceive that aa' and bb' are two concentric and circular, but oppo-

sitely directed arcs, which terminate respectively
^

on the two lines ob and oa, or rather on the longer

of those two lines itself, and on the shorter of them pi

prolonged, as in the annexed figure 48 ; so that oa'

has the length of oa, but the direction of ob, while

ob', on the contrary, has the length of ob, but the ^

direction of oa ; and that therefore we may write,

by what has been defined respecting versors and tensors of vectors (155, 156,

185, 186),

oa' = Ta . Uj3 ; ob' = Tj3 . Ua.

Then, by the definitions in 156, 187, of the versor and tensor of a quaternion^

TJq = U (oB : oa) = oa' : oa = ob : ob'
;

. Tq = T {ob : oa) = ob' : oa = ob : oa';

whence, by the general formula of multiplication of quotients (107),

I. . g- = OB : oa = (oB : oa') . (oa' : oa) = Tq . JJq ;

and
II. . g- = OB : OA = (oB : ob') . (ob' : oa) = Ug . Tq,

as above.

189. In words, if we wish to pass from the vector a to the vector /3, or

from the line oa to the line ob, we are at liberty either, 1st, to begin by turn-

ing, from OA to oa', and then to end by stretching, from oa' to ob, as fig. 48 may
serve to illustrate ; or, Ilnd, to begin by stretching, from oa to ob', and end

Hamilton's Elements op Quaternions. Z
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by turning, from 03' to ob. The act of multiplication of a line a by a quater-

nion q, considered as di factor (103), which affects both length and direction

(109), may thus be decomposed into ttco distinct and partial acts, of the kinds

which we have called Version and Tension ; and these two acts may be per-

formed, at pleasure, in either of two orders of succession. And although, if we

attended merely to lengtM, we might be led to say that the tensor of a quater-

nion was a signless number* expressive of a geometrical ratio of magnitudes,

yet when the recent construction (fig. 48) is adopted, we see, by either of the

two resulting expressions (188) for Tg, that there is a propriety in treating

this tensor as o. positive scalar, as we have lately done, and propose systemati-

cally to do.

190. Since TK(? = T^, by 187, (12.), and TJK^ = 1 : U^, by 158, we may

write, generally, for any quaternion and its conjugate, the two connected

expressions :

I. . .g = T^.U|/; 11. ..Kg = T^:Uy;

whence, by multiplication and division,

III. ..q.Kq= {Tlqy ; lY . . . q '.'Kq = {Vq)\

This last formula had occurred before; and we saw (161) that in it the

parentheses might be omitted, because (U^')^ = T]{q^). In like manner (comp.

161, (2.) ), we have also

{TqY = T(^^) = Tq\

parentheses being again omitted ; or in words, the tensor of the square of a

quaternion is always equal to the square of the tensor : as appears (among

other ways) from inspection of fig. 42, bis [p. 141], in which the lengths of

OA, OB, GO form a geometrical pfvgression ; whence

foBV_ oc _ T^_oc ^ /T.obY / obV

VOA/ OA T.OA \T.OaJ V OaJ

At the same time, we see again that the product qKq of two conjugate quater-

nions, which has been called (145, (11.) ) their common Norm, and denoted by

the symbol N^-, represents geometrically the square of the quotient of the lengths

of the two lines, of which (when considered as vectors) the quaternion q is

itself the quotient (112). We may therefore write generally,!

Y. . .qKq = Tf = N?
;

YI. . . T? = v/ Ng = y^ {qKq).

* Compare the Note, in page HI, to Art. 109, t Compare the second Note in page 130.
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(1.) We have also, by II., the following other general transformations for

the tensor of a quaternion :

Yll...Tq = Kq.JJq', YIU. . . Tq = JJq .Kq;

of wliich the geometrical significations might easily be exhibited by a dia-

gram, but of which the validity is sufiQciently proved by what precedes.

(2.) Also (comp. 158),

(3.) The reciprocal of a quaternion, and the conjugate* of that reciprocal,

may now be thus expressed :

1 Kq
Tq'

Kq ]UJq
Tq

1 1 1

Vq ' Tq Tq

1

'Vq

q N? Tq'

JJq 1

~ Tq~Kq'

(4.) We may also write, generally,

IX. . .Kq = Tq. KUq = Nq : q.

191. In general, let ani/ two quaternions, q and q', be considered as multi-

plicand and multiplier, and let them be reduced (by 120) to the forms j3 : a

and 7 : j3 ; then the tensor and versor of that third quaternion, y : a, which is

(by 107) their product q^q^ may be thus expressed

:

I. . . Tq'q = T(7 : a) = Ty : Ta = (Ty : Tj3) . (T/3 : To) = Tq\ Tq

;

II. . . Vq'q =V{y:a)=VylVa=(Uy: U/3) . (UjS : Ua) = Vq' • ^Q I

where Tq'q and Vq'q are written, for simplicity, instead of T{q\ q) andU [q'. q).

Hence, in any such multiplication, the temor of the product is the product of the

tensor ; and the versor of the product is the product of the versors ; the order of

the factors ])eing generally retained for the latter (comp. 168, &c.), although it

may be varied for the former, on account of the scalar character of a tensor.

In like manner, for the division of any one quaternion /, by any other q, we

have the analogous formulse :

III. . .T{q':q)=Tq^:Tq] IV. . .V [q' : q) ^Vq' :Vq',

or in words, the tensor of the quotient of any two quaternions is equal to the

* Compare Art. 145, and the Note to page 128.
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quotient of the tensors ; and similarly, the versor of the quotient is equal to the

quotient of the versors. And because multiplication and division of tensors are

performed according to the rules of algebra, or rather of arithmetic (a tensor

being always, by what precedes, a positive number), we see that the difficulty

(whatever it may be) of the general multiplication and division of quaternions is

thus reduced to that of the corresponding operations on versors : for which

latter operations geometrical constructions have been assigned, in the ninth

section of the present Chapter.

(1.) The two products, q'q and qq\ of any two quaternions taken as factors

in two different orders, are equal or unequal, according as those two factors are

complanar or diplanar ; because such equality (169), or inequality (168), has

been already proved to exist, for the case* when each tensor is unity : but we

have always (comp. 178),

Tq'q = Tqq', and Le[q = L qq'.

(2.) li Lq = Lq' = -, then qq' = "Kqq (170) ; so that the products of two

right quotients, or right quaternions (132), taken in opposite orders, are always

conjugate quaternions.

(3.) If Lq = L<f = -, and Ax . (f ± Ax . q, then qc[ = - qq,
til

iqq = ^qq = ^y Ax./gXAx.g-, Ax
.
/gX Ax . <?' (171) j

SO that the product of two right quaternions, in tuv rectangular planes, is a third

right quaternion, in a plane rectangular to both; and is changed to its oicn oppo-

site, when the order of the factors is reversed : as we had ij = k = -ji (182).

(4.) In general, if q and q' be any two diplanar quaternions, the rotation

round Ax . q, from Ax . q to Ax . q'q, is positive (177).

(5.) Under the same condition, q{q':q) is a quaternion with the same

tensor, and same angle, as q, but with a different axis ; and this new axis.

Ax . q[q':q), may be derived (179, (1.)) from the old axis. Ax . q', by a conical

rotation (in the positive direction) round Ax . q, through an angle = 2 Lq.

(6.) The product or quotient of two complanar quaternions is, in general,

a third quaternion complanar with both ; but if they be both scalar, or both

right, then this product or quotient degenerates (131) into a scalar.

* Compare the Notes to pages 148, 150.
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(7.) Whether q and q' be complauar or diplanar, we have always as in

algebra (comp. 106, 107, 136) the two identical equations

:

Y...{q':q).q = q') Nl. . . {q\ q) : q = q\

(8.) Also, by 190, Y., and 191, I., we have this other general formula

:

YII. ..N^'? = N/.Ny;

or in words, the norm of the product is equal to the product of the norma.

192. Let g' =- /3 : a, and / = 7 : /3, as before ; then

1 : /? = 1 : (y : a) = a
: y = (a : /3) . (i3 : 7) = (1

: g) . (1 : ?') ;

so that the reciprocal of the product of any two quaternions is equal to i\iQ pro-

duct of the reciprocakf taken in an inverted order : or briefly,

I. . .E/g = E?.E/,

if R be again used (as in 161, (3.) ) as a (temporary) characteristic of recipro-

cation. And because we have then (by the same sub-article) the symbolical

equation, KU = UE, or in words, the conjugate of the versor of any quaternion

q is equal (158) to the versor of the reciprocal of that quaternion ; while the

versor of a product is equal (191) to the product of the versors : we see that

YJJq'q = UEg'g = UE<? . UE(?' = KUg . KUg'.
But

Kg = T<z . KUg, by 190, IX. ; and Tq'q = T/. Tq = Tq . Ty',

by 191 ; we arrive then thus at the following other important and general

formula :

XL . .K?'? = Kg.K/;

or in words, the conjugate of the product of any two quaternions is equal to the

product of the conjugates, taken (still) in an inverted order.

(1.) These two results, I., II., may be illustrated, for versors iJlq = Tq'= 1),

by the consideration of a spherical triangle abc (comp. fig. 4'i [p. 144] ) ; in

which the sides ab and bc (comp. 167) may represent q and q\ the arc ac then

representing q'q. For then the new multiplier Eg- = Kg' (158) is represented

(162) by BA, and the new multiplicand Eg' = Kg' by cb ; whence the new

product, Eg . Eg' = Kg . Kg', is represented by the inverse arc ca, and is there-

fore at once the reciprocal Eg'g, and the conjugate li^q'q, of the old product q'q.

(2.) If g and g' be right quaternions, then Kg = - g, Kg'= - g' (by 144)

;

and the recent formula II. becomes, Kg'g = qq\ as in 170.

%
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(3.) In general, that formula II. (of 192) may be thus written :

III. ..K^=k2.KX;
a a p

where a, /3, 7 may denote an?/ three vectors.

(4.) Suppose then that, as in the annexed fig. 49, we have the two follow-

ing relations of inverse similitude of triangles (118),

A AOB a' BOG, A BOE <x' DOB
;

3^^^^^^^^^^"Xc

and therefore (by 137) the two equations, yA^l^-'^^''^^\
I = k2 2 = K-i; o^^^rf- 1'^

/3 a' B i3' V /
we shall have, by III.,

^ = K -, or A DOC a' age
;

o a

Fig. 49.

SO that this third formula of inverse similitude is a consequence from the other

two.

(5.) If then (comp. 145, (6.) ) any two circles, whether in one plane or in

space, touch one another at a point b : and if from any point o, on the common

tangent bo, two secants oac, oed be drawn, to these two circles ; the four points

of section, a, c, d, e, will be on one common circle : for such concircularity is an

easy consequence (through equal angles, &c.), from the last inverse similitude.

(6.) The same conclusion (respecting concircularity, &c.) may be otherwise

and geometrically drawn, from the equality of the tico rectangles, ago and doe,

each being equal to the square of the tangent gb ; which may serve as an

instructive verification of the recent formula III., and as an example of the

consistency of the results, to which calculations with quaternions conduct.

(7.) It may be noticed that the construction would in general give three

circles, although only one is drawn in the figure ; but that if the two triangles

ABC and DBE be situated in different planes, then these three circles, and of

course ihefive points abcde, are situated on one common sphere.

193. An important application of the foregoing general theory of Multi-

plication and Division, is the case of Right Quaternions (132), taken in con-

nexion with their Index-Vectors, or Indices (133).

Considering division first, and employing the general formula of 106, let

/3 and 7 be each -L a ; and let /3' and 7' be the respective indices of the two

right quotients, (^ = |3 : a, and / = 7 : a. We shall thus have the two com-

planarities, /3'
||| /3, 7, and 7'

1|| j3, 7 (comp. 123), because the four lines /3, 7,
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jS', 7' are all perpendicular to a ; and within their common plane it is easy to

see, from definitions already given, that these four lines form a proportion of

vectors, in the same sense in which a, /3, y, S did so, in the fourtli section of

the present Chapter : so that we may write the equation of quotients,

/:/3' = 7:/3.

In fact, we have (by 133, 185, 187) the following relations of length,

Ti3' = Ti3:Ta, T7'= T7 : T«, and .-. T(/ : j3') = T(7 :/3)

;

while the relation of directions, expressed by the formula,

U(/:i3')=II(7:i3), or U/ : U^' = Uy : U/3,

is easily established by means of the equations,

£ (/: 7) = z O': i3)
=
I

; Ax. (/: 7) = Ax . (jS': /3) = Ua.

We arrive, then, at this general Tlieorem (comp. again 133) : that " the

Quotient of any two Right Quaternions is equal to the Quotient of their Indices."*

(1.) For example (comp. 150, 159, 181), the indices of the riglit versors

i, J, k are the axes of those three versors, namely, the lines 01, oj, ok ; and we

have the equal quotients,

J :i = 01
'. oj' = A- = OJ : 01, &c.

(2.) In like manner, the indices of - i, -J, - k are 01', oj', ok'; and

i'.-j = oj' :
01' = k = 01: oj', &o.

(3.) In general the quotient of any two right versors is equal to the quotient

of their axes ; as the theory of representative arcs, and of their jooZes, may easily

serve to illustrate.

194. As regards the multiplication of two right quaternions, in connexion

with their indices, it may here suffice to observe that, by 106 and 107, the

product 7 : a = {7 : j3) . (/3 : a) is equal (comp. 136) to the quotient, (7 : /3) : (a : /3)

;

* We have thus a new point of agreonent, or of connexion, between right quaternions, and their

index-vectors, tending to justify the ultimate assumption (not yet made), o^ equality between the former

and the latter [see 290]. In fact, we shall soon prove that the index of the sum (or difference), of any

two light quotients (132), is equal to the sum (or difference) of their indices [see 206] ; and shall find

it convenient subsequently to interpret the product fia of any two vectors, as being the qiiaternion-

product (194) of the two right quaternions, of which those two lines are the indices (l-'^S) : after

which, the above-mentioned assumption of equality will appear natural, and be found to be useful.

(Compare the Notes to pages 121, 137). [In 198 the notation Iq is proposed as an abridgment of

" Index of ?."]
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whence it is easy to infer that " the product^ q'q^ of any two Right Quaternions,

is equal to the Quotient of the Index of the Multiplier, q\ divided by the Index of

the Reciprocal of the Multiplicand, qP

It follows that the plane, whether of the product or of the quotient of two

right quaternions, coincides with i\iQ plane of their indices ; and therefore also

with the plane of their axes ; because we have, generally, by principles already

established, the transformation,

if Z. g' = o> tli6^ Index ofq=Tq . Ax . q.

SECTION 12.

On the Sum or DifTerence of any tsvo ituaternions ; and on the

Scalar (or Scalar Part) of a duaternion.

195. The Addition of any given quaternion $'', considered as a geometrical

quotient or fraction (101), to any other given quaternion q, considered also

as a fraction, can always be accomplished by the first general formula of

Art. 106,* when these two fractions have a common denominator ; and if they

be not already given as having such, they can always be reduced so as to have

one, by the process of Art. 120. And because the addition of any two Hues

was early seen to be a commutative operation (7, 9), so that we have always

7 + /3 = j3 + 7, it follows (by 106) that the addition of any two quaternions

is likewise a commutative operation, or in symbols, that

I. . .q + q'=q'+q;

so that the Sum of any twof Quaternions has a Value, which is independent of

their Order : and which (by what precedes) must be considered to be given, or

at least known, or definite, when the two summand quaternions are given. It

is easy also to see that the conjugate of any such sum is equal to the sum. of the

conjugates, or in symbols, that

II. . . K (?' +q)= Kq' + Kq.

(1.) The important formula last written becomes geometrically evident,

when it is presented under the following form. Let obdc be any parallelo-

gram, and let oa be any right line, drawn from one corner of it, but not

* [This formula is a definition.]

t It will be found [in 207] that this result admits of heing extended to the case of three (or more)

quaternions ; but, for the moment, we content ourselves with two. [As an example of non-commu-
tative addition contrast Art. 180 (3.)]

i
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generally in its plane. Let the three other corners, b, c, d, be reflected (in

the sense of 145, (5.) ) with respect to that line oa, into three new points,

b', c', d'; or let the three lines ob, go, od he reflected (in the sense of 138)

with respect to the same line oa ; which thusbisects at right angles the three

joining lines, bb', cc', dd', as it does bb' in fig. 36 [p. 115]. Then each of

the lines ob, oc, od, and therefore also the whole plane figure obdc, may be

considered to have simply revolved round the line oa as an axis^ by a conical

rotation through tico right angles ', and consequently the new figure OB'D'c'y like

that old one obdc, must be o. parallelogram. Thus (comp. 106, 137), we have

od' = oc'+ob^ ^ = / + j3', S':a= (/:a) + (/3':a);

and the recent formula II. is justified.

(2.) Simple as this last reasoning is, and unnecessary as it appears to be to

draw any new diagram to illustrate it, the reader's attention may be once more

invited to the great simplicity of expression, with which many important

geometrical conceptions, respecting space of three dimensions, are stated in the

present Calculus : and are thereby kept read// for future application, and for

easy combination with other results of the same kind. Compare the remarks

already made in 132, (6.) ; 145, (10.) ; 161 ; 179, (3.) ; 192, (6.) ; and some

of the shortly following sub-articles to 196, respecting properties of an oblique

cone with circular base.

196. One of the most important cases of addition, is that of fico conjugate

summands, q and ^q ; of which it has been seen (in 140) that tlie sum is

always a scalar. We propose now to denote the half of this sum by the

symbolf Sq ; thus writing generally,

1. . .q + Kq = Kq + q = 2Sq',

or defining the new symbol Sq by the formula,

II...8q = ^{q + Kq) ; or briefly, IF. ..8 = ^1+^).

For reasons which will soon more fully appear, we shall also call this new

quantity, S^-, the scalar part, or simply the Scalar, of the Quaternion, q ; and

sliall therefore call the letter S, thus used, the Characteristic of the Operation

of taking the Scalar of a quaternion. (Comp. 132, (6.) ; 137 ; 156 ; 187.)

It follows that not only equal quaternions, but also conjugate quaternions, have

equal scalars ; or in symbols,

III. . . Sq'=Sq, if q'= q; and lY. . . SKy = Sq;
or briefly,

IT. . . SK = S.

Hamilton's Elements of Quaternions, 3 j^
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And because we have seen that 'Kq = + q, ii q he & scalar (139), but that

Kg = - g-, if 3' be a right quotient (144), we find that the scalar of a scalar (con-

sidered as a degenerate quaternion, 131) is equal to that scalar itself, but that the

scalar of a right quaternion is zero. We may therefore now write (comp. 160)

:

V. . Sa; = X, if ^ be a scalar ; VI. . . SSg = Sg, S^ = SS = S
;

and VII. . . Sg - 0, if iq = ry

Again, because oa' in fig. 36 [p. 115] is multiplied by x, when ob is multi-

plied thereby, we may write, generally,

VIII. . . ^xq = ipSg, if X be any scalar

;

and therefore in particular (by 188),

IX. . . Sg = S (Tg . Ug) = Tg . SUg.

Also because SKg = Sg, by IV., while KUg = U -, by 158, we have the general

equation,

X. ..SUg = SU-; or X'. . . SU^ = SU ^;

whence, by IX.,

XL . .Sg = Tg.SU-; or XF. . . S^ = T^ . SU 3;
q a a p

and therefore also, by 190, (V.), since Tg . T - = 1,

XII. ..Sg = Tg\si=Ng.S-; XIF. . . S? = n2 . S J.
q q a a p

The results of 142, combined with the recent definition I. or II., enable us to

extend the recent formula VII., by writing,

TT

XIII. . . Sg >, =, or < 0, according as z g <, =, or > ^ ;

and conversely,

XIV. . . z g <, =, or > ^, according as Sq >, =, or < 0.

[n fact, if we compare that definition I. with the formula of 140, and with

fig. 36, we see at once that because, in that figure,

S (oB : oa) = oa' : oa,

we may write, generally,

XV. . . Sg = Tg . cos zg ; or XVI. . . SUg = oos zy

;
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equations which will be found of great importance, as serving to connect

quaternions with Trigonometry) and which show that

XYII. ..lq'=Lq, if SU/ = SU?,

the angle L q being still taken (as in 130), so as not to fall outside the limits

and tt; whence also,

XYIII. ..zj'=z^, if Sg'=Sy, and T<?'=T^,

the angle ofa quaternion being thus given, when the scalar and the tensor of that

quaternion are given, or known. Finally because, in the same figure 36

(comp. 15, 103), the linCy

oa'= (oa' : oa) . oa = oa . S (ob : oa),

may be said to be the projection of ob on oa, since a' is the foot of the perpen-

dicular let fall from the point b upon this latter line oa, we may establish this

other general formula

:

XIX. . . oS - = S - . a = projection of Q on a
;

o a

a result which will be found to be of great utility, in investigations respecting

geometrical loci, and which may be also written thus

:

XX. . . Projection o/B o« a = Ua . Ti3 . SU^;
a

with other transformations deducible from principles stated above. It is

scarcely necessary to remark that, on account of the scalar character of Sq,

we have, generally, by 169, and 187, (8.), the expressions,

XXI. . . US? = ± 1 ; XXII. ..TSq = ±Sq;

while, for the same reason, we have always, by 139, the equation (comp. IV.),

XXIII. . . KS? = S? ; or XXIIF. . . KS = S

;

and, by 131,

XXIV. . . iSq = 0, or = TT, unless ^ ? = 5 ;

in which last case Sg- = 0, by VII., and therefore Z Sq is indeterminate :*

JJBq becoming at the same time indeterminate, by 159, but TSq vanishing, by

186, 187.

* Compare the Note in page 120, to Art. 131.

2 A2
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(1.) The equation, S^ = 0,
a

is now seen to be equivalent to the formula, p ± a ; and therefore to denote

the same plane locus for p, as that which is represented by any one of the four

other equations of 186, (6.) ; or by the equation,

T ^-^ = 1, of 187, (2.).
p — a

(2.) The equation,

8^11^ = 0, or S^ = S@,
a a a

expresses that bp ± oa ; or that the points b and p have the same projection

on OA ; or that the locus of p is the plane through b, perpendicular to the line oa.

(3.) The equation,

n a

expresses (comp. 132, (2.)) that p is on one sheet of a cone of revolution^ with o

for vertex, and oa for axis, and passing through the point b.

(4.) The other sheet of the same cone is represented by this other equation,

SU^=-SU2;
a a

su^Y=fsu^

and both sheets jointly by the equation,

(5.) The equation,

S^ = l, or SU^ = T-,
a a p

expresses that the locus of p is the plane through a, perpendicular to the line oa
;

because it expresses (comp, XIX.) that the projection of op on oa is the line

OA itself; or that the angle oap is right ; or that S = 0.
a

(6.) On the other hand the equation,

s2 = l, or Su2 = Tg,
p P p

expresses that the projection of ob on op is op itself ; or that the angle opb is

right; or that the locus of p is tliat spheric surface wliich has the line ob for

a diameter.
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(7.) Hence the system of the tico equations

j

a p

represents the circle, in which the sphere (0.), with ob for a diameter, is cut by

the plane (5,), with oa for the perpendicular let fall on it from o.

(8.) And therefore this new equation,

a p

obtained by multiplying the two last, represents the Cyclic* Cone (or cone of

the second order, but not generallij of revolution), which rests on this last circle

(7.) as its base, and has the point o for its vertex. In fact, the equation

(8.) is evidently satisfied, when the two equations (7.) are so ; and therefore

every point of the circular circumference, denoted by those two equations, must

be a point of the locus, represented by the equation (8.). But the latter equa-

tion remains unchanged, at least essentially, when p is changed to xp, x beiug

any scalar ; the locus (8.) is, therefore, some conical surface, with its vertex at

the origin, o ; and consequently it can be none other than that particular cone

(both ways prolonged), which rests (as above) on the given circular base (7.).

(9.) The system of the two equations,

a p y

(in writing tlie first of which the point may be omitted), represents a conic

section ; namely that section, in which the cone (8.) is cut by the new plane,

which has oc for the perpendicular let fall upon it, from the origin of

vectors o.

(10.) Conversely, every plane ellipse (or other conic section) in space, of

which the plane does not pass through the origin, may be represented by a

system of two equations, of this last form (9.) ; because the cone which rests on

any such conic as its base, and has its vertex at any given point o, is known to

be a cyclic cone.

(11.) The curve (or rather the pair of curves), in which an oblique but cyclic

cone (8.) is cut by a concentric sphere (that is to say, a cone resting on a circular

* Historically speaking, the oblique cone tvith circular base may deserve to be named the Apollonian

Cone, from Apollonius of Perga, in whose great work on Conies {kwvikwv), already referred to in a Note

to page 130, the properties of stick a cone appear to have been first treated systematically ; although

the cone of revolution luid been studied by Euclid. But the designation " cyclic cone^'' is shorter; and

it seems more natural, in geometry, to speak of the above-mentioned oblique cone thus, for the purpose

of marking its connexion with the circle, than to call it, as is now usually done, a cone of the second

order, or of the second degree : although these phrases also have their advantages.
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base by a sphere which has its centre at the vertex of that cone), has come, in

modern times, to be called a Sjjherical Conic. And any such conic may, on

the foregoing plan, be represented by the system of the two equations,

S^s2 = l, To = l;
a p

the length of the radius of the sphere being here, for simplicity, supposed to

be the unit of length. But, by writing T/o = a, where a may denote any

constant and positive scalar, we can at once remove this last restriction, if it be

thought useful or convenient to do so.

(12.) The equation (8.) may be written, by XII. or XII'., under the form

(comp. 191, YII.)

:

or briefly,

p a

if a'=/3T^=Ta.U)3, and i3'= aT^ = Tj3 . Ua

;

p a

so that a and /3' are here the lines oa' and ob', of Art. 188, and fig. 48.

(13.) Hence the cone (8.) is cut, not only by the plane (5.) in the circle

(7.), which is on the sphere (6.), but also by the (generally) new plane,S^= 1,
a

in the (generally) neiv circle, in which this new plane cuts the (generally) new

sphere, S— = 1 ; or in the circle which is represented by the system of the two
. P

equations,

s^ = i, s2^ = i.
o p

(14.) In the particular case when /3 li
a (15.), so that the quotient /3 : a is a

scalar, which must be positive and greater than unity, in order that the plane

(5.) may {really) cut the sphere (6.), and therefore that the circle (7.) and the

cone (8.) may be real, we may write

i3=fl'a, a>\, T(l3:a)=a', a' = a, (^'=(5;

and the circle (13.) coincides with the circle (7.).

(15.) In the same case, the cone is one of revolution ; every point p of its

circular ba^e (that is, of the circumference thereof) being at one constant distance
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from the vertex o, namely at a distance = aTa. For, in the case supposed, the

equations (7.) give, by XII.,

N^ = S^:S- = l:S- = a^:s2 = a^; or T/o = «Ta.
a a p p p

(Compare 145, (12.), and 186, (5.).)

(16.) Conversely, if the cone he one of revolution, the equations (7.) must

conduct to a result of the form,

a« = N^ = S^:S^ = s2:S^, or (comp. (2.)), sSjlf!^ = ;

a a p p p p

which can only be by the line j3 - a^i vanishing, or by our having j3 = a'a, as

in (14.) ; since otherwise we should have, by XIV., p ± (i - a^a, and all the

points of the base would be situated in one plane passing through the vertex o,

which (for any actual cone) would be absurd.

(17.) Supposing, then, that we have not j3 || a, and therefore not a = a,

|3' = jS, as in (14.), nor even a || a, j3'
|| |3, we see that the cone (8.) is not a

cone of revolution (or what is often called a right cone) ; but that it is, on the

contrary, an oblique (or scalene) coney although still a cyclic one. And we see

that such a cone is cut in two distinct series* of circular sections, by planes

parallel to the two distinct (and mutually non-parallel) planes, (5.) and (13.)

;

or to ttco neiv planes, drawn through the vertex o, which have been called f the

tico Cyclic Planes of the cone, namely, the two following :

8^ = 0; S^ = 0;
o pJ

while the two lines from the vertex, da and ob, which are perpendicular to these

ttco planes respectively, may be said to be tlie two Cyclic Normals.

(18.) Of these two lines, a and /3, the second has been seen to be a diameter

of the sphere (6.), which may be said to be circumscribed to the cone (8.),

when that cone is considered as having the circle (7.) for its base ; the second

cyclic plane (17.) is therefore tlie tangent plane at the vertex of the cone, to that

first circumscribed sphere (6.).

(19.) The sphere (13.) may in like manner be said to be circumscribed to

• These two series of sub-contrary (or antiparallel) but circular sections of a cyclic cone, appear to

have been first discovered by Apollonius : see the Fifth Proposition of his First Book, in which he

says, KaKfiffdoo Sh f) roiuvri] To^ii vKevavrla (page 22 of Halley's Edition).

t By M. Chasles.
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the oone, if the latter be considered as resting on the new circle (13.), or as

terminated by that circle as its neio base ; and the diameter of this new sphere

is the line ob', or j3', which lias by (12.) the direction of the line a, or of the

first cyclic normal (17.) ; so that (comp. (18.) ) the first cyclic plane is the

tangent plane at the vertex, to the second circumscribed sphere (13,).

(20.) Any other sphere through the vertex, which touches the first cyclic

plane, and which therefore has its diameter from the vertex = 6'j3', wliere b' is

some scalar co-efl&cieut, is represented by the equation,

S^'=l, or S§: = '^,
9 P

it therefore cuts the cone in a circle, of which (by (12.) ) the equation of the

plane is

S^ = J', or S,-^ = l,
a b a

so that the perpendicular from the vertex is b'a
|| j3 (comp. (5.) ) ; and couse-

queutly this plane of section of sphere and cone is parallel to the second cyclic

plane (17.).

(21.) In like manner any sphere, such as

S -^ = 1, where b is any scalar,

which touches the second cyclic plane at the vertex, intersects the cone (8.) in a

circle, of which the plane has for equation,

8-^ = 1

and is therefore parallel to the first cyclic plane.

(22.) The equation of the cone (by IX., X., XVI.) may also be thus

written

:

SU^.SU^ = T-J; or, cos z^ . cos z-g = T^;
a p p a p p

it expresses, therefore, that the product of the cosines of the inclinations, of any

variable side {p) of an oblique cyclic cone, to two fixed lines (a and /3), namely to

the ttco cyclic normals (17.), is constant ; or that the product of the sines of the

inclinations, of the same variable side (or ray, p) of the cone, to two fixed planes,

namely to the two cyclic planes, is thus a constant quantity.
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(23.) The two great circles, in which the concentnc sphere Tp = 1 is ciit by

the two cyclic planes, have been called the two Cyclic Arcs* of the Spherical

Conic (11.), in which that sphere is cut by the cone. It follows (by (22.)

)

that the product of the sines of the [arcual] perpendiculars, let fallfrom any point

V of a given spherical conic, on its two cyclic arcs, is constant.

(24.) These properties of cyclic cones, and of spherical conies, are not put

forward as new ; but they are of importance enough, and have been here

deduced with sufficient facility, to show that we are already in possession of a

Calculus, with its own Rules f of Transformation, whereby one enunciation of a

geometrical theorem, or problem, or construction, can be translated into

several otliers, of which some may be clearer, or simpler, or more elegant

than the one first proposed.

197. Let o, /3, 7 be any three co-initial vectors, oa, &c., and let od = 8

= 7 + )3, so that OBDC is a parallelogram (6) ; then, if we write

^:a = q, y :a = q, and d : a = q'' = q' + q (106),

and suppose that b', c', d' are the feet of perpendiculars let fall from the

points B, c, D on the line oa, we shall have, by 196, XIX., the expressions,

(ob'=) /3' = aSq, Y = aS/, 8' = aSq'' = aS {q' + q) .

But also OB = CD, and therefore ob' = c'd', the simihr projections of equal lines

being equal', hence (comp. 11) the sum of the projections of the lines /3, 7
must be equal to the projection of the sum, or in symbols,

od'=oc'+ob', g'=7'+/3', 8':o = (7 :a) + (/3':a).

Hence, generally, for any two quaternions, q and q, we have the formula

:

I. . . S (/ + g) = S?' + S?

;

or in words, the scalar of the sum is equal to the auni of the scalars. It is easy

to extend this result to the case of any three (or more) quaternions, with their

respective scalars ; thus, if q" be a third arbitrary quaternion, we may write

S{/'+ {q + q)] = S/'+ S iq'+q) = 8(7" + (S/ + S?)

;

where, on account of the scalar character of the summands, the last paren-

theses may be omitted. We may therefore write, generally,

II. . . S2j = SSg, or briefly, SS = 2S
;

where S is used as a sign of Summation : and may say that the Operation of

* By M. Chasles. t Comp. 145, (10.), &c.

Hamilton's Elements of Quaternions. sB
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taldng the Scalar of a Quaternion is a Distributive Operation (comp. 13) . As
to the general Subtraction of any one quaternion from any other, there is no

difficulty in reducing it, by the method of Art. 120, to the second general

formula of 106 ; nor in proving that the Scalar of the Difference* is always

equal to the Difference of the Scalars. In symbols,

III. ..S (?'-?) =S/-S?;
or briefly,

lY. . . SA? = AS^, SA = AS ;

when A is used as the characteristic of the operation of taking a difference, by

subtracting one quaternion, or one scalar, from another.

(1.) It has not yet been proved (comp. 195) that the Addition of any

number of Quaternions, q, q\ q\ . . is an associative and a commutative operation

(comp. 9). But we see, already, that the scalar of the sum of any such set of

quaternions has a valuo, which is independent of their order, and of tlie mode

of grouping them.

(2.) If the summands be all right quaternions (132), the scalar of each

separately vanishes, by 196, YII. ; wherefore the scalar of their sum vanishes

also, and that sum is consequently itself, by 196, XIV., a right quaternion :

a result which it is easy to verify. In fact, if /3 ± a and 7 JL a, then 7 + j3

J_ a, because a is then perpendicular to the plane of /3 and 7 ; hence, by 106,

the sum of any two right quaternions is a right quaternion, and therefore also the

sum of any number of such quaternions.

(3.) Whatever two quaternions q and q' may be, we have always, as in

algebra, the two identities (comp. 191, (7.) )

:

Y...{q'-q] + q = q'', YI. , . (^ + q) - q -^ q\

198. Without yet entering on the general theory of scalars ofproducts or

quotients of quaternions, we may observe here that because, by 196, XV., the

scalar of a quaternion depends only on the tensor and the angle, and is independent

of the axis, we are at liberty to write generally (comp. 173, 178, and 191,

(1.), (5.)),

I. . . ^qq' = ^q'q ; II. .. S .? (?':?) = S^'

;

the two products, qq' and q'q, having thus always eqiml scalars, altliough they

have been seen to have unequal axes, for the general case of diplanarity (168,

191). It may also be noticed that, in virtue of what was shown in 193,

* Jlxamples have already occurred in 196, (2.), (5.), (16.).
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respecting the quotient, and in 194 respecting the product, of any two right

quaternions (132), in connexion with their indices (133), we may now estab-

lish, for any such quaternions, the formulae :

III. .. S ((?':?) = S [Iq' : Iq) = T{q''.q). cos Z (Ax . / : Ax . (?)

;

IV. . .Sg'g = S(g'.?) = sCl^:li') = -T<7V-cos^(Ax./: Ax.y);

where the new symbol Iq is used, as a temporary abridgment, to denote the

Index of the quaternion q, supposed here (as above) to be a right one. With

the same supposition, we have therefore also these other and shorter

formulae

:

Y. . . SU {q : ?) = + cos z (Ax . g^ : Ax . ?) ;

VI. . . ^Vqq = - cos Z. (Ax . q' : A.^. , q)
',

which may, by 126, XVI., be interpreted as expressing that, under the same

condition of rectangularity of q and q\

VII. . .L[q':q) = L{KiL.q':Kx.q)',

VIII. . .l.qq = 7r-l{Ax.^:Ax.q).

In words, the Angle of the Quotient of two Eight Quaternions is equal to the

Angle of their Axes ; but the Angle of the Product^ of two such quaternions,

is equal to the Supplement of the Angle of the Axes. There is no difficulty in

proving these results otherwise, by constructions such as that employed in

Art. 193 ; nor in illustrating them by the consideration of isosceles quad-

rantal triangles, upon the surface of a sphere.

199. Another important case of the scalar of a product is the case of the

scalar of the square of a quaternion. On referring to Art. 149, and to fig. 42

[p. 133], we see that while we have always T(g^) = (Tg')% as in 190, and

U {t) = (^9^1 as in 161, we have also,

I. . . L(q'') = 2lq, and Ax . (g-') = Ax
.

g^, if ^9<2'

but, by the adopted definitions oi/.q (130), and of Ax . g (127, 128),

II. . .Z(f) = 2(7r-Zg), Ax.{q') = -Ax.q, if Z^>^.

In each case, however, by 196, XVI., we may write,

III. . . SU {q') = COS L iq')
= cos 2 z ?

;

a formula which holds even when Z g is 0, or -, or tt, and which gives,

,IV. ..SU(g^) = 2(SUg)^-l.

2 B 2
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Hence, generally, the scalar of ^ may be put under either of the two following

forms:

Y. . . S [q^) = T^^ eos2z g; YI. . . S (<?^) = 2 (Sg)^ - T^^;

where we see that it would not be safe to omit the parentheses, without some

convention previously made, and to write simply Sg^, without first deciding

whether this last symbol shall be understood to signify the scalar of the square,

or the square of the scalar of q : these two things being generally unequal. The

latter of them, however, occurring rather oftener tlian the former, it appears

convenient to fix on it as that which is to be understood by ^q^, while the other

may occasionally be written with a point thus, S .
§''' ; and then, with these

conventions respecting notation* we may write

:

YII. . . Sg^ = (S?7 ; YIII. . . S . ^^ = S {q').

But the square of the conjugate of any quaternion is easily seen to be the

conjugate of the square ; so that we have generally (comp. 190, II.) the

formula :

IX. . . K^' = K [q') = {^qy = T^ : u^^

(1.) A quaternion, like a positive scalar, may be said to have in general

two opposite square roots ; because the squares of opposite quaternions are always

equal (comp. (3.)). But of tliese two roots the principal (or simpler) one, and

that which we shall denote by the symbol ^/g or \/q, and shall call by

eminence the Square Root of q, is that which has its angle acute, and not

obtuse. We shall therefore write, generally,

X. . . Z yq = i Lq; Ax . v^9' = Ax . q ;

with the reservation that, when z. g = 0, or = tt, this common axis of q and y^g'

becomes (by 131, 149) an indeterminate unit-line.

(2.) Hence,
XI. . . Sv^g' > 0, if Lq<Tr;

while this scalar of the square root of a quaternion may, by YI., be thus trans-

formed :

XII. ..S^y = -/{i(Tg + S^)};

a formula which holds good, even at the limit Lq = ir.

* As, in the Differential Calculus, it is usual to -write da;'* instead of {d;*;)^ ; while d {x'') is some-

times written as d.a;^. But as d'^a; denotes a, second differential, so it seems safest not to denote the

square of Sq by the symbol S^^, which properly signifies SSy, or Sq, as in 196, VI. ; the second

scalar (like the second tensor, 187, (9.), or the second versor, 160) being equal to the Jirst. Still every

calculator will of course use his own discretion ; and the employment of the notation S-^ for S (q)'',

as cos^'a; is often written lor (cos a;)*, may sometimes cause a saving of space.
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(3.) The principle* (1.) that, in quaternions, as in algebra, the equation,

XTII. . . (- qf = q\

is an identity^ may he illustrated by conceiving that, in fig. 42, a point b' is

determined by the equation ob' = bo ; for then we shall have (comp. fig. 33,

bis [p. 122]),

(- qf ={—
I

= — = 0% because A aob' oc b'oc.
\OA / OA

200. Another useful connexion between scalars and tensors (or norms) of

quaternions may be derived as follows. In any plane triangle aob, we havef

the relation,

(T . ab)^= (T . oa)^ - 2 (T . oa) . (T . ob) . cos aob + (T . oBf

;

in which the symbols T . oa, &c., denote (by 185, 186) the lengths of the sides

OA, &c. ; but if we still write q = ob : oa, we have g- - 1 = ab : oa ; dividing

therefore by (T . oa)^, the formula becomes (by 196, &o.),

I...T{q-lY=l-2Tq.^Vq + Tq' = Tq' - 2Sj + 1

;

or

IL..N((7-l) = Ny-2S^ + l.

But q is here a perfectly general quaternion ; we may therefore change its

sign, and write,

IlI...T[l+qY = l + 2Sq + Tq-'', lY. . . N (1 +g) = 1 + 2S? +Nj.

And since it is easy to prove (by 106, 107) that

V. ..(^^ + l)y = /+^,

whatever two quaternions q and q' may be, while

VI. . . S^\n^ = S./K^= S . qKq\

we easily infer this other general formula,

YII. . . N (/+ q) = N/+ 2S . gK/ + N?;

wliich gives, if x be any scalar,

YIII. . . N (g + a;) = N? + 2xSq + x\

* Compare the Note to page 162.

t By the Second Book of Euclid, or by plane trigonometry.
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(1.) We are now prepared to effect, by rules* of transformation y some other

passages from one mode of expression to another, of the kind which has been

alluded to, and partly exemplified, in former sub-articles. Take, for example,

the formula,

T'^-i-^ = l, of 187, (2.);p- a

or the equivalent formula,

T(|0 + a) = T(p-a), of 186, (6.);

which has been seen, on geometrical grounds, to represent a certain locus

^

namely the plane through o, perpendicular to the line oa ; and therefore the

same locus as that which is represented by the equation

S^=0, of 196,(1.),

To pass now from the former equations to the latter, by calculation, we have

only to denote the quotient p: a\>y q, and to observe that the first or second

form, as just now cited, becomes then, •
•

T(? + 1) = T(^-1); or N(? + 1) = N(?-l)

;

or finally, by II. and lY.,

S?=0,

which gives the third form of equation, as required.

(2.) Conversely, from S - = 0, we can return, by the same general for-
a

mulse II. and lY., to the equation N(--1j = n(- + 1), or by I. and III.

toTf^-l^ = T(^^ + lYortoT(p-a) = T(p + a), ortoT^ = l, asabove;

and generally,

S^ = gives T(?-1)=T((? + 1), or T^ = l;

while the latter equations, in turn, involve, as has been seen, the former.

(3.) Again, if we take the Apollonian Locus, 145, (8.), (9.), and employ

the^rs^ of the two forms 186, (5.) of its equation, namely,

T (p - a^a) = aT (p - a),

* Compare 145, (10) ; and several subsequent sub-articles.
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where a is a given positive scalar different from unity, we may write it as

T{q-a')=aT(q-l), or as 1^ {q - a') = a'N [q - 1);

or by VIII.,

Ny - 2a''Sq + a' = a' (N^ - 2S^ + 1)

;

or, after suppressing - 2a'^ Sq, transposing, and dividing hja^- 1,

Ng = a^ ; or, 'Np = a^Na ; or, Tp = aTa
;

which last is the second form 186, (5.), and is thus deducedfrom the first, by

calculation alone, without any immediate appeal to geometryy or the construction

of any diagram.

(4.) Conversely if we take the equation,

N^ = «S of 145, (12.),
a

which was there seen to represent the same looua, considered as a spheric

surface, witli o for centre, and aa for one of its radii, and write it as Nj' = «%

we can then by calculation return to the form

N(?-rt^) = a*N((/-l), or T (</ - a^) = aT (^ - 1),

or finally,

T (p - rt^a) = «T (p - a), as in 186, (5.)

;

thisj^rs^/orm of that sub-article being thus deduced from the second, namely

from To = flTa, or T^=a.
a

(5.) It is far from being the intention of the foregoing remarks, to dis-

courage attention to the geometrical interpretatu>n of the various /orms of expres-

sion, and general rules of transformation, which thus offer themselves in working

with quaternions ; on the contrary, one main object of the present Chapter

has been to establish a firm geometrical basis, for all such forms and rules.

But when such a foundation has once been laid, it is, as we see, not necessary

that we should continually recur to the examination of it, in building up the

superstructure. That each of the two forms, in 186, (5.), involves the other may
be proved, as above, by calculation ; but it is interesting to inquire what is the

meaning of this result : and in seeking to interpret it, we should be led anew

to the theorem of the Apollonian Locus.

(6.) The result (4.) of calculation, that

N (? - a') = a=N {q - 1), if N? = a\

may be expressed under the form of an identity, as follows :

IX. . . N (<7 - N?) = N? . N (? - 1)

;

in which q may be any quaternion.
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(7.) Or, by 191, YII., because it will soon be seen that

q {q - '^) = q^ - q, as in algebra,

we may write it as this other identity :

X. . . N (? - N?) = N {q' - q).

(8.) If T (§' - 1) = 1, then S - =
tj ; and conversely, the former eqnation

q ^
follows from the latter ; because each may be put under the form (comp.

196, XII.), N^ = 2Sq.

(9.) Hence, if T (p - a) = Ta, then S — = 1, and reciprocally. In fact

(comp. 196, (6.)), each of these two equations expresses that the locus of p is

the sphere which passes through o, and has its centre at a ; or which has

OB = 2o for a diameter.

(10.) By changing g- to g* + 1 in (8), we find that

q -\
if T$' = 1, then S ~—~ = 0, and reciprocally.

(11.) Hence if Tp = Ta, then S -—^ = 0, and reciprocally; because (by
p + a

106)

p + a a ' a \a / \«

(12.) Each of these two equations (11.) expresses that the locus of p is

the sphere tlirough a, which has its centre at o ; and their proved agreement

is a recognition, by quaternions, of the elementary geometrical theorem, that

the angle in a semicircle is a right angle.

SECTION 13.

On the Right Part (or ITector Part) of a Q,uaternion ; and on the

Distributive Property of the Multiplication of Ctuaternions.

201. A given vector ob can always be decomposed, in one but in only one

way, into two component vectors, of which it is the sum (6) ; and of which

one, as ob' in fig. 50, is parallel (15) to another given Bf- --^;r

vector OA, while the other, as ob" in the same figure, is i y^ !

perpendicular to that given line oa ; namely, by letting f
y^ f

fall the perpendicular bb' on OA, and drawing ob"= b'b, \y^
\

so that ob'bb" shall be a rectangle. In other words, if °
.

^ ^

a and /3 be any two given, actual, and co-initial vectors,

it is always possible to deduce from them, in one definite way, two other
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co-initial vectors, /3' and /3'', which need not however both be actual (1) ; and

which shall satisfy (comp. 6, 15, 129) the conditions,

j3' vanishing, when /3 X a ; and j3" being null, when /3 || a ; but both being

(what we may call) determinate vector-functions of a and /3. And of these two

functions, it is evident that /3' is the oxihogxai^hiQ projection of (^ on the line a
;

and that /3'' is the corresponding projection of [5 on the plane through o, which

is perpendicular to a.

202. Hence it is easy to infer, that there is always one, but only one way,

of decomposing a given quaterniony

g = OB : OA = |3 : a,

into two parts or summands (195), of which one shall be, as in 196, a scalar,

while the other shall be a right quotient (132). Of these two parts, theformer

has been already called (196) the scalar part, or simply the Scalar of the

Quaternion, and has been denoted by the symbol S>q ; so that, with reference

to the recent figure 50, we have

I. . . Sg- = S (oB : oa) = ob' : oa ; or, S (|3 : a) = /3' : a.

And we now propose to call the latter part the Right Pakt* of the same

quaternion, and to denote it by the new symbol

writing thus, in connexion with the same figure,

II. ..V^ = V(ob:oa) = ob''-:oa; or, V (jS : a) = /3"
: a.

The System of Notations, -peGviliax to the present Calculus, will tlius have been

completed ; and we shall have the following general Formula of Decomposition

of a Quaternion into two Summands (comp. 188), of the Scalar and Right

kinds

:

III. . . ? = S^ + V? = Y^ + S^,

or, briefly and symbolically,

IV. . . 1 = S + V = Y + S.

(1.) In connexion with the same fig. 50, we may write also,

Y (oB : oa) = b'b : oa,

because, by construction, b'b = ob".

* This Right Fart, \q, will come to be also called the Vector Part, or simply the Vector, of the

Quaternion; because it M'ill be found possible and useful to identify such part with its own Index-

Vector (133). Compare the Notes to pages 121, 137, 175 [and Art. 286].

Hamilton's Elbments op Quaternions. 2 C
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(2.) In like manner, for fig. 36 [p. 115], we have the equation,

V (oB : oa) = a'b : oa.

(3.) Under the recent conditions,

V(i3':a) = 0, and S (jS" : a) = 0.

(4.) In general, it is evident that

Y. . . q = 0, if Sg- = 0, and Yq = 0; and reciprocally.

(5.) More generally,

VI. ' ' q' = q, if Sg'' = Sq, and Yq' = Yq ; with the converse.

(6.) Also YII. . . Yg = 0, if Aq = 0, or = tt ;

or VIII. ..V(i3:a) = 0, if jS II a ;

the right part of a scalar being zero.

(7.) On the other hand,

IX...Yq = q, if ^5- = ^;

a right quaternion being its own right part.

203. We had (196, XIX.) a formula wliioh may now be written thus,

B
I. . . ob' = S (oB : OA) . OA, or /3' = S — . a,

a

to express the projection of ob on oa, or of the vector /3 on a ; and we have

evidently, by the definition of the new symbol Yq, the analogous formula,

II. . . ob" = V (oB : oa) . oA, or (5'' = Y ^ . a,
a

to express the projection of ^ on the plane (through o), which is drawn so as to

"hQ perpendicular to a; and which has been considered in several former sub-

articles (comp. 186, (6.), and 196, (1.)). It follows (by 186, &c.) that

III. . . Tj3'' = TV— . Ta = perpendicular distance of b from oa
;

this perpendicular being here considered with reference to its length alone, as

the characteristic T of the tensor implies. It is to be observed, that because

the/rtc/or, V—, in the recent formula II. for the projection /3"', is not a scalar,

we must write that factor as a multiplier, and not as a multiplicand) although

we were at liberty, in consequence of a general convention (15), respecting the
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multiplication of vectors and scalars^ to denote the other projection j3' under the

form,

r. ../3'=aSfi(196,XIX.).
a

(1.) The equation,

a

expresses that the locus of p is the indefinite right line oa.

(2.) The equation,

Y^_Z& = or Y^ = v5,
a a a

expresses that the locus of p is the indefinite right line bb", in fig. 60, -which

is drawn through the point b, parallel to the line oa.

(3.) The equation

S^^ = 0, or S^ = S&, of 196, (2.),
a a a

has been seen to express that the locus of p is the plmie through b, perpendi-

cular to the line oa ; if then we combine it with the recent equation (2.), we

shall express that the point p is situated at the intersection of the two last

mentioned loci; or that it coincides with the^om^ b.

(4.) Accordingly, whether we take the two first or the two last of these

recent forms (2.), (3.), namely,

Y^Z^ = 0, ^^-^ = 0, or Y^ = V^, S^=S^,
a a a a a a

we can infer this position of the point p : in the first case by inferring,

n-3
through 202, V., that -—~ = 0, whence p - /3 = 0, by 142 ; and in the second

a

case by inferring, through 202, YI., that - = -
; so that we have in each case

a a

(comp. 104), or as a consequence from each system, the equality /o = /3, or

OP = OB ; or finally (comp. 20) the coincidence^ p = b.

(5.) The equation

TY - = TY-
a a

expresses that the locus of the point p is the cylindric surface of revolution, which

passes through the point b, and has the line oa for its axis ; for it expresses, by

III., that i)iQ perpendicular distances of p and ^,from this latter line, are equal,

2 c 2
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(6.) The system of the two equations,

ty^ = ty2, S^ = 0,
a ay

expresses that the locus of p is the (generally) elliptic section of the cylinder

(5.), made by the plane through o, which is perpendicular to the line oc.

(7.) If we employ an analogous decomposition of p, by supposing that

. p=^ p + p , p \\a, p ± a,

the three rectilinear or plane loci, (1.), (2.), (3.), may have their equations

thus briefly written

:

p =0; p = p ; P = P '

while the combination of the two last of these gives p = (5, as in (4.).

(8.) The equation of the cylindrio locus, (5.), takes at the same time the

form
T/'=Ti3'';

which last equation expresses that the projection p'' of the point p, on the

plane through o perpendicular to oa, falls somewhere on the circumference of

a circle, with o for centre, and ob'^ for radius : and this circle may accordingly

be considered as the base of the right cylinder^ in the sub-article last cited.

204. From the mere circumstance that Vg* is always a right quotient (132),

whence UYg is a right versor (153), of which the plane (119), and the axis

(127), coincide with those of q, several general consequences easily follow.

Thus wo have generally, by principles already established, the relations:

L..zV? = |; II. .. Ax.Vg = Ax.UV? = Ax.^;

IlI...KYq = -Yq, or KV = -V(144J;

IV. . . SYg = 0, or SV = (196, YII.)

;

V... (UY?)^ = -1(153, 159);

and therefore, YI. . . {YqY = - (TY?)' = - NY?,*

because, by the general decomposition (188) of a quaternion into factors, we
have

YII. . .Yq = TYq.VYq.

We have also (comp. 196, YI.),

YIII. ..YSq = 0, or YS = (202, YII.)

;

* Compare the Note to page 132.
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IX. . . YYq = Yq, or Y'- = VV = Y (202, IX.)

;

and X...YKq=-Yq, or YK = -Y,

because conjugate quaternions have opposite right parts, by the definitions in

137, 202, and by the construction of fig. 36 [p. 115]. For the same reason,

we have this other general formula,

Xl...Kq = 8q-Yq, or K = S-Y;
but we had

q==Sq + Yq, or 1 = S + Y, by 202, III., lY.

;

hence not only, by addition,

^ + K^ = 2S^, or 1 + K = 2S, as in 196, 1.,

but also, by subtraction,

Xll...q-Kq = 2Yq, or 1-K = 2Y;

whence the Characteristic, Y, of the Operation of taking the Bight Part of a

Quaternion (comp. 132, (6) ; 137 ; 156; 187; 196), may be defined by either

of the two following symbolical equations

:

XIII. . . Y = 1 -8(202, lY.) ; XIY. . . Y = i (1 -K)

;

whereof the former connects it with the characteristic S, and the latter with

the cliaracteristic K ; while the dependence of K on S and Y is expressed by

the recent formula XI. ; and that of S on K by 196, II'. Again, if the line

OB, in fig. 50, be multiplied (15) by any scalar coefficient, the perpendicular

bb' is evidently multiplied by the same ; hence, generally,

XY. . . Yxq = xYq, if x be any scalar
;

and therefore, by 188, 191,

XYl...Yq = Tq.YVq, and XYII. . . TY^ = T? . TYU;/.

But the consideration of the right-angled triangle, ob'b, iu the same figure,

shows that

XYIII. . . TY^ = T^ . sin L q,

because, by 202, II., we have • • •

TYg = T (ob": oa) = T . ob": T . OA,

and T . ob" = T . ob . sin aob
;

we arrive then thus at the following general and useful formula, connecting

quaternions with trigonometry anew :

XIX. . . TYU^ = &mLq;
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by combining which with the formula,

SU^ = cosZg(196, XVL),

we arrive at the general relation

:

XX. .. (SUg)^ + (TVU^)^=l;

which may also (by XYII., and by 196, IX.) be written thus

:

XXI. . . [SqY + {TYqy= {TqY';

and might have been immediately deduced, without sines and cosines^ from the

right-angled triangle, by the property of the square of the hypotenuse, under

the form,

(T.0B7+(T.B'B)'=(T.0B)^

The same important relation may be expressed in various other ways ; for

example, we may write,

XXII. . . N? = T?' = Sg^ - YgS

where it is assumed, as an abridgment of notation (comp. 199, VII., YIII.),

that

XXIII. ..Vg'=(Y?)^ but that XXIV. . . Y.<z' = V(?^),

the import of this last symbol remaining to be examined. And because, by

the definition of a norniy and by the properties of Sg- and Vg,

XXV. . . NSg = 8;?^ but XXVI. . . NVg = - Yq\

we may write also,

XXVII. . . Ng = N (S<? + Nq) = NSiz + NV?

;

a result which is indeed included in the formula 200,' VIII., since that equa-

tion gives, generally,

XXVIII. ..N((? + ;r)=Ng + Na?, if ^q = \\

X being, as usual, any scalar. It may be added that because (by 106, 143)

we have, as in algebra, the identity,

XXIX...-(/ + g)=-/-g,

the opposite of the sum of any two quaternions being thus equal to the sum of

the opposites, we may (by XI.) establish this other general formula

:

XXX. . .-Kq==Yq-Sq',

the opposite of the conjugate of any quaternion q having thus the same right

part as that quaternion, but an opposite scalar part.
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(1.) Prom the last formula it may be inferred, that

if q' = -'Kq, then Yq' = + Yq, but S/ = -S?;

and therefore that

Tg^ = Tq, and Ax .(f = Ls-.q, but Lq' = ir- Lq\

which two last relations might have been deduced from 133 and 143, without

the introduction of the characteristics S and V.

(2.) The equation,

Y^Y=fy2Y or(byXXVL\ NV^ = NY&,
aj \ a J

'

a a

like the equation of 203, (5.), expresses that the loons of p is the right

cylinder, or cylinder of revolution, with oa for its axis, whicli passes through

the point b.

(3.) The system of the two equations,

aJ \ aj 7

like the corresponding system in 203, (6.), represents generally an elliptic

section of the same right cylinder ; but if it happened tliat y \\ a, the section

then becomes circular.

(4.) The system of the two equations,

S^ = a;, fv^V = a;''-l, with x>-\, x<\,

represents the circle* in which the cylinder of revolution, with oa for axis,

and with (1 - x^)^T!la for radius, is perpendicularly cut by a plane at a

distance = ± xHa from o ; the vector of the centre of this circular section

being xa.

(5.) While the scalar x increases (algebraically) from - 1 to 0, and thence

to + 1, the connected scalar ^/(l - x^) at first increases from to 1, and then

decreases from 1 to ; the radius of the circle (4.) at the same time enlarging

from zero to a maximum = Ta, and then again diminishing to zero ; while the

position of the centre of the circle varies continuously, in one constant direc-

tion, from a, first limit-point a', if oa' = - a, to the point a, as a second limit,

* By the word " circle," in these pages, is usually meant a circumference, and not an area ; and

in like manner, the words "sphere," " cylinder," " cone," &c., are usually here employed to denote

surfaces, and not volumes.
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(6.) The locus of all such circles is the sphere, with aa' for a diameter, and

therefore with o for centre ; namely, the sphere which has already been repre-

sented by the equation Tp = Ta of 186, (2.) ; or by T ^ = 1, of 187, (1.) ; or

by s^ = 0,of200,(ll.);
p + a

but which now presents itself under the new form,

obtained by eliminating x between the two recent equations (4.).

(7.) It is easy, however, to return from the last form to the second, and

thence to the first, or to the third, by rules of calculation already established,

or by the general relations between the symbols used. In fact, the last equa-

tion (6.) may be written, by XXII., under the form,

N^ = 1 ; whence T^ = 1, by 190, VL;
a a

and therefore also To = Ta, by 187, and S ^—^ = 0, by 200, (11.).
/o + a

(8.) Conversely, the sphere through a, with o for centre, might already

have been seen, by the first definition and property of a norm, stated in

145, (11.)) to admit (comp. 145, (12.)) of being represented by the equation

N - = 1 ; and therefore, by XXII., under the recent form (6.) ; in which if we
o

write X to denote the variable scalar S -, as in the first of the two equa-
a

tions (4.), we recover the second of those equations : and thus might be led

to consider, as in (6.), the sphere in question as the locus of a variable circle,

which is (as above) the intersection of a variable cylinder, with a variable plane

perpendicular to its axis.

(9.) The same sphere may also, by XXYII., have its equation written thus,

NfSi^+V^Vl; or Tfs^ + Y^Vl-

(10.) If, in each variable plane represented by the first equation (4.), we

conceive the radius of the circle, or that of the variable cylinder, to be multi-

plied by any constant and positive scalar a, the centre of the circle and the

axis of the cylinder remaining unchanged, we shall pass thus to a new system

of circles, represented by this new system of equations,

a \ aaj
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(11.) The locus of these new circles will evidently be a Spheroid of Revolu-

tion ; the centre of this new surface being the centre o, and the axis of the

same surface being the diameter aa', of the sphere lately considered : which

sphere is therefore either inscribed or circumscribed to the spheroid, according

as the constant a > or < 1 ; because the radii of the new circles are in the first

case greater, but in the second case less, than the radii of the old circles ; or

because the radius of the equator of the spheroid = a Ta, while the radius of

the sphere = Ta.

(12.) The equations of the tico co-axal cylinders of revolution, which envelope

respectively the sphere and spheroid (or are circumscribed thereto) are

:

Y^Y=-1, fY-^Y=-l; or NV^ = 1, NV^ = «^
aJ \ aaj a a

or TV^ = 1, TY^ = a.
a a

(13.) The system of the two equations,

S ^ = ;r, (^V:&Y= ^ - 1, with j3 not || a,
« \ PJ

represents (comp. (3.) ) a rariuble ellipse, if the scalar x be still treated as a

variable.

(14.) The result of the elimination of x between the two last equations,

namely this new equation,

S^Y-('y0=1; or NS^ + NV^ = 1, by XXV.,XXVI.;

or

N ('s ^ + Y ^"j = 1 , by XXYII. ; or finally, lYs ^ + Y ^^ = 1, by 190, YI.,

represents the locus of all such ellipses (13.), and will be found to be an adequate

representation, through quaternions, of the general Ellipsoid (with three un-

equal axes) : that celebrated surface being here referred to its centre, as the

origin o of vectors to its points ; and the six scalar (or algebraic) constants,

which enter into the usual algebraic equation (by co-ordinates) of such a central

ellipsoid, being here virtually included in the two independent vectors, a and j3,

which may be called its two Vector- Constants.*

* It will be found, however, that other pairs of vector-constants, for the central ellipmd, may
ccasionally he used with advantage.

Hamilto.n's Elements of Quatkrnions, aD
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(15.) The equation (comp. (12.)),

Y0=-1, or NV^ = 1, or TY^ = ],

represents a cylinder of revolution, circumscribed to the ellipsoid, and touching it

(dong the ellipse which answers to the value a; = 0, in (13.) ; so that the plane

of this ellipse of contact is represented by the equation,

a

the normal to this ^j/awe being thus (comp. 196, (17.)) the vector a, or oa;

while the axis of the lately mentioned enveloping cylinder is /3, or ob.

(16.) Postponing any further discussion of the recent quaternion equation

of the ellipsoid (14.), it may be noted here tliat we have generally, by XXII.,

the two following useful transformations for the squares, of the scalar Sq, and

of the right part Yq, of any quaternion q

:

XXXI. . . S?' = Tq' + Yq' ; XXXII. . . Yq' ^ Sq' - Tq\

(17.) In referring briefly to these, and to the connected formula XXII.,

upon occasion, it may be somewhat safer to write,

(S)'' = (T)^ + (vy, (Yy = i^y - (T)% (T)^ = (S)^ - (Yy,

than S'^ = T'^ + V^ &c. ; because these last forms of notation, S^ &c., have

been otherwise interpreted already, in analogy to the known Functional Nota-

tion, or Notation of the Calculus ofFunctions, or of Operations (comp. 187, (9.))

;

196, VI. ; and 204, IX.).

(18.) In pursuance of the same analogy, any scalar may be denoted by the

general symbol,

Y-^0;

because scalars are the only quaternions of which the right parts vanish.

(19.) In like manner, a right quaternion, generally, may be denoted by the

svmbol,

S-»0;

and since this includes (comp. 204, I.) the right part of any quaternion, we
may establish this general symbolic transformation of a Quaternion :

q=Y-'0 + ^-'0.
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(20.) With this form of notation, we should have generally, at least for

real* quaternions, the inequalities,

(Y-iO)^>0; (S-^0)^<0;

so that a (geometrically real) Quaternion is generally of the form

:

Square-root of a Positive^ plus Square-root of a Nef/ative.

(21.) The equations 196, XYI., and 204, XIX., give, as a new link between

quaternions and trigonometry^ the formula

:

XXXIII. . . tan ^ ^ = TYU^ : SUy = TY? : Sg.

(22.) It may not be entirely in accordance with the theory of that Ftmc-

tional (or Operational) Notation to which allusion has lately been made, but it

will be found to be convenient in practice, to write this last result under one

or other of tlie abridgedforms : f

TV
XXXIV. . .tanz^ = -^.g; or XXXIY'. . . tan z ^ = (TY : S) g';

which have the advantage of saving the repetition of the symbol of the quaternion,

when that symbol happens to be a complex expression, and not, as here, a single

letter, q.

(23.) The transformation 194, for the index of a right quotient, gives

generally, by II., for any quaternion q, the formuls9

:

XXXY. . . lY? = TY? . Ax . ? ; XXXYI. . . lUY? = Ax . ^

;

so that we may establish generally the symbolical + equation,

XXXYr. . . lUY = Ax.

(24.) And because Ax . (1 : Yg') = - Ax .Yg, by 135, and therefore = - Ax . q,

by II., we may write also, by XXXY.,

XXXY'. . . I (I : Y?) = - Ax . g : TYg.

* Compare Art. 149 ; and the Notes to pages 87, 135.

t Compare the Note to Art. 199.

X At a later stage [286] it will be found possible (comp. the Note to page 175, &c.), to Miite,

gunerally,

and then (comp. the Note in page 120 to Art. 129) the recent equation!?, XXXVI., XXXVI'., will

take these shorter forms [291] :

kx.q = UV? ; Ax . = UV.

2D2
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205. If any parallelogram obdc (comp. 197) be projected on the plane

through o, which is perpendicular to oa, the projected figure ob"d"c"

(comp. 11) is still a parallelogram ; so that

od''=oc''+ob"(6), or r^/'+G'^

and therefore, by 106,

r:a = (7'':a) + (j3":a).

Hence, by 120, 202, for any txco quatemiom, q and q', we have the general

formula,

I...V(?' + ?)=Y/ + yg;

with which it is easy to connect this other,

II. ..Y(?'-?) = V/-Y<7.

Hence also, for any three quaternions, q, q\ q'\

^{f +(?' + ?))=W + V (?' + ?) = ^f +m + V?)

;

and similarly for any greater number of summands : so that we may write

generally (comp. 197, 11.),

III. . . Y2? = SY?, or briefly III'. . . YS = SY

;

while tlie formula II. (comp. 197, lY.) may, in like manner, be thus written,

lY. . . YA? = AY?, or lY'. . . YA = AY

;

the order of the terras added, and the mode of grouping them, in III., being

as yet supposed to remain unaltered, although both those restrictions will

soon be removed. We conclude then, that the characteristic Y, of the operation

of taking the right part (202, 204) of a quaternion, like the characteristic S of

taking the scalar (196, 197), and the characteristic K of taking the conjugate

(137, 195*), is a Distributive Symbol, or represents a distributive operation :

whereas the characteristics. Ax., z., N, U, T, of the operations of taking

respectively the axis (128, 129), the angle (130), the norm (145, (11.)), the

versor (156), and the tensor (187), are not thus distributive symbols (comp.

186, (10.), and 200, YII.) ; or do not operate upon a whole (or sum), by

operating on its parts (or summands).

(1.) We may now recover the symbolical equation K^ = 1 (145), under the

form (comp. 196, YI. ; 202, lY. ; and 204, lY., YIII., IX., XI.)

:

YIII. . .K^=(S-Y)^ = S^-SY-YS + Y^ = S + Y=1.

* Indeed, it has only been proved as yet (comp. 195, (1.) ), that KSy = SKj', for the caso of tivo

summands ; hut this result will soon be extended [207].
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(2.) In like manner we can recover each of the expressions for S^, V^ from

the other, under the forms (comp. again 202, lY.) :

YI. . .S' =(1-Y)^=1-2Y+V^=1-Y= S, as in 196, YI.

;

YIL .. Y^=(1-S)^=1-2S +S^ = 1- S=Y, as in 201, IX.;

or thus (comp. 196, IF., and 204, XIY.), from the expressions for S and Y in

terms of K

:

YIII. . . S^ = ^ (1 + Kf = i(l + 2K + lO) = h{l + K) = S;

IX. . . Y^= i (1 -K)^ = i(l - 2K + K^) = i(l - K) = Y.

(3.) Similarly,

X. . . SY = i (1 4-K:)(1 -K) = i(l -K^) = 0, as in 204, lY.

;

and XI. . . YS = i (1 - K) (1 + K) = i (I - K') = 0, as in 204, YIII.*

206. As regards the addition (or subtraction) of such ju'ghi parts, Yq, Yq\

or generally of any two right quaternions (132), we may connect it with the

addition (or subtraction) of their indices (133), as follows. Let obdc be again

any parallelogram (197, 205), but let oa be now an unit-vector (129) per-

pendicular to its plane ; so that

Ta = l, l{(5:a) = L{y:a) = l{S:a) =
l,

8 = y + /3.

Let ob'dV be another parallelogram in the same plane, obtained by a positive

rotation of the former, through a right angle, round oa as an axis ; so that

£(/3':/3) = z(/:7) = z(8':8) =
^;

Ax.(j3': ^j = Ax. (/: 7) = Ax. (S': S) = a.

Then the three right quotients, fS : a, 7 : a, and 8 : a, may represent ant/ tico

right quaternions, q, q\ and their sum, q' + q, which is always (by 197, (2.)

)

itself a right quaternion ; and the indices of these three right quotients are

(comp. 133, 193) the three lines |3', 7', S', so that we may write, under the

foregoing conditions of construction,

i3'=I0:a), 7' = I(7:«), S' = I(8:a).

* [It may be instructive to the student to form symbolical equations analogous to those in 161 (3.)

from the six symbols S, V, K and T, U, R. He may compare the equations obtained from the distri-

butive symbols S, V and K, with those obtained from T, U and R, and may notice the pairs of

symbols commutative in order of operation, &c. It is well to combine the symbols as in a multipli-

cation table.]

k
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But this third index is (hy tlie second parallelogram) the sum of the two

former indices, or in symbols, 8' = 7' + )3' ; we may therefore write,

l...I{q' + q)=lq' + Jq, if lq=lq'=l',

or in words the Index of the Sum* of any two Eight Quaternions is equal to the

Sum of their Indices. Hence, generally, for any two quaternions, q and q',

we have the formula,

Il...IV{q'+q)=lYq'+lYq,

because Yq, Yq^ are always right quotients (202, 204), and V {q' + q) is always

their sum (205, I.) ; so that the index of the right part of the sum of any tico

quaternions is the sum of the indices of the right parts. In like manner, there

is no diflSculty in proving that

111.., l{q'-q)=lq'-lq, if L q' ^ L q = '^',

and generally, that

lY. ..IV (/-?)= IY/-IV?;

the I)idex of the Difference of any two right quotients, or of the right parts of

any two quaternions, being thus equal to the Difference of the Indices.* We
may then reduce the addition or subtraction of any two such quotients, or parts,

to the addition or subtraction of their indices', a right quaternion being always

(by 133) determined, when its index is given, or known.

207. We see, then, that as the Multiplication ofany two Quaternions was

(in 191) reduced to (1st) the arithmetical operation of multiplying their tensors,

and (Ilnd) the geometrical operation of multiplying their versors, which latter

was comtriicted by a certain composition of rotations, and was i'epresented (in

either of two distinct but connected ways, 167, 175) by sides or angles of a

spherical triangle : so the Addition of any two Quaternions may be reduced

(by 197, I., and 206, II.) to, 1st, the algebraical addition of their scalar parts,

considered as two positive or negative numbers (16.) ; and, Ilud, the geome-

trical addition of the indices of their right parts, considered as certain vectors (1.)

:

this latter Addition of Lines being performed according to the Rule of the

Parallelogram (6.).t In like manner, as the general Division of Quaternions

* Compare the Note to page 175.

t It does not fall within the plan of these Notes to allude often to the history of the subject ; but

it ought to be distinctly stated that this celebiated liule, for what may be called Geometrical Addition

of right lines, considered as analogous to composition of motions (or oi forces), had occurred to several

writers before the invention of the quaternions : although the method adopted, in the present and in

a foi-mer work, of deducing that rule, by algebraical analogies, from the symbol b — a(1.) for the line ab,

may possibly not have been anticipated. The reader may compare the Notes to the Preface to the

author's Volume of Lectures on Quaternions (Dublin, 1853).
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was seen (in 191) to admit of being reduced to an arithmetical division of

tensors, and a geometrical division ofversors, so we may now (by 197, III., and

206, IV.) reduce, generally, the Subtraction of Quaternions to (1st) an alge-

braical subtraction of scalars, and (Ilnd) a geometrical subtraction of vectors :

this last operation being again constructed by a parallelogram, or even by a

plane triangle (comp. Art. 4, and fig. 2). And because the sum of any given

set of vectors was early seen to have a value (9.), which is independent of their

order, and of the mode of grouping them, we may now infer that the Sum of

any number of given Quaternions has, in like manner, a Value (comp. 197, (I.))>

which is independent of the Order, and of the Grouping of the Sunimands : or in

other words, that the general Addition of Quaternions is a Commutative* and an

AHSociative Operation.

(I.) The formula, VS? = SV?, of 205, III.,

is now seen to hold good, for any number of quaternions, independently of the

arrangement of the terms in each of the two sums, and of the manner in

which they may be associated.

(2.) We can infer anew that

K {q' +q)= Kg' + Kg, as in 195, II.,

under the form of the equation or identity,

S (/+?)- V (?' + ?) = (S/ - V/) + (S^ - Yq).

(3.) More generally, it may be proved, in the same way, that

K2? = SK^, or briefly, KS = SK,

whatever the number of the summands may be.

208. As regards the guotient or product of the right parts, Yq and Yq\ of

any two quaternions, let t and f denote tlie tensors of those two parts, and

let X denote the angle of their indices, or of their axes, or the mutual inclination

of the axes, or of the planes,i of the two quaternions q and / themselves, so

that (by 204, XVIII.),

t = TYg = Tg . sin z q, f=:TYg'=Tg\ sin l g",

and x = L {lYq' : lYg) = L {Ax.g' : Ax.g).

* Compare the Note to page 176.

t Two planes, of course, make with each other, in general, tteo unequal and supplementary ant/les :

but we here suppose that these are mutuitUy distinguished, by taking account of the aspect of each
plane, as distinguished from the opposite aspect: which is most easily done (111), by considering the
axes as above.
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Then, by 193, 194, and by 204, XXXV., XXXT.,
]

I. ..Yq':Yq = IV/ : IV? = + {TYq' : TV?) . (Ax .
q'

: Ax. q) ;

II. . .V?'.V!7 = IV?':I^=- (TV?\ TV?) . (Ax . ?' : Ax. ?)

;

and therefore (eomp. J 98], with the temporary abridgments proposed above,

III. . . S (V?' : V?) = ft-' cos x; IV. . . SU (V?' : V?) = + cos x
;

V. . . S(V?'. V?) =-ftco8x; VI. . . SU(V?'.V?) =-cosa;;

VII. . ,L{Yq\Yq)=x; VIII. . . l{Yq' .Yq) = tt - x.

We have also generally (comp. 204, XVIII., XIX.),

IX. . . TV (V?' : Yq) = ft-' sin ;r ; X. . . TVU (V?' : V?) = sin a;

;

XI. . . TV (V?' . V?) = ft sin X ; XII. . . TVU {Yq' . V?) = sin «>

;

and in particular,

XIII. . . V (V?' : V?) = 0, and XIV. . . V (V?' . V?) = 0,

if /111? (123);

because (comp. 191, (6.), and 204, VI.) the quotient or product of the right

parts of two complanar quaternions (supposed here to be both non-scalar (108),

so that t and f are each > 0) degenerates (131) into a scalar, which may be

thus expressed

:

XV. . .V?':V? = + fi!-S and XVI. . . V?'. V? = - n, if^ = 0;
but

XVII. . . V?' : V? = - ft-\ and XVIII. . . V?' . V? = + t% iix^ir;

the first ease being that of coincident, and the second case that of opposite axes.

In the more general case of diplanarity (119), if we denote by 8 the unit-line

which is perpendicular to both their axes, and therefore common to their two planes,

or in which those planes intersect, and which is so directed that the rotation

round it from Ax.q to Ax
.
?' is positive (comp. 127, 128), the recent for-

muisB I., II., give easily,

XIX. . . Ax. (V?': V?) = + 8; XX. . . Ax. (V?'. V?) = - g;

and therefore (by IX., XI., and by 204, XXXV.), the indices of the rightparts,

of the quotient and product of the right parts of any two diplanar quaternions,

may be expressed as follows

:

XXI. . . IV (V?' : V?) = + g . ft-' sin x
;

XXII. . . IV (V?' . V?) = - g . ft sin X.
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(1.) Let ABC be any triangle upon the unit-sphere (128), of which the

spherical angles and the corners may be denoted by the same letters a, b, c,

while the sides shall as usual be denoted by a, b, c; and let it be supposed

that the rotation (comp. 177) round a from c to b, and therefore that round b

from A to c, &c., is positive, as in fig. 43 [p. 144]. Then writing, as we have

often done,

q = (i : a, and q' = y jS, where a = oa, &c.,

we easily obtain the following expressions for the three scalars t, f, x, and

for the vector S

:

^ = sin c ; ^^ = sin a ; a? = tt - b ; 8 = - /3.

(2.) In fact we have here,

Tg = T/=l, Lq = c, Lq'=a)

whence t and t' are as just stated. Also if a', b', c' be (as in 175) il[iQ positive

poles of the three successive sides bc, ca, ab, of the given triangle, and therefore

the points A, b, c the negative poles (comp. 180, (2.)) of the new arcs bV, cV,

a'b', then

Ax . q = o(/, Ax . / = oa'
;

but X and S are the angle and the aans of the quotient of these two axes, or of

the quateruion which is represented (162) by the arc c'a! ; therefore x is, as

above stated, the supplement of the angle b, and 8 is directed to the point upon

the sphere, whicli is diametrically opposite to the point b.

(3.) Hence, by III. V. YII. VIII. IX. XI., for any triangle abc on the

unit-sphere, with a = oa, &c., we have the formulae

:

XXIII. . .SfV^:V-j = -8ina coseo c cos b
;

XXIY. . . S
(
V ^ . V —

]
= + sin a sin c cos B

;

XXV....(v|:vf) = .-B; XXVI....(v2.Tf) = B;

XXVII. . . TV('v^ : V^^ = + sina cosecc sin b;

XXVIII. . .TVfVX.V^U + sinasincsinB.
/3* a

Hamilton's Elements of Quaternions. 2 £
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(4.) Also, by XIX. XX. XXI. XXII., if the rotation round b from a

to c be still positive^

XXIX. . . Ax.('y|:Y^V_|3. xXX. . . Ax.^V^ . V^^ = + |3;

XXXI. . . lY f Y "5 : V -
j
= - /3 sin a cosec c sin b

;

XXXII. . . IyIy^.Y^) = + /3 sin a sine sin B.

(5.) If, on the other hand, the rotation round b from a to c were negative,

then writing for a moment ai = - a, /3i = -
j3, 71 = - 7, we should have a uqw

and opposite triangle, AiBiCi, in which the rotation round Bi from Ai to Ci would

be positive, but the angle at Bi equal in magnitude to that at b ; so that by

treating (as usual) all the angles of a spherical triangle as positive, we should

have Bi = B, as well as Ci = c, and «i = a ; and therefore, for example, by XXXI.,

1"^^
( Y-^ : Y — )

= - j3i sin «! cosec Ci sin b,,

V Pi «i/

or lY (Y^:Y-] = + i3sinfl! cosec c sin b
;

V P «/

the four formulse of (4.) would therefore still subsist, provided that, for this

new direction of rotation in the given triangle, we were to change the sign of

/3, in the second member of each.

(6.) Abridging, generally lYq : Sq to (lY : S) q, as TYq : Sq was abridged,

in 204, XXXIT., to (TY : S) q, we have by (5.), and by XXIY., XXXII.,

this other general formula, for any three unit-vectors a, j3, 7, considered

still as terminating at the corners of a spherical triangle abc :

XXXIII. . . (lY : S)
Cy^

. Y 2\ = ±/3 tan b
;

the upper or the lower sign being taken, according as the rotation round b

from A to c, or that round /3 from a to 7, which might perhaps be denoted by

the symbol ajiy, and which in quantity is equal to the spherical angle b, is

positive or negative.

209. When the planes of any three quaternions q, q', q\ considered as all

passing through the origin o (119), contain any common line, those three may

then be said to be Collinear* Quaternions ; and because the axis of each is then

* Quaternions of which the planes are parallel to any common line may also be said to be collinear.

Compare the first Note to page 116.
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perpendicular to that line, it follows that the Axes of CoUinear Quaternions are

Complanar : while conversely, the complanarity of the axes insures the colli-

nearity of the quaternions, because the perpendicular to the plane of the axes is a

line common to the planes of the quaternions.

(1.) Complanar quaternions are always collinear; but the converse propo-

sition does not hold good, collinear quaternions being not necessarily com-

planar.

(2.) Collinear quaternions, considered as fractions (101), can always be

reduced to a common denominator (120) ; and conversely, if three or more

quaternions can be so reduced, as to appear under the form of fractions with

a common denominator c, those quaternions must be collinear: because the

line £ is then common to all their planes.

(3.) Any two quaternions are collinear with any scalar ; the plane of^ scalar

being indeterminate* (131).

(4.) Hence the scalar and right parts, Sq, S/, Yq, Yq\ of any two quater-

nions, are always collinear with each otlier.

(5.) The conjugates of collinear quaternions are themselves collinear.

210. Let q, q', <(' be any three collinear quaternions ; and let a denote a

line common to their planes. Then we may determine (comp. 120) three

other lines /3, 7, I, such that

? = -» <i
=-, /= s;

a a o

and thus may conclude that (as in algebra),

because, by 106, 107,

In like manner, at least under the same condition of oollinearity,t it may be

proved that

lL..{q-q)q''-^q"-qq'\

Operating by the characteristic K upon these two equations, and attending to

192, II., and 195, II., we find that

III. . . Kq'\ (K^ + K^) = Kq'\ K/ + K/'. Kq
;

IV. . . Kq''. (Kq' - Kq) = Kq". Kq' - Kq". Kq
;

where (by 209, (5.)) the three conjugates of arbitrary coUinears, Kq, Kq', Kq",

• Compare the Note to page 117.

+ It will soon be seen, however, that this condition is unnecessary.

2 E 2
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may represent any three coUinear quaternions. We have, therefore, with the

same degree of generality as before,

V. . . f (/+ q) = /Y + fq ;
VI. . .

q'' (/ - q) = ?Y " A-
If, then, q, q\ q'\ q"' be any four colUnear quaternions, we may establish the

formula (again agreeing with algebra)

:

VII. . . if' + qn (?- + ?) = q'Y + q'Y + ^Q +A 5

and similarly for any greater number, so that we may write briefly,

VIII. . . S^ . 2^ = ^q'q,

where 2/ = $-1 + $-2 + . . + q„i, 2/ = q'i + q\ + .. + q'n,

and 2/? = q\qi + • • ?'i?m + (fiqi + . . . + q'nqm,

m and n being any positive whole numbers. In words (comp. 13.), the Multi-

plication of ColUnear* Quaternions is a Doubly Distributive Operation.

(I.) Hence, by 209, (4.), and 202, III., we have this general transforma-

tion, for the product of any two quaternions :

IX. ..iq = S/. Sg + Vg. S^ + S/, V? + V?'. Vy.

(2.) Hence also, for the square of any quaternion, we have the transforma-

tionf (comp. 126; 199, VII.; and 204, XXIII.)

:

X. . .q^ = ^q'+2^q.Yq + Yq\

(3.) Separating the scalar and right parts of this last expression, we find

these other general formulae

:

XL ..S.?^ = Sg^ + Vg^; XII. . . V.?^ = 2S?.Vg;

whence also, dividing by Tg'', we have

XIII. . . SU iq')
= [^JJqY + (VU^)^ ; XIV. . . VU {q') = 2SU? . TUq.

(4.) By supposing q'= K.q, in IX., and therefore S/ = ^q, Yq' = -Yq, and

transposing the two conjugate and therefore complanar factors (comp. 191,

(1.) ), we obtain this general transformation for a norm, or for the square of a

tensor (comp. 190, V. ; 202, III. ; and 204, XI.)

:

XV. . . T?^ = N? = qKq = {Sq + Yq) {Sq -Yq) = Sq'-Yq';

which had indeed presented itself before (in 204, XXII.), but is now obtained

* This distributive property of multiplication will soon be found (compare the last Note) to extend

to the more general case, in which the quaternions are not colUnear.

t [By means of the formulae of 204 many different transformations involving K, S, V, and T may
be eifected on a square or product.]
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in a new way, and without any employment of sines, or cosines, or even of the

well-known theorem respecting the square of the hypotenuse.

(5.) Eliminating Yq\ by XV., from XI., and dividing by Tg'^ we find

that

XYI. . .S,q' = 2^q' - Tq' ; XVII. . . SU {q') = 2 (SU^)^ - 1
;

agreeing with 199, VI. and IV., but obtained here without any use of the

known formula for the cosine of the double of an angle.

(6.) Taking the scalar and right parts of the expression IX., we obtain

these other general expressions

;

XVIII. ..Sq'q = S/. S? + S (Vq'.Yq) ;

XIX. . . Yq'q = Yq\ Sq+Yq.S^ + Y {Yq. Yq) ;

in the latter of which we may (by 126) transpose the two factors Yq', Sq, or

Yq, Sq\ We may also (by 206, 207) write, instead of XIX., this other

formula :

XIX'. . . lYq'q = IV^'. Sq + lYq . S/ + IV (V^. Yq) .

(7.) If we suppose, in VII., that q" = Kq, q"' = 'Kq', and transpose (comp.

(4.) ) the two complauar (because conjugate) factors, q' + q and K {q' + q), vfe

obtain the following general expression for the norm of a sum

:

{q' + q)K{q+q)=q''K^+q'Kq' + q'Kq + qKq',

or briefly,

XX. . . N (/ +q) = N/ + 2S . qKq' + N?, as in 200, VII.
;

because

q'Kq = K . qKq', by 192, II., and (1 + K) . qKq' = 2S . qKq', by 196, II'.

(8.) By changing q' to x in XX., or by forming the product oi q + x and

Kg + X, where x is any scalar, we find that

XXI. . . N (y + a?) = Ng + 2x^q + ir^ as in 200, VIII.
;

whence, in particular,

XXr. . .N(g-l)=Ng-2S? + l,a8in200,IL

(9.) Changing q to /3 : a, and multiplying by the square of Ta, we get,

for any two vectors, a and /3, the formula,

XXII. . . T (/3 - a)^ = TjS^ - 2T/3 . Ta . SU ^ + Ta%
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in which Ta' denotes* (Ta)' ; because (by 190, and by 196, IX.),

Nf@-lVNt_" = (5fc)Y, and S§ = 5§SU^.
\a J a \ la J a la a

(10.) In any plane triangle, abc, with sides of which the lengths are as usual

denoted by c?, b, c, let the vertex c be taken as the origin o of vectors ; then
Q

a = CA, /3 = CB, Q-a = AB, Ta = b, T/3 = «, T (8 - a) = C, SU - = COS c

;

a
we recover therefore, from XXII., the fundamental formula of plane trigono-

metry^ under the form

XXIII. . . c' = a* - 2ah cos c + h\

(11.) It is important to observe that we have not here been arguing in a

circle ; because although, in Art. 200, we assumed, for the convenience of the

student, a previous knowledge of the last written formula, in order to arrive

more rapidly at certain applications, yet in these recent deductions from the

distributive property VIII. of multiplication of (at least) collinear quaternions,

we have founded nothing on the results of that former Article ; and have

made no use of any properties of oblique-angled triangles, or even of right-

angled ones, since the theorem of the square of the hypotenuse has been

virtually proved anew in (4.) : nor is it necessary to the argument, that any

properties of trigonometric /Mwc^eows should be known, beyond the mere defini-

tion of a cosine, as a certain projecting factor, from which the formula 196, XYI.

was derived, and which justifies us in writing cos c in the last equation (10.).

The geometrical Examples, in the sub-articles to 200, may therefore be read

again, and their validity be seen anew, without any appeal to even plane trigono-

metry being now supposed.

(12.) The formula XV. gives ^f = T^^ + y^a^ as in 204, XXXI. ; and we

know that Vg'^ as being generally the square of a right quaternion, is equal to

a negative scalar (comp, 204, VI.), so that

XXIV. . . V^' < 0, unless z ? = 0, or = tt,

in each of which two cases Vg' = 0, by 202, (6.), and therefore its square

vanishes ; hence,

XXV.. .S?^<T?^ (SU?)'<1,

in every other case.

* "We are not yet at liberty to interpret the symbol Ta^ as denoting also T (o^) ; because we have

not yet assigned amj meaning to the square of a vector, or generally to the product of two vectors. In

the Third Book of these Elements [282 (3.)] it will be shown, that such a square or product can be

interpreted as being a quaternion : and then it will be found (comp. 190), that

T (a2) = (Ta)'' = T«2,
whatever vector a may be.
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(13.) It might therefore have been thus proved, without any use of the

transformation SUg- = cos z g' (196, XVI.), that (for any real quaternion q) we

may have the inequalities,

XXYI. . .SU^< + 1, SUg>-l, and Sg< + T?, S^>-Tg,

unless it happen that z. g- = 0, or = tt ; SUg' being = + 1 , and Sg = + Tg, in the

first ease ; whereas SUg = - 1, and Sg' = - Tg', in the second case.

(14.) Since Tg- = Ng, and Tg . Tg'= T . gKg' = T . g'Kg = Ng . T (g': g), while

S . gKg' = S . g'Kg = Ng . S (g' : g), the formula XX. gives, by XXVI.,

XXVII. . . (Tg' + Tg)^-T(g' + g)^ = 2(T-S)gKg' = 2Ng.(T-S)(g':g)>0,

if we adopt the abridged notation,

XXVIII. . . Tg - Sg = (T - S) g,

and suppose that the quotient g' : g is not a positive scalar ; hence,

XXIX. . . Tg' + Tg > T (/ + g), unless / = xq, and a; > ;

in which excepted case, each member of this last inequality becomes

= {l + x) Tg.

(15.) Writing g = /3 : a, g' = y : a, and multiplying by To, the formula

XXIX. becomes,

XXX. . .T7 + Tj3>T(7 + i3), unless y = x^, x>(i)

in which latter case, but not in any other, we have Uy = U/3 (155). We
therefore arrive anew at the results of 186, (9.), (10.), but without its having

been necessary to consider any triangle^ as was done in those former sub-

articles.

(16.) On the other hand, with a corresponding abridgment of notation, we

have, by XXVI.,

XXXI. . . Tg + Sg = (T + S) g > 0, unless z g = tt ;

also, by XX., &o.,

XXXII. . . T (/ + g)' - (Tg' - Tg)* = 2 (T + Sj gKg' = 2Ng . (T + S) (g': g)

;

hence,

XXXIII. . . T (g' + g) > ± (Tg' - Tg), unless ^ = -xq, a; > ;

where either sign may be taken.

(17.) And hence, on the plan of (15.), for any two vectors /3, 7,

XXXIV. . . T (y + /3) > ± (Ty - T/3), unless Uy = - U/3,
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whichever sign he adopted ; but, on the contrary,

XXXY. . . T (7 + |3) = ± (Ty - T/3), if TJy = - Uj3,

the upper or the lower sign being taken, according as T7 > or < Tj3 : all

which agrees with what was inferred, in 186, (11.), from r/eom^^nm/ conside-

rations alone, combined with the definition of Ta. In fact, if we make

j3 = OB, 7 = oc, and - 7 = 00', then obc' will be in general a iMne triangle^ in

which the length of the side bc' exceeds the difference of the lengths of the

two other sides ; but if it happen that the directions of the two lines ob, oc'

coincide, or in other words that the lines ob, oc have opposite directions, then

the difference of lengths of these two lines becomes equal to the length of the

line Bc'.

(18.) With the representations of q and g^, assigned in 208, (1.), by two

sides of a spherical triangle abo, we have the values,

Sg- = cos c, Sg-' = cos a, ^gfq = S (7 : a) = cos 6
;

the equation XVIII. gives therefore, by 208, XXIV., the fundamentalformula

of spherical trigonometry (comp. (10.) ), as follows :

XXXVI. . . cos 5 = cos « cos c + sin a sin c cos b.

(19.) To interpret, with reference to the same spherical triangle, the con-

nected equation XIX., or XIX', let it be now supposed, as in 208, (5.), that

the rotation round b from c to a is positive, so that b and b' are situated at

the same side of the arc ca, if b' be still, as in 208, (2.), the positive pole of

that arc. Then writing a = oa', &c., we have

TVq = y sin c ; IV/ = a sin a ; IV/g' = - /3' sin 5 ;

and IV {Yq\ Yq) = - /3 sin a sin c sin b (comp. 208, (5.) ),

with the recent values (18), for Sg- and S/; thus the formula XIX'. becomes,

by transposition of the two terms last written :

XXXVII. . . /3 sin « sin c sin b = a sin a cose + /3' sin & + 7' sin c cos a.

(20.) Let /o = OP be any unit-vector ; then, dividing each term of the last

equation by p, and taking the scalar of each of the four quotients, we have,

by 196, XVI., this new equation

:

XXXVIII. . . sin a sin c sin b cos pb = sin a cos c cos pa' + sin d cos pb'

+ sin c cos a cos pc';
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where a, h, c are as usual the sides of the spherical triangle abc, and a', b', c'

are still, as in 208, (2.), the positive poles of those sides ; but p is an arbitrary

point, upon the surface of the spliere. Also cos pa', cos pb', cos pc' are

evidently the sines of the arcual perpendiculars let fall from that point upon

those sides ; being positive when p is, relatively to them, in the same hemi-

spheres as the opposite corners of the triangle, but negative in the contrary

case ; so that cos aa', &c., are positive, and are the sines of the three altitudes

of the triangle.

(21.) If we place p at b, two of these perpendiculars vanish, and the last

formula becomes, by 208, XXYIII.,

XXXIX. . . sin 6 cos bb' = sin a sin c sin b = TV ( Y ^ . V —
)

;

\ P a/

such then is the quaternion expression for the product of the sine of the side

CA, multiplied by the sine of the perpendicular let fall upon that side, from

the opposite vertex b.

(22.) Placing p at a, dividing by sin a cos c, and then interchanging b and

c, we get this other fundamental formula of spherical trigonometry,

XL. . . cos aa' = sin c sin b = sin h sin c

;

and we see that this is included in the interpretation of the quaternion equa-

tion XIX., or XIX'., as the formula XXXYI. was seen in (18.) to be the

interpretation of the connected equation XYIII.

(23.) By assigning other positions to p, other formulae of spherical trigo-

nometry may be deduced, from the recent equation XXXYIII. Thus if we

suppose p to coincide with b', and observe that (by the supplementary*

triangle),

b'c' = tt - a, c'a' = tt - b, a'b' = tt - c,

while

cos bb' = sin a sin c = sin c sin a, by XL.,

we easily deduce the formula,

XLI. . . sin a sin c sin a sin b sin c = sin b - cos c cos c sin a - cos a cos a sin c

;

which obviously agrees, at the plane limit, with the elementary relation,

A + B + C = TT.

* No previous knowledge of Spherical Trigonometrij
,
properly so called, is here supposed ; the

supplementary relations of two polar triangles to each other forming rather a part, and a very elemen-

tary onei of spherical geometry.

Hamilton's Elements of Quaternions. 2 F
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(24.) Again, by placing p at a', the general equation becomes,

XLII. . . aina cos c = sin 5 cos c + sin c cos a cos b
;

with the verification that, at the plane limit,

a = b cos c + c cos b.

But we cannot here delay on such deductions, or verifications : although it

appeared to be worth while to point out, that the whole of spherical trigono-

metry may thus be developed, from the fundamental equation of multiplica-

tion of quaternions (107), when that equation is operated on by the two

characteristics S and Y, and the results interpreted as above.

211. It may next be proved, as follows, that the distributive formula I. of

the last Article holds good, when the three quaternions, g, q', q", which enter

into it, without being now necessarily collinear, are right ; in which case their

reciprocals (135), and their sums (197, (2.) ), will be right also. Let then

/.q = /.q'=Lq'' = '^, qq, = l;

and therefore, , „ ,v tt

We shall then have, by 106, 194, 206,

{q''+q')q = l{q''+q'):lq,

= {lq'':Iq,) + {lq':lq;)=q''q + q'q;

and the distributive property in question is proved.

(1.) By taking conjugates, as in 210, it is easy hence to infer, that the

other distributive formula, 210, V., holds good for any three right quater-

nions ; or that

?(?''+/)=??''+?/> if ^? = ^/=^?" = |-

(2.) For any three quaternions, we have therefore the two equations

:

(Vg'' + VjO . Y^ = Yq'\Yq + Yq\ Yq ;

Yg .W + Yq') = Yq.Yf + Y^ . Yq\

(3.) The quaternions q, q\ q" being still arbitrary, we have thus, by

210, IX.,

{f+ (i)q = (Sg''+ SO . S^ + (Y/'+ Y/) . S^ + Y<7 . (S<7''+ S^O + (W+^Z) -V?

= (Sj". Sy +Yg". SJ +Y? . ^f+Yf.Yq) + (S?'. Sg +Y/. S^ +Y^ . ^q+Yq\Yq)

^fq + q'q;
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so that the formula 210, I., and therefore also (by conjugates) the formula

210, v., is valid generally.

212. The General* Multiplication of Quaternions is therefore (comp. 13,

210) a Doiihly Distributive Operation ; so that we may extend^ to quaternions

generally, the formula (comp. 210, VIII.)

j

I. . . S/. ^q = ^q'q

:

however many the summands of each set may be, and whether they be, or be

not, collinear (209), or right (211).

(1.) Hence, as an extension of 210, XX., we have now,

11. . .N2<?=2N<7 + 2SS^K/;

where the second sign of summation refers to all possible binary combinations

of the quaternions g', 3^, . .

(2.) And, as an extension of 210, XXIX., we have the inequality,

III. . . ST? > T2?,

unless all the quaternions g, q', . . bear scalar and positive ratios to each other,

in which case the two members of this inequality become equal : so that the

sum of the tensors, of any set of quaternions, is greater than the tensor of the

sum, in every other case.

(3.) In general, as an extension of 210, XXVII.,

IV. . . {^TqY - {T-2qY = 2S (T - S) qXq'.

(4.) The formulae, 210, XVIII., XIX., admit easily of analogous ex-

tensions.

(5.) We have also (comp. 168) the general equation,

V. ..(S?)^-S(?^) = S(?g' + g^?);

in which, by 210, IX.,

VI. ..qq'+ q'q = 2 (Sg . 8/ + Yq . 8/ + V/. 8^ + 8 (Vq\Yq)

)

;

because, by 208, we have generally

VII. . . V {Yq'.Yq) =-YiYq .Yq') ;

or Ylll...Yq'q = -Yq(f, if Z? = Z/ = |.

(Comp. 191, (2.), and 204, X.)

* Compare the Notes to pages 211 and 212. [On page (35) of the Preface to the "Lectures on

Quaternions," Hamilton refers to an early speculation of liis (1831) on the multiplication of lines for

which the product of sums was not equal to the sum of products. "When addition is not commutative,

multiplication even by a scalar is not distributive. See 180 (3.)]

2r2
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213. Besides the advantage which the Calculus of Quaternions gains, from

the general establishment (212) of the Distributive Principle, or Distributive

Property of Multiplication, by being, so far, assimilated to Algebra, in processes

which are of continual occurrence, this principle or property will be found to

be of great importance, in applications of that calculus to Geometry ; and

especially in questions respecting the (real or ideal*) intersections of right lines

with spheres, or other surfaces of the second order, including contacts (real or

ideal), as limits of such intersections. The following examples may serve to

give some notion, how the general distributive principle admits of being

applied to such questions : in some of which however the less general prin-

ciple (210), respecting the multiplication of collinear quaternions (209), would

be sufficient. And first we shall take the case of chords of a sphere, drawn

from a given point upon its surface.

(1.) From a point a, of a sphere with o for centre, let it be required to

draw a chord ap, which shall be parallel to a

given line ob ; or more fully, to assign the

vector, p = OP, of the extremity of the chord so

drawn, as a function of the two given vectors,

a = OA, and /3 = ob ; or rather of a and U/3,

since it is evident that the length of the line /3

cannot affect the result of the construction,

which fig. 51 may serve to illustrate.

(2.) Since ap
||

ob, or p - a
||

/3, we may
begin by writing the expression,

p = a + x(i (15),

which may be considered (comp. 23, 99) as a form of the equation of the right

line AP ; and in which it remains to determine the scalar coefficient x, so as to

satisfy the equation of the sphere,

T|0 = Ta(186, (2.)).

In short, we are to seek to satisfy the equation,

T (a + xfi) = Ta,

by some scalar x which shall be (in general) different from zero ; and then to

substitute this scalar in the expression p = a + ccfi, in order to determine the

required vector p.

* Compare the Notes to pages 87, 88, &c.
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(3.) For this purpose, an obvious process is, after dividing both sides by

Tj3, to square, and to employ the formula 210, XXI., which had indeed

occurred before, as 200, YIII., but not then as a consequence of the distribu-

tive property of multiplication. In this manner we are conducted to a

quadratic equation, which admits of division by x, and gives then,

P P
the problem (I.) being thus resolved, with the verification that j3 may be

replaced by U)3, in the resulting expression for p.

(4.) As a mere exercise of calculation, we may vary the last process (3.),

by dividing the last equation (2.) by To, instead of T/3, and then going on

as before. This last procedure gives

1 = Nfl +aj2V 1 + 2^S 2 + a;'N 2.;

\ a J a a
and therefore

aj = - 2S 2 : N 2 = - 2S ^ (by 196, XIF.), as before.
a a p

(5.) In general, by 196, IF.,

1 - 2S = - K ;

hence, by (3.),

and finally,

a new expression for p, in which it is not permitted generally, as it was in

(3.), to treat the vector /3 as the multiplier,* instead of the multiplicand.

(6.) It is now easy to see that the second equation of (2.) is satisfied ; for

the expression (5.) for p gives (by 186, 187, &c.),

Tp = T^.Tj3 = Ta,

as was required.

(7.) To interpret the solution (3.), let c in fig. 51 be the middle point of

the chord ap, and let d be the foot of the perpendicular let fall from a on ob
;

then the expression (3.) for p gives, by 196, XIX.,

CA = i (a - p) = ^S ^ = CD

;

and accordingly, goad is a parallelogram.

* Compare the Note to page 159.
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(8.) To interpret the expression (5.), which gives

-pf =K75, or — =K —, if OP = po,
P p OB OB

we have only to observe (oomp. 138) that the angle aop' is bisected internally,

or the supplementary angle aop externally, by the indefinite right line ob

(see again, fig. 51).

(9.) Conversely, the geometrical considerations which have thus served in

(7.) and (8.) to interpret or to verifi/ the two forms of solution (3.), (5.), might

have been employed to deduce those two forms, if we had not seen how to

obtain them, by rules of calculation, from the proposed conditions of the

question. (Oomp. 145, (10.), &c.)

(10.) It is evident, from the nature of that question, that a ought to be

deducible from /3 and p, by exactly the same processes as those which have

served us to deduce p from /3 and a. Accordingly, the form (3.) of p gives

and the form (5.) gives

And since the first form can be recovered from the second, we see that each

leads us back to the parallelism, p - a
\\ (5 (2.).

(11.) The solution (3.) for cc shows that

X = 0, p = a, P = A, if S (a : /3) = 0, or if /3 ± a.

And the geometrical meaning of this result is obvious ; namely, that a right

line drawn at the extremity of a radius oa of a sphere, so as to be perpendi-

cular to that radius, does not (in strictness) intersect the sphere, but touches it

:

its second point of meeting the surface coinciding, in this case, as a limit, with

the first.

(12.) Hence we may infer that the plane represented by the equation,

S^^« = 0, or S^ = l,
a a

is the tangent plane (comp. 196, (5.) ) to the sphere here considered, at the

point A.

(13.) Since j3 may be replaced by any vector parallel thereto, we may
substitute for it 7 - a, if y = oc be the vector of any given point c upon the chord
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AP, wliether (as in fig. 51) the middle point, or not ; we may therefore write,

by (3.) and (5.),

10 = 0-2(7-0)8 = - K . (7 - a).
7 - a 7 — a

214. lu the examples of the foregoing Article, there was no room for the

occurrence of imaginary roots of an equation, or for ideal intersections of line

and surface. To give now a case in which such imaginary intersections may
occur, we shall proceed to consider the question of drawing a secant to a sphere,

in a given direction, from a given external point ; the recent figure 51 still

serving us for illustration.

(1.) Suppose then tliat c is the vector of any given point e, through

which it is required to draw a chord or secant ePoPi, parallel to the same

given line /3 as before. We have now, if /oo = oPo,

po = £ + «o^, Ta = T/Oo = T (6 + i»oi3),

Xa being a new scalar ; and similarly, if ^1 = oPi,

by transformations* which will easily occur to any one who has read recent

articles with attention. And the points Po, Pi will be together real, or

together imaginq,ryy according as the quantity under the radical sign is positive

or negative ; that is, according as we have one or other of the two following

inequalities,

T-> or <TV-.x^> or <xv^.

(2.) The equation (comp. 203, (5.) ),

TY| = T^ or (Tp)%(v-;J=0,

represents a cylinder of revolution, with ob for its axis, and with To for the

radius of its base. If e be a point of this cylindric surface, the quantity

* It does not seem to be necessary, at the present stage, to supply so many references to former

Articles, or sub-articles, as it has hitherto been thought useful to give ; but such may still, from

time to time, be given.

9. = £ +^1)3, .r. = - S^ ± J{(t ^J+
( V4,
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under the radical sign (1.) vanishes ; and the two roots -Xo, x^ of the quadratic

become equal. In this case, then, the line through e, which is parallel to ob,

touches the given sphere; as is otherwise evident geometrically, since the

cylinder envelopes the sphere (comp. 204, (12.) ), and the line is one of its

generatrices. If e be internal to the cylinder, the intersections Pq, Pi are real;

but if E be external to the same surface, those intersections are ideal^ or

imaginary.

(3.) In this last case, if we make, for abridgment,

= -St, and . = JJ(tV0-(t
/̂3

s and t being thus two given and real scalars, we may write,

Xo = s - t ^ - 1; Xi^s + t'y-l;

where y^ - 1 is the old and ordinary imaginary symbol of Algebra, and is not

invested here with any sort of Geometrical Interpretation.* We merely express

thus the fact of calculation, that (with these meanings of the symbols a, j3, e,

s and t) the formula Ta = T (c + a;j3), (1.), when treated by the rales of quater-

nions, conducts to the quadratic equation,

{x - sf + f = 0,

which has no real root ; the reason being that the right line through e is, in

the present case, wholly external to the sphere, and therefore does not really

intersect it at all ; although, for the sake of generalization of language, we may

agree to say, as usual, that the line intersects the sphere in two imaginary

points.

(4.) We must however agree, then, for consistency of symbolical expression,

to consider these two ideal points as having determinate but imaginary vectors,

namely, the two following :

/oo = e + sj3 - ^j3 v/ - 1 ; /oi = € + s/3 + ^/3 v^ - 1

;

in which it is easy to prove, 1st, that the real part c + sj3 is the vector i of the

foot e' of the perpendicular let fall from the centre o on the line through e

which is drawn (as above) parallel to ob ; and Ilnd, that the real tensor tT(5

of the coefficient of ^/ - lin the imaginary part of each expression, represents

the length of a tangent e'e'' to the sphere, drawn from that external point, or

foot, e'.

* Compare again the Note to page 87, and Art. 149.
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(5.) In fact, if we write oe' = c' = e + sj3, we shall have

e'e = £ - c' = - sj3 = /3S ^ = projection of oe on ob
;

which proves the 1st assertion (4.), whether the points Pq, Pi be real or

imaginary. And because

^ t_Y _ /' « « V /™ . V - / „ o

we have, for the case of imaginary intersections,

^Tj3 = ^/iTe'' - Ta') = T . e'e",

and the Ilnd assertion (4.) is justified.

(6.) An expression of the form (4.), or of the following,

in which j3 and y are ttco real vectors, while ^/ - 1 is the (scalar) imaginary

of algebra, and not a symbol for a geometrically real right versor (149, 153),

may be said to be a Bivector.

(7.) In like manner, an expression of the form (3.), or ce^ = s + t^/ - 1,

where s and ^ are two real scalars, but -^ - 1 is still the ordinary imaginary

of algebra, may be said by analogy to be a Biscalar. Imaginary roots of

algebraic equations are thus, in general, biscalars.

(8.) And if a bivector (6.) be divided by a {real) vector, the quotient,

such as / = — = — + -\/-l = g'o + g'i\/-l.
a a a

in which q^ and qi are Uco real quaternions, but -v/
- 1 is, as before, imaginary,

may be said to be a Biquaternion.*

215. The same distributive principle (212) maybe employed in investiga-

tions respecting circumscribed cones, and the tangents (real or ideal), which can

be drawn to a given sphere from a given point.

(1.) Instead of conceiving that o, a, b are three given points, and that

limits ofposition of the point e are sought, as in 214, (2.), which shall allow

the points of intersection Po, Pi to be real, we may suppose that o, a, e (which

may be assumed to be collinear, without loss of generality, since a enters only

by its tensor) are now the data of the question ; and that limits of direction of

* Compare the second Note to page 133. [This word is used in a different sense by W. K.
CHfford.]

Hamilton's Elements of Quaternions. 2 G
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the line ob are to be assigned, which shall permit the same reality : ePqPi

being still drawn parallel to ob, as in 214, (1.).

(2.) Dividing the equation Ta - T(£ + x(5) by Te, and squaring, we have

N - = Tn fl + a; &V 1 1 + 2^S ^ + ;r^N &
;

the quadratic in x may therefore be thus written,

and its roots are real and unequal, or real and equal, or imaginary, according as

TVU2- < or = or > T -
;

e £

that is, according as

sin EGB < or = or > T . OA : T . OE.

(3.) If E be interior to the sphere, then Te < Ta, T(a : c) > 1 ; but TYJJq

can never exceed unity (by 204, XIX., or by 210, XY,, &c.) ; we liave, there-

fore, in this case, the Jirsf of the three recent alternatives, and the two roots of

the quadratic are necessarily real and unequal, whatever the direction of /3 may

be. Accordingly it is evident, geometrically, that everi/ indefinite right line,

drawn through an internal point, must cut the spheric surface in two distinct

and real points.

(4.) If the point e be superficial, so that Te = Ta, T (a : £) = 1, tlien the

first alternative (2.) still exists, except at the limit for which j3 JL t, and

therefore TYU (/3 : e) = 1, in which case we have the second alternative.

One root of the quadratic in x is now = 0, for every direction of j3 ; and the

other root, namely a; = - 2S (g : /3), is likewise always real, but vanishes ioi the

case when the angle eob is right. In short, we have here the same system of

chords and of tangents, from a point upon the surface, as in 213 ; the only

difference being, that we now write e for a, or e for a.

(5.) But finally, if i? be an external point, so that Te > Ta, and T(a : f) < 1,

then TYU (/3 : e) may either fall short of this last tensor, or equal, or

exceed it; so that any one of the three alternatives (2.) may come to exist,

according to the varying direction of j3.

(6.) To illustrate geometrically the law of passage from one such alter-

native to another, we may observe that the equation

TYU^=T-'
£ £

or sin EOP = T . oa : T . oe,
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represents (when e is thus external) a real cone of revolution, with its vertex

at the centre o of the sphere ; and according as the line ob lies indde this cone,

or on it, or outside it, the first or the second

or the third of the three alternatives (2.)

is to be adopted ; or in other words, the

line through e, drawn parallel (as before)

to OB, either cuts the sphere, or touches it,

or does not (really) meet it at all. (Compare

the annexed fig. 52.)

(7.) If E be still an external point, the

cone of tangents which can be drawn from it

to the sphere is real\ and the equation of

this enveloping or circumscribed cone, with

its vertex at e, may be obtained from that

of the recent cone (6.), by simply changing /o to ^ - e; it is, therefore, or at

least one form of it is.

Fig. 62.

TVU p-g ^fp«
or sin oep = T . oa : T . oe.

£ £

(8.) In general, if q be any quaternion, and x any scalar,

YXJ{q + x)='Yq:T{q + x);

the recent equation (7.) may therefore be thus written :

rji "V(P •c)-£ ^ rp « .

p-£ £ '

or T . p'p : T . EP = T . OA : T . oe,

if p' be the foot of the perpendicular let fall from p on oe ; and in fact the

first quotient is evidently = sin oep.

(9.) We may also write,

TV^=T^.Tf^-l^; or 0=(S^)-Ne + N^ N^-2S^ + 1
£ y £ £ V £ £

or
£ £

N^ N^-N^,

as another form of the equation of the circumscribed cone.

(10.) If then we make also

N^ = l, or N^ = N-,
a £ f

to express that the point p is on the enveloped sphere, as well as on the enveloping

2G 2
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coney we find the following equation of the plane of contact, or of what is called

the polar plane of the point e, with respect to the given sphere

:

S^-N^Y = 0; or S^-N^ = 0;

while the fact that it is a plane of contact* is exhibited by the occurrence of

the exponent 2, or by its equation entering through its square.

(11.) The vector,

£'=£S^ = £N- =oe',
£ e

is that of the point e' in which the polar plane (10.) of e outs perpendicularly

the right line oe ; and we see that

TE.T£' = Ta^ or T.oe.T.oe'=(T.oa)S

as was to be expected from elementary theorems, of spherical or even of plane

geometry.

(12.) The equation (10.), of the polar plane of e, may easily be thus trans-

formed :

Si = fs^.Ni=)N-» or Si-N^ = 0;
p \ £ p J p P P

it continues therefore to hold good, when e and p are interchanged. If then

we take, as the vertex of a netv enveloping cone, any point c external to the

sphere, and situated on the polar plane ff' . . of the former external point e,

the new plane of contact^ or the polar plane dd'. . of the new point c, will pass

through the former vertex e : a geometrical relation of reciprocity, or of con-

jugation, between the two points c and e, which is indeed well known, but

which it appeared useful for our purpose to prove by quaternions t anew.

(13.) In general, each of the two connected equations,

P P P P

which may also be thus written,

l = fs^^.N^=)s.^K^, 1 = S.^K<
\ a p a J a a a a

* In fact a modem geometer would say, that we have here a case of two coincident planes of inter-

section, merged into a single plane of contact.

t In fact, it will easily be seen that the investigations in recent suh- articles are put forward,

almost entirely, as exercises in the Language and Calculus of Quaternions, and not as offering any

geometiical novelty of result.
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may be said to be a form of the Equation of Conjugation between any two

points p and p' (not those so marked in fig. 52), of which the vectors satisfy

it : because it expresses that those two points are, in a well-known sense, con-

jugate to each other, with respect to the given sphere, T/o = Ta.

(14.) If one of the two points, as p', be given by its vector p\ while the

other point p and vector
n>

are variable, the equation then represents a plane

locus ; namely, what is still called the polar plane of the given point, whether

that point be external or internal, or on the surface of the sphere.

(15.) Let p, p' be thus two conjugate points ; and let it be proposed to

find the points s, s', in which the right line pp' intersects the sphere. Assum-

ing (comp. 25) that

OS = <r = iU/o + yp'y X + y = 1, T(T = To,

and attending to the equation of conjugation (13.), we have, by 210, XX., or

by 200, VII., the following quadratic equation in t/ : x,

{x + yy=l:!i(x^ + i/^]==x'N^ + 2xy + fl^^',
\ a a J a a

which gives

N^-lVx/^fl-N^
a J \ a

(16.) Hence it is evident that, if the points of intersection s, s' are to be

real, one of the two points p, p' must be interior, and the other must be

exterior to the sphere ; because, of the two norms here occurring, one must be

greater and tlie other less than unity. And because the two roofs of the

quadratic, or the two values oi y : x, differ only by their signs, it follows

(by 26) that the right line pp' is harmonically divided (as indeed it is well

known to be), at the two points s, s' at which it meets the sphere : or that in

a notation already several times employed (25, 31, &c.), we have the harmonic

formula,

(pspV) = - 1.

(17.) From a real but internal jjoint p, we can still speak of a cone of

tangents, as being drawn to the sphere : but if so, we must say that those

tangents are ideal, or imaginary ;* and must consider them as terminating on

an imaginary circle of contact; of which the real but wholly external plane is,

by quaternions, as by modern geometry, recognised as being (comp. (14.)

)

the polar plane of the supposed internal point.

* Compare again the Note to page 88, and others formerly referred to.
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216. Some readers may find it useful, or at least interesting, to see here

a few examples of the application of the Greneral Distributive Principle (212)

of multiplication to the Ellipsoid, of which some forms of the Quaternion

Equation were lately assigned (in 204, (14.) )
; especially as those forms have

been found to conduct* to a Q-eometrical Construction, previously unknown,

for that celebrated and important Surface : or rather to several such construc-

tions. In what follows, it will be supposed that any such reader has made

himself already sufficiently familiar with the chief formulae of the preceding

Articles ; and therefore comparatively few referencesf will be given, at least

upon the present subject.

(1.1 To prove, first, that the locus of the variable ellipse,

I. ..S^ = «, h^ = x'-l, 204,(13.)

which locus is represented by the equation,

the two constant vectors a, /3 being supposed to be real, and to be inclined to

each other at some acute or obtuse (but not rightj) angle, is a surface of the

second order, in the sense that it is cut by an arbitrary rectilinear transversal

in two (real or imaginary) points, and in no more than two, let us assume two

points L, M, or their vectors X = ol, ju = cm, as given ; and let us seek to deter-

mine the points p (real or imaginary), in which the indefinite right line lm

intersects the locus II. ; or rather the number of such intersections, which will

be sufficient for the present purpose.

(2.) Making then p = (25), we have, for y : z, the following quad-

ratic equation,

III. .
.
(2/s^ + zB^J -{y^^-^ ^^^J

= (y + ^y-'

without proceeding to resolve which, we see already, by its mere degree, that

See the Proceedings of the Eoyal Irish Academy for the year 1846.

t Compare the Note to page 223.

J If j3 ± a, the system I. represents (not an ellipse but) a pair of right lines, real or ideal, in

which the cylinder of revolution, denoted by the second equation of that system, is cut by a plane

parallel to its axii, and represented by the first equation.
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the number sought is tico ; and therefore that the locus II. is, as above stated,

a surface of the second order.

(3.) The equation II. remains unchanged, when - p is substituted for p ;

the surface lias therefore a centre, and this centre is at the origin o of vectors.

(4.) It has been seen that the equation of the surface may also be thus

written :

IV. ..Tfs^ + V^Vl; 204, (14.)

it gives therefore, for the reciprocal of the radius vector from the centre, the

expression,

and this expression has a real value, which never vanishes,* whatever real

value may be assigned to the versor Up, that is, whatever direction may be

assigned to p : the surface is therefore closed, and finite.

(5.) Introducing two new constant and auxiliary vectors, determined by

the two expressions,

Yl. • . 7 = tH— • «> o = — "

p + a p - a

which give (by 125) these other expressions,

YI'...,=^„.,3, ,-^^.^,
we have

Vn...X + t = 2, !-| = 2;
a p " P

T J-J- . . . T^
5j
— i

, 5,
J-

•y o yd
and under these conditions, y is said to be the harmonic mean between the two

former vectors, a and (5 ; and in like manner, 8 is the harmonic mean

between a and - j3 ; while 2a is the corresponding mean between -y, S ; and

2(5 is so, between 7 and - 8.

(6.) Under the same conditions, for any arbitrary vector p, we have the

transformations,

y o a p

* It is to be remembered that we have excluded in (1.) the case where j3 1 a ; in which case it

can be shown that the equation II . represents an elliptic cylinder.
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the equation lY. of the surface may therefore be thus written :

X. ..T^^+KI^I; or thus, X'. . . t(^ + K^) = 1;

the geometrical meaning of which new forms will soon be seen.

(7.) The system of the two planes through the origin, which are respec-

tively perpendicular to the new vectors y and S, is represented by the

equation,

XI...S^Sf=0, or XIL..(S?J=(S|J.

combining which with the equation II. we get

XIII...1 = (S^J-(V0 = N^; or, XIV. . . Tp = T^.

These two diametral planes therefore cut the surface in two circular sections,

with Tj3 for their common radius ; and tlie normals y and 8, to the same two

planes, may be called (comp. 196, (17.)) the ci/clic normals of the surface;

while the planes themselves may be called its cyclic planes.

(8.) Conversely, if we seek the intersection of the surface with the con-

centric sphere XIV., of which the radius is T/3, we are conducted to the

equation XII. of the system of the two cyclic planes, and therefore to the

two circular sections (7.) ; so that every radius vector of the surface, which is

not drawn in one or other of these two planes, has a length either greater or

less than the radius T/3 of the sphere.

(9.) By all these marks, it is clear that the locus II., or 204, (14.), is

(as above asserted) an Ellipsoid ; its centre being at the origin (3.), and its

mean semiaxis being = T/3; while U/3 has, by 204, (15.), the direction of

the axis of a circumscribed cylinder of revolution, of which cylinder the radius is

T/3 ; and a is, by the last cited sub-article, perpendicular to the plane of the

ellipse of contact.

(10.) Those who are familiar with modern geometry, and who have

caught the notations of quaternions, will easily see that this ellipsoid, II. or

IV., is a deformation of what may be called the mean sphere XIV., and is

homologous thereto ; the infinitely distant point in the direction of /3 being a

centre of homologt/, and either of the two planes XI. or XII. being a plane of

homology corresponding.

217. The recent form, X. or X^, of the quaternion equation of the ellip-

soid admits of being interpreted in such a way as to conduct (comp. 216) to
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a simple constniction of tliat surface ; which we shall first investigate by

calculation, and then illustrate by geometry.

(1.) Carrying on the Roman numerals from the sub-articles to 216, and

observing that (by 190, &c.),

7 p
-, and
7 ^'r

the equation X. takes the form,

or

XY. . . 1 =
p tW'

P
Tp

if we make

XVI. ~- Ph
P J

XVII. = '- and 7 K

when I and k are two new constant vectors, and Hs a new constant scalar,

which we shall suppose to be positive, but of which the value may be chosen

at pleasure.

(2.) The comparison of the forms X. and X'. shows that y and S may be

interchanged, or that they enter symmetrically into the equation of the

ellipsoid, although they may not at fi-rst seem to do so ; it is therefore allowed

to assume that

XVIII. . . Ty > TS, and therefore that XVIII'. . . Tt > Tk
;

for the supposition Ty = T8 would give, by VI.,

T (i3 + a) = T (/3 - a), and .'. (by 186, (6.) &o.) /3 ± a,

which latter case was excluded in 216, (1.).

(3.) We have thus,

XIX. . .Ut = Ug; UK = Uy;

AA.. . . Li =
,-|^ ; 1 K = q^ ;

XXL..^'^-T^^ MV ft
f VTgy \i!y

(4.) Let ABC be a plane triangle, such that

XXII. . . CB = /, CA = K ;

let also AE = p.

Hamilton's Elements of Quaternions. aH
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Then if a sphere, which we shall call the diacentric sphere^ be described round

the point c as centre, with a radius = Tk, aud

therefore so as to pass through the centre a / e,-"-
—>^'

(here written instead of o) of the ellipsoid, /^ /J\^
and if d be the point in which the line ae /^ J-^^r//^
meets this sphere again, we shall have, by ^^;,^=^n^x/</ I

213, (5.), (13.),
' ji^^r^j/^ /

XXIII. ..cD = -K-./>, m\Mt/'] I

and therefore /%\/\\ \ // J I

XXIir. . . DB = t + K -
. p

;

^y-...?S^^^_/

so that the equation XVI. becomes

XXIY. . . f = T . AE . T . DB.
Fig. 53.

(5.) The point b is external to the diacentric sphere (4.), by the assump-

tion (2.) ; a real tangent (or rather cone of tangents) to this sphere can

therefore be drawn from that point ; and if we select the length of such a

tangent as the value (1.) of the scalar t^ that is to say, if we make each

member of the formula XXI. equal to unity, and denote by d' the second

intersection of the right line bd with the sphere, as in fig. 53, we shall have

(by Euclid III.) the elementary relation,

XXV. . . f- = T . DB . T . bd';

whence follows this Geometrical Equation of the Ellipsoid,

XXVI. . . T . AE = T . bd';

or in somewhat more familiar notation,

XXVII. . . AE = bd^;

where ae denotes the length of the line ae, and similarly for bd'.

(6.) The following very simple Rule of Construction (comp. the recent

fig. 53) results therefore from our quaternion analysis :
—

From a fixed point a, on the surface of a given sphere^ draw any chord ad
;

let d' he the second point ofintersection of the same spheric surface with the secant

PD, drawn from a fixed external* point b ; and take a radius vector ae, equal in

* It is merely to fix the conceptions, that the point b is here supposed to be external (5.) ; the

calculations and the construction would be almost the same, if we assumed b to be an internal point,

or TkTk, T7<T5.
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length to the line bd', and in direction either coincident withy or opposite to, the

chord AD : the locus of the point e will be an ellipsoid, with a for its centre, and

with Bfor a point of its surface.

(7.) Or thus—

If, of a plane but variable quadrilateral abed', of which one side ab is given in

length and in position, the two diagonals ae, bd' be equal to each other in length,

and if their intersection d be always situated upon the surface of a given sphere,

whereof the side ad' of the quadrilateral is a chord, then the opposite side be is a

chord of a given ellipsoid.

218. From either of the two foregoing statements, of the Rule of Con-

struction for the Ellipsoid to which quaternions have conducted, many geome-

trical consequences can easily he inferred, a few of which may be mentioned

here, with their proofs by calculation annexed : the present Calculus being, of

course, still employed.

(1.) That the corner b, of what may be called the Generating Triangle abc,

is in fact a point of the generated surface, with the construction 217, (6.),

may be proved, by conceiving the variable chord ad of the given diacentrio

sphere to take the position ag ; where g is the second intersection of the line

AB with that spheric surface.

(2.) If D be conceived to approach to a (instead of o), and therefore d' to g

(instead of a), the direction of ae (or of ad) then tends to become tangential

to the sphere at a, while the length of ae (or of bd') tends, by the construction,

to become equal to the length of bg ; the surface has therefore a diametral and

circular section, in a plane which touches the diacentrio sphere at a, and with

a radius = bg.

(3.) Conceive a circular section of the sphere through a, made by a plane

perpendicular to bg ; if d move along this circle, d' will move along a parallel

circle through g, and the length of bd', or that of ae, will again be equal to

BG ; such then is the radius of a second diametral and circular section of the

ellipsoid, made by the lately mentioned plane.

(4.) The construction gives us thus two cyclic planes through A ; the per-

pendiculars to which planes, or the two cyclic normals (216, (7.) ) of the

ellipsoid, are seen to have the directions of the two sides, ca, cb, of the

generating triangle abc (1.).

2H 2
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(5.) Again, since the rectangle

BA . BG = BD . bd' = bd • ae = double area of triangle abe : sin bde,

we have the equation,

XXYIII. . . perpendicular distance of e from ab = bg . sin bde
;

the third side, ab, of the generating triangle (I.), is therefore the axis of revo-

lution of a cylinder, which envelops the ellipsoid, and of which the radius has

the same length, bg, as the radius of each of the two diametral and circular

sections.

(6.) For the points of contact of ellipsoid and cylinder, we have the

geometrical relation,

XXIX. . . BDE = a right angle ; or XXIX'. . . adb = a right angle
;

the point d is therefore situated on a second spheric surface, which has the line

AB for a diameter, and intersects the diacentric sphere in a circle, whereof the

plane passes through a, and cuts the enveloping cylinder in an ellipse of contact

(comp. 204, (15.), and 216, (9.) ), of that cylinder with the ellipsoid.

(7.) Let AC meet tlie diacentric sphere again in f, and let bf meet it again

in f' (as in fig. 53) ; the common plane of the last-mentioned circle and ellipse

(6.) can then be easily proved to cut perpendicularly the plane of the gene-

rating triangle abg in the line af'; so that the line f'b is normal to this plane

of contact ; and therefore also (by conjugate diameters, &c.) to the ellipsoid,

at B.

(8.) These geometrical consequences of the construction (217), to which many

others might be added, can all be shown to be consistent with, and confirmed

by, the quaternion analysis from which that construction itself was derived.

Thus, the two circular sections (2.), (3.) had presented themselves in 216, (7.)

;

and their two cyclic normals (4.), or the sides ca, cb of the triangle, being

(by 217, (4.)) the two vectors k, t, have (by 217, (1.) or (3.)) the directions of

the two former vectors 7, S; which again agrees with 216, (7.).

(9.) Again, it will be found that the assumed relations between the three

pairs of constant vectors, a, j3 ; 7, S ; and t, k, any one of which ^a/rs is sufficient

to determine the ellipsoid, conduct to the following expressions (of which the

investigation is left to the student, as an exercise)

:

8 + 7'^ g + 7 T(t + ic)

XXX. . .a=:K-^7 = ,^g = ^; .U(t + K) = F^B

XXXI. .
.
/3 = ;^7- K^g = ,-iT7^^U(' - «) = bg;

0-7 0-7 l(t-K)
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the letters b, r', g referring here to fig. 53, while afdyS retain their former

meanings (216), and are not interpreted as vectors of the points abcd in that

figure. Hence the recent geometrical inferences, that ab (or bg) is the axis

of revolution of an enveloping cylinder (5.), and that f'b is normal to the

plane of the ellipse of contact (7.), agree with the former conclusions (216,

(9.), or 204, (15. j ), that ]3 is such an axis, and that a is such a normal.

(10.) It is easy to prove, generally, that

g -1^ (g-l)(Kg+l)
^
Ng-1 g + l_ Ng-1 .

q+1 {q + l)(Kq + l) N(? + l)' q-1 N(g-i)'
whence

VWTT o t - »« Tt''- Tk* a t + k Tt' - Tk'

l + K T(t + ic)' l-K T[l-Kf

whatever two vectors i and k may be. But we have here,

XXXIII. ..P=Ti'- Tk% by 217, (5.)

;

the recent expressions (9.) for a and j3 become, therefore,

XXXIY. . . a = + (t + k) S ^—^ ; /3 = - (t - k) S '-^.
I + K I — K

The last form 204, (14.), of the equation of the elHpsoid, may therefore be

now thus written

:

XXXV. ..Tfs-^:S^—^-V-^:S^-^V I;
\ I + K t + K I — K I — kJ

in which the sign of the right part may be changed. And thus wo verify by

calculation the recent result (1.) of the construction, namely, that b is a point

of the surface ; for we see that the last equation is satisfied, when we suppose

XXXVI. . .p = AB = i-K = B:^^;
a

a value of p which evidently satisfies also the form 216, IV.

(11.) From the form 216, II., combined with the value XXXIV. of a, it

is easy to infer that the plane,

XXXVII. ..8^ = 1, or xxxvir. . . s -^ = s '-^^
a I + K I + K

which corresponds to the value x = I in 216, I., touches the ellipsoid at the

point B, of which the vector p has been thus determined (10.) ; the normal to

the surface, at that point, has therefore the direction of t + k, or of a, that is,

of FB, or of f'b : so that the last geometrical inference (7.) is thus confirmed,

by calculation with quaternions.
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219. A few other consequences of the construction (217) may be here

noted ; especially as regards the geometrical determination of the three prin-

cipal semiaxes of the ellipsoid, and the major and minor semiaxes of any

elliptic and diametral section ; together with the assigning of a certain system

of spherical conies, of which the surface may be considered to be the locus.

(1.) Let a, h, c denote the lengths of the greatest, the mean, and the least

semiaxes of the ellipsoid, respectively ; then if the side bc of the generating

triangle cut the diacentric sphere in the points h and h', the former lying

(as in fig. 53) between the points b and c, we have the values,

XXXYIIL . . a = Bi? ; 6 = bg; c = bh;

80 that the lengths of the sides of the triangle abc may be thus expressed, in

terms of these semiaxes,

XXXIX. ..ic = Tt = ^; ^ = Tk =^; I5 = T(t-K) = y;

and we may write,

XL. . .a = Tt + TK; ^>= 'L, \ ; c = Tl-Tk.
i (t - k)

(2.) If, in the respective directions of the two supplementary chords ah,

ah' of the sphere, or in the opposite directions, we set off lines al, an, with

the lengths of bh', bh, the points l, n, thus obtained, will be respectively a

major and a minor summit of the surface. And if we erect, at the centre a of

that surface a perpendicular am to the plane of the triangle, with a length = bg,

the point m (which will be common to the two circular sections, and will be

situated on the envelopiug cylinder) will be a mean summit thereof.

(3.) Conceive that the sphere and ellipsoid are both cut by a plane through

A, on which the points b' and c' shall be supposed to be the projections of b

and c ; then c' will be the centre of the circular section of the sphere ; and if

the line b'g' cut this new circle in the points Di, d^, of which Di may be sup-

posed to be the nearer to b', the two supplementary chords aDi, adz of the

circle have the directions of the major and minor semiaxes of the elliptic section

of the ellipsoid ; while the lengths of those semiaxes are, respectively,

ba.bg: BDi, and ba.bg: bdz ; or bd\ and bd'z, if the secants bDi and BD2

meet the sphere again in d'i and d'z.

(4.) If these two semiaxes of the section be called a^ and c^, and if we stiU

denote by t the tangent from b to the sphere, we have thus,

XLI. . . BDi =^ f : a= acap ; bDj = t^ : c. = ace 7^
;
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but if we denote hypi andpz the inclinations of the plane of the section to the

two cyclic planes of the ellipsoid, whereto ca and cb are perpendicular, so that

the projections of these two sides of the triangle are

(c'a = CA . sinpi = ^{a-c) sin pi,
AIjII. . .

j

Wb'= cb . sin pz = i{a + c) sin pz,

we have

XLIII. . . BD2^ - BDi* = b'dz^ - b'di^ = 4b'c'. c'a = {o^ - c') smpi sinpi ;

whence follows the important formula,

XLIY. . . c^'^ - a-^ = (c~^ - a~^) sin jo, sinjoa

;

or in words, the known and useful theorem, that " the difference of the inverse

squares of the semiaxes, of a plane and diametral section of an ellipsoid^ varies as

the product of the sines of the inclinations of the cutting plane, to the two planes of

circular section.

(5.) As verifications, if the plane be that of the generating triangle abc,

we have

Pi = Pi = 2' ^^^ «/ = «> c^ = 0]

but if the plane be perpendicular to either of the two sides, ca, cb, then either

Pi or p2 = 0, and c^ = a^.

(6.) If the ellipsoid be out by any concentric sphere, distinct from the mean

sphere XIV., so that

XLY. . . AE = T/o = r "^
J, where r is a given positive scalar

;

then

XLVI. . . BD = th^-^ ^ acb-\ that is,
^ ba

;> >

so that the locus of what may be called the guide-point d, through which, by

the construction, the variable semidiameter ae of the ellipsoid (or one of its

prolongations) passes, and which is still at a constant distance from the given

external point b, is now again a circle of the diacentric sphere, but one of

which the plane does not pass (as it did in 218, (3.) ) through the centre a of

tlie ellipsoid. The point e has therefore here, for one locus, the ci/clic cone

which has a for vertex, and rests on the last-mentioned circle as its base ; and

since it is also on the concentric sphere XLY., it must be on one or other of

the two spherical conies, in which (comp. 196, (11.)) the cone and sphere last

mentioned intersect.
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(7.) The iutersection of an ellipsoid with a concentric sphere is therefore,

generally, a system of two such conies^ varying with the value of the radius r,

and becoming, as a limit, the system of the two circular sections, for the parti-

cular value r = 6 ; and the ellipsoid itself may be considered as the locus of

all such spherical conies, including those two circles.

(8.) And we see, by (6,), that the two cyclic planes (comp. 196, (17.), &c.)

of any one of the concentric cones, which rest on any such conic, coincide with

the two cyclic planes of the ellipsoid : all this resulting, with the greatest ease,

from the construction (217) to which quaternions had conducted.

(9.) With respect to the figure 53, which was designed to illustrate that

construction, the signification of the letters ABCDD'ErF'GHH''LN has been already

explained. But as regards the other letters we may here add, 1st, that n' is

a second minor summit of the surface, so that an'=na; Ilnd, that k is a

point in which the chord af', of what we may here call the diacentric circle

AGF, intersects what may be called the principal ellipse,* or the section nblen'

of the ellipsoid, made by the plane of the greatest and least axes, that is by the

plane of the generating triangle abc, so that the lengths of ak and bf are

equal ; Ilird, that the tangent, vkv', to this ellipse at this point, is parallel to

the side ab of the triangle, or to the axis of revolution of the enveloping cylinder

218, (5.), being in fact one side (or generatrix) of that cylinder; IVth, that

AK, AB are thus two conjugate semidiameters of the ellipse, and therefore the

tangent tbt', at the point b of that ellipse, is parallel to the line akf', or per-

pendicular to the line bff' ; Yth, this latter line is thus the normal (comp. 218,

(7.), (11.)) to the same elliptic section, and therefore also to the ellipsoid, at b ;

Vlth, that the least distance kk' between the parallels ab, kv, being = the

radius b of the cylinder, is equal in length to the line bg, and also to each of

the two semidiameters, as, as' of the ellipse, which are radii of the two circular

sections of the ellipsoid, in planes perpendicular to the plane of the figure;

Vllth, that AS touches the circle at a ; and Vlllth, that the point s' is on the

chord AT of that circle, which is drawn at right angles to the side bc of the

triangle.

220. The reader will easily conceive that the quaternion equation of the

ellipsoid admits of being put under several other forms; among which,

however, it may here suffice to mention one, and to assign its geometrical

interpretation.

* In the plane of what is called, by many modern geometers, the focal hyperbola of the ellipsoid.
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(1.) For any three vectors, i, »c, /o, we have the transformations,

XLYII...Nf-* + K-VN- + N-+2S--
\p pj P P PP

= N-N- + N-N- + 2S--T-T-
K p I- P p p I K

= Nf-T- + K:-T-VN(-Ti + K-T-
\p I p KJ \p K p

= N (5i^ . KH^^i) =N(2!^ . K5l^)
;

whence follows this other general transformation :

XLVIIL..T(£+K-./o^ = T(uK.Tt + K5il^.p

(2.) If then we introduce two new auxiliary and constant vectors, i and /,

defined by the equations,

XLIX...t' = -'DK.T/, k' = -Vi.Tk,
which give

L...T/=T£, Tic' = Tic, T(/-K>TO-ic), Ti"-TK"=f,

we may write the equation XVI. (in 217) of the ellipsoid under the following

precisely similar form

:

in which i and k have simply taken the places of i and k.

(3.) Retaining then the centre a of the ellipsoid, construct a new diacentric

sphere^ with a new centre c', and a new generating triangle^ ab'c', where b' is a

new fixed external pointy but the lengths of the sides are the same, by the con-

ditions,

LII. . . Ac' = - /, c'b' = + i\ and therefore ab' = i - k \

draw any secant b'd^d"' (instead of bdd'), and set off a line ae in the direction

of ad", or in the opposite direction, with a length equal to that of bd"' j the

locus of the point e ivill he the same ellipsoid as before.

(4.) The only inference which we shall here* draw from this new con-

struction is, that there exists (as is known) a second enveloping cylinder of

* If room shall allow, a few additional remarks may be made, on tlie relations of the constant

vectors t, k, &c., to the ellipsoid, and on some other constructions of that surface, when, in the

following Book, its equation shall come to be put under the new form, T(4p + p/c) = k' — t^. [See

404.]

Hamilton's Elements of Quaternions. 2

1
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revolution, and that its axis is the side ab' of the new triangle abV ; but that

the radius of this second cylinder is equal to that of the first, namely to the

mean semiaxis^ b, of the ellipsoid ; and that the major semiaxis, a, or the line

AL in fig. 53, bisects the angle bab', between the two axes of revolution of these

two circumscribed cylinders : the -plane of the new ellipse of contact being

geometrically determined by a process exactly similar to that employed in

218, (7.) ; and being perpendicular to the new vector, i + /, as the old plane

of contact was (by 218, (11.) ) to t + k.

SECTION 14.

On tbe Reduction of the Creneral iinaternion to a Sitandard

Ctnadrinomial Form ; with a First Proof of the Associative

Principle of Multiplication of Ctuaternions.

221. Retaining the significations (181) of the three rectangular unit-lines

01, oj, OK, as the axes, and therefore also the indices (159), of three given

right versors, i, j\ k, in three mutually rectangular planes, we can express the

index oq of any other right quaternion, such as Yg', under the trinomialform

(comp. 62),

I. . . TVq = OQ = ic . 01 + 2/ . oj + s . OK

;

where xyz are some three scalar coefl&cients, namely, the three rectangular

co-ordinates of the extremity q of the index, with respect to the tliree axes

01, OJ, OK. Hence we may write also generally, by 206 and 126,

II. . . Yg- = xi + yj + zk = ix + jy + kz
;

and this last form, ix + jy + kz, maybe said to be a Standard Trinomial Form,

to which every right quaternion, or the right part Yq of any proposed quater-

nion q, can be (as above) reduced. If then we denote by w the scalar part, Sg,

of the same general quaternion q, we shall have, by 202, the following

General Reduction of a Quaternion to a Standard Uuadrinomial Form

(183)

:

III. . . q ~ (Sg + 'Yq=) w + ix -irjy + kz
;

in which the four scalars, wxyz, may be said to be the Four Constituents of the

Quaternion. And it is evident (comp. 202, (5.), and 133), that if we write

in like manner,

lY. . .^ = uf + ix' +jy + kz',
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where ijk denote the same three given right versors (181) as before, then the

equation

between these two quaternions, q and q\ includes the fourfollowing scalar eqtmtions

between the constituents

:

VI. . . w' = w, x' = X, y' = Vi z' = s ;

which is a new justification (comp. 112, 116) of ih.Q propriety oi namingj as we

have done throughout the present Chapter, the General Quotient of two Vectors

(101) a Quaternion.

222. When the Standard Quadrinomial Form (221) is adopted, we have

then not only

I. . . Sg' = w>, and Yq = ix -^jy + kz^

as before, but also, by 204, XI.,

II. . . Kg' = {^q - Yq =) lo - ix -jy - kz.

And because the distributive property of multiplication of quaternions (212),

combined with the laws of the symbols ijk (182), or with the General and

Fundamental Formula of this whole Calculus (183), namely with the formula,

i^^ji = k^ = ijk = -l, (A)

gives the transformation,

III. . . {ix +J1/ + kzy = - {x"^ + y^ + s^),

we have, by 204, &c., the following new expressions :

IV. . . NV^ = (TV^)^ = - Vg' = af + y' + z';

V. . .TYq = y{x' + p' + z');

VI. . . VYq = (ix +jy + kz): ,/{x^ + y^ + z^) ;

VII. ..Nq = Tq' = S?^ - Yq' = w' + x" + f + z'

;

VIII. ..Tq = y (m)^ + x-' + y' + z')
;

IX. . . JJq = {tv + ix +jy + kz) : ^/{w^ + x^ + y^ + z^);

X. . . STJg' = w : -/[w^ + »* + y" + s')

;

XI. . . YJJq = ijx +jy + kz) : >>/ [w^ -v x^ + y"^ + «')
;

XIL . . TVUg =
/ f''/''f ,

.

yjw^ + ar + y^ + z^

2 12
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(1.) To prove the recent formula III., we may arrange as follows the steps

of the multiplication (comp. again 182) :

Yq = ix + jy + ^2,

Yq = ix \-jy + kz;

ix . Yq = - 0^ -^ kxy - jxz
;

jy .'Yq = - y"" -kyx + iyz,

kz . Yq = - z^ + jzx - izy
;

V?' = Y^ . Yq = - x^ - y^ - z\

(2.) We have, therefore,

XIII. . . [ix +jy + kzY = - I, if x"" + y^ + z-" = 1,

a result to which we have already alluded,* in connexion with the partial

indeterminateness of signification, in the present calculus, of the symbol ^ -1^

when considered as denoting a right radial (149), or a right versor (153), of

which the plane or the axis is arbitrary.

(3.) If f = (fq, then N?" = N/ . N^, by 191, (8) ; but if g = w' + &c.,

/ = «^'' + &c., ^' = w'' + &c., then

iw''

= w'w - {x'x + y'y + g's),

x' = (w'a; + a;V) + [y'z - zy),

'if' = [w'y + ^/ef) + [zx - xz),

z" = {ufz + z'w) + {x'y - i/x) ;

and conversely these four scalar equations are jointly equivalent to, and may

be summed up in, the quaternion formula,

XV. . . w" + ix" +y/' + kz" = {vf + ix' +jy' + kz'){w + ix +jy + kz)
;

we ought therefore, under these conditions XIY., to have the equation,

XVI. . . w"^ + x'"" + y''^ + z'"" = {w'^ + x^ + ]f + 2'^) {w'-v^^y''^ z')
;

which can in fact be verified by so easy an algebraical calculation, that its

truth may be said to be obvious upon mere inspection, at least when the terms

in the four quadrinomial expressions w" . . z" are arrangedf as above.

* Compare the first Note to page 133 ; and that to page 162.

t From having somewhat otherwise arranged those terms, the author had some little trouhle at

first, in verifying that the twenty-four double products, in the expansion oiw'"^ + &c., destroy each

other, leaving only the si:Lieen products of squares, or that XVI. follows from XIV., when he was led

to anticipate that result through quaternions, in the year 1 843. He believes, however, that the algebraic

theorem XVI., as distinguished from the quaternion formula XV., with which it is here connected,

had been discovered by the celebrated Euler.
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223. The principal use which we shall here make of the standard quadri-

nomial form (221) is to prove by it the general associative property of

multiplication of quaternions ; which can now with great ease be done, the

distributive* property (212) of such multiplication having been akeady proved.

In fact, if we write, as in 222, (3.),

q = to + ix +jy + kz,

I. . . . g^ =w' + ix' +jy + kz\

f = to'' + ix" +jy" + kz'\

without now assuming that the relation (/' = q'q^ or any other relation, exists

between the three quaternions g-, /, q'\ and inquire whether it be true that

the associative formula,

ll,..f^.q^f. q%

holds good, we see, by the distributive principle, that we have only to try

whether this last formula is valid when the three quaternion factors q, q\ q"

are replaced, in any one common order on both sides of the equation, and

with or without repetition, by the three given right versors ijk ; but this has

already been proved, in Art. 183. We arrive then, thus, at the important

conclusion, that the General Multiplication of Quaternions is an Associative

Operation, as it had been previously seen (212) to be a Distributive one

:

although we had also found (168, 183, 191) that such Multiplication is not

(in general) Commutative : or that the tu:o products, <(q and q(l, are generally

unequal. We may therefore omit the point (as in 183), and may denote each

member of the equation II. by the symbol q"q'q.

(1.) Let V = V^-, v' = 'Yq, v" = "Yq" ', so that v, v', v" are any three right

quaternions, and therefore, by 191, (2.), and 196, 204,

ILv'v = vv, Sv'v = ^{v'v + vv'), Yv'v = i{vv - vv).

Let this last right quaternion be called v^y and let ^v'v = «^, so that v'v=s^ + v^ ;

we shall then have the equations,

2Yv"v^ = v"v, - vf ; = v\ - sf
whence, by addition,

2Yv"v^ = d" . v'v - v'v . v"

= {v"v' + v'v") V -v' [v"v + vv")

= 2v^v'v"-2v'^v"v',

* At a later stage [II. ni. J 2], a sketch will be given of at least one proof of this Associative

Frinciple of Multiplication, which will not presuppose the Distributive Frincivle.
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and therefore generally, if v, v', v" be still rights as above,

III. . . Y . v"^v'v = v^v'v" - v'Sv"v
;

a formula with which the student ought to make himself completely familiar^ on

account of its extensive utility.

(2.) With the recent notations,

we have therefore this other very useful formula,

lY. . . Y . v''v'v = v^v'v" - v'^o'v + v"Sw',

where the point in the first member may often for simplicity be dispensed

with ; and in which it is still supposed that

LV = LV = Lif' = -.

(3.) The formula III. gives (by 206),

Y. . . lY . v"Yv'v = Iv . ^v'v'' - Iv' . ^v''v
;

hence this last vector, which is evidently complanar with the two indices Iv and

lv\ is at the same time (by 208) perpendicular to the third index lv'\ and

therefore (by (1.)) complanar with the third quaternion q^'.

(4.) With the recent notations, the vector,

YI. .,lv, = INv'v = lY (Vq' . Yq),

is (by 208, XXII.) a line perpendicular to both Iv and 1/ ; or common to the

planes of q and q'
; being also such that the rotation round it from Iv' to Iv is

positive : while its length,

TI«;,, or Tv^, or TY . v'v, or TY (Vq . Yq),

bears to the unit of length the same ratio, as that which the parallelogram under

the indices, Iv and Iv, bears to the unit of area.

(5.) To interpret (comp. lY.) the scalar expression,

YII. . . Sv'Vv = Sv\ = S . v"Yv'v,

(because ^v"s^ = 0), we may employ the formula 208, Y. ; which gives the

transformation,

YIII. . . ^v'^v'v = Tv'' , Tv, . cos (tt - «)

;

where Tv" denotes the length of the line Iv", and Tt?^ represents by (4.) the

area (positively taken) of the parallelogram under Iv' and Iv ; while x is (by
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208), the angle between the two indices lv'\ Iv^. This angle will be obtuse,

and therefore the cosine of its supplement will be positive, and equal to the

sine of the inclination of the line \v" to the lilane of \v and \v , if the rotation

round \v" from \v' to It? be negative, that is, if the rotation round \v from \.v'

to \v" be positive ; but that cosine will be equal the negative of this sine, if

the direction of ihis rotation be reversed. We have therefore the important

interpretation

;

IX. . . S/V«7 = ± volume ofparallelepiped under Tv, Iv% Ixf'
;

the upper or the lower sign being taken, according as the rotation round If,

from Iv' to Iv", is positively or negatively directed.

(6.) For example, we saw that the ternary products ijk and Tgi have

scalar values, namely,

ijk = -l, kji = +l by 183, (1.), (2.);

and accordingly the parallelepiped of indices becomes, in this case, an unit-cube

;

while the rotation round the index of i, from that ofy to that oik, is positive

(181).

(7.) In general, for any three right quaternions vv'v\ we have the formula,

X.. .SvvW' = -&vWv;

and when the three indices are complanar, so that the volume mentioned in IX.

vanishes, then each of these two last soalars becomes zero ; so that we may
write, as a new Formula of Complanarity

;

XI. . . S«;'Vt; = 0, if Iv'' \\\lv', Iv {12^)

:

while, on the other hand, this scalar cannot vanish in any other case, if the

quaternions (or their indices) be still supposed to be actual (1, 144) ; because

it then represents an actual volume.

(8.) Hence also we may establish the following Formula of Collinearity,

for any three quaternions :

XII. . . S (V/' . V/ . Nq) = 0, if INf
III

lYq', T7q ',

that is, by 209, if the planes of q, q, q" have any common line.

(9.) In general, if we employ the standard trinomialform, 221, II., namely,

v = Yq = ix +jy + kz, v' = ix + &c., v" = ix" + &c.,

the laws (182, 183) of the symbols i, y, k give the transformation,

XIII. . . S^''V^? = a;'' {^y - y'%) + f {x'% - z'x) + s" {y'x - afy)
;
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and accordingly this is tlie known expression for the volume (with a suitable

sign) of the parallelepiped, which has the three lines op, op', op" for three co-

initial edges, if the rectangular co-ordinates* of the four corners, o, p, p', p",

be 000, xyz, afy'z, x'l/'z'

.

(10.) Again, as another important consequence of the general associative

property of multiplication, it may be here observed, that although products

of more than two quaternions have not generally equal scalars, for all possible

permutations of the factors, since we have just seen a case X. in which such

a change of arrangement produces a change of sign in the result, yet cyclical

permutation is permitted^ under the sign S ; or in symbols, that for any three

quaternions (and the result is easily extended to any greater number of such

factors) the following formula holds good :

XIV. . . ^fq'q = S^^y.

In fact, to prove this equality, we have only to write it thus,

xir...s(?Y.?)=s(^.A'),

and to remember that the scalar of the product of any two quaternions

remains unaltered (198, I.), when the order of those two factors is changed.

(11.) In like manner, by 192, II., it may be inferred that

XV. . . 'Kfq'q = K {q'\ q'q) = Kq'q . Kq"' = Kq . Kq'. Kq'%

with a corresponding result for any greater number of factors ; whence by

192, I., if JJq and Il'q denote the products of any one set of quaternions taken

in two opposite orders^ we may write,

XVL . . Kn^ = n'K^; XVII. . . nuq = n'Ry.

(12.) But if V be right, as above, then K.v = - v, by 144 ; hence,

XVIII. ..Kn«J=± n't;; XIX...S^^; = + S^'^;; XX. .. vn«; = + vn'«j;

upper or lower signs being taken, according as the number of the right factors

is even or odd ; and under the same conditions,

XXI. . . ^uv = i{nv±n'v)', xxii.,.Ynv=^{Uv + u'v)',

as was lately exemplified (1.), for the case where the number is two.

* This result may serve as an example of the manner in wMcli quaternions, although not based on

any usual doctrine of co-ordinates, may yet be employed to deduce, or to recover, and often with great

ease, important co-ordinate expressions.
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(13.) For the case where that number is three^ the four last formulae give,

XXIII. . . ^v''v'v = - ^vv'v" = i {v"v'v - w'v")
;

XXIY. . . ^v"v'v = + 'Nvv'v" = A {v"v'v + m'v") ;

results which obviously agree with X. and lY.

224. For the case of Complanar Quaternions (119), the power of reducing

each (120) to tlie form of a fraction (101) which shall have, at pleasure, for its

denominator or for its numerator, any arbitrary line in the given plane, furnishes

some peculiar facilities for proving the commutative and associative properties

of Addition (207), and the distributive and associative properties of Multiplica-

tion (212, 223) ; while, for this case of multiplication of quaternions, we have

already seen (191, (1.)) that the commutative property also holds good, as it

does in algebraic multiplication. It may therefore be not irrevelant nor

useless to insert here a short Second Chapter on the subject of such com-

planars : in treating briefly of which, while assuming us proved the existence

of all tlie foregoing properties, we shall have an opportunity to say something

of Powers and Roots and Logarithms ; and of the connexion of Quaternions

with Plane Trigonometry, and with Algebraical Equations. After which, in

the Third and last Chapter of this Second Book, we propose to resume, for a

sliort time, the consideration of Diplanar Quaternions ; and especially to show

how tlie Associative Principle of Multiplication can be established, for them,

without* emjiloying the DiHtrihutive Principle.

* Compare the Note to page 245.

Hamilton's Elements of Quaternions. 2 K
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CHAPTER 11.

ON COMPLANAR QUATERNIONS, OR QUOTIENTS OF VECTORS
IN ONE PLANE ; AND ON POWERS, ROOTS, AND LOGARITHMS
OF QUATERNIONS.

SECTION 1.

On Complanar Proportion of Sectors ; Fourth Proportional to

Three, Third Proportional to Two, Mean Proportional,

Square Root; Oeneral Reduction of a Q,uaternion in a
Criven Plane, to a iStandard Binomial Form.

225. The Quateraions of the present Chapter shall all be supposed to be

complanar (119) ; their common plane being assumed to coincide with that of

the given right versor i (181). And all the lines, or vectors, such as a, /3, 7,

&c., or tto, tti, 02, &c., to be here employed, shall be conceived to be in that

given plane of /; so that we may write (by 123), for the purposes of this

Chapter, ^Qformiilce of complanarity.

dlk'lll^^-.||h'; «llh', /3||h-, «o|lh;&o.

226. Under these conditions, we can always (by 103, 117) interpret any

symbol of the form (j3 : a) . 7, as denoting a line S in the given plane ; which

line may also be denoted (125) by the symbol (7:0). ^, but not* (comp. 103)

by either of the two apparently equivalent symbols, (j3 . 7) : a, (7 . /3) ; a ; so

that we may write,

a a

and may say that this line S is the Fourth Proportional to the three lines

«> /3, 7 ; or to the three lines a, 7, [3 ; the two Means, |3 and 7, of any such

* In fact the symbols $ .y, y . fi, ot fiy, yfi, have not as yet received with us any interpretation

;

and even when they shall come to be interpreted as representing certain quaternions, it will be found

(comp. 168) that the two combinations, - y and —^, have generally different significations.
a a
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Complanar Proportion of Four Vectors, admitting thus of being interchanged,

as in algebra. Under the same conditions we may write also (by 125),

II...a = |7=|/3; /3 = ^g = -a; 7 = pa = ^S;

80 that (still as in algebra) the two Extremes, a and S, of any such proportion

of four lines a, /3, y, B, may likewise change places among themselves : while

we may also make the means become the extremes, if we at the same time

change the extremes to means. More generally, if a, j3, 7, 8, c . . . be ani/

odd number of vectors in the given plane, we can always find another vector p

in that plane, which shall satisfy the equation,

™
l^"'"' " III'

nr'--
and when such a formula holds good, for any one arrangement of the nume-

rator-lines a, 7, £, . . . and of the denominator-lines /o, /3, 8 ... it can easily be

proved to hold good also for any other arrangement of the numerators, and

any other arrangement of the denominators. For example, whatever four

(complanar) vectors may be denoted by (iy^e, we have the transformations,

IV. ..g^ g7-P g^-P g^»

the two numerators being thus interchanged. Again,

so that the two denominators also may change places.

227. An interesting case of such proportion (226) is that in which the

means coincide ; so that only three distinct lines, such as a, /3, 7, are involved :

and that we have (oomp. Art. 149, and fig. 42 [p. 133]) an equation of the

form,

I. ..7=2.^, or a = &/3,
a 7

but not* 7 = j3/3 : a, nor a = /3/3 : 7. In this case, it is said that the three lines

a|3y form a Continued Proportion ; of which a and 7 are now the Extremes,

and j3 is the 3Iean : this line j3 being also said to be af Mean Proportional

* Compare the Note to the foregoing Article.

t "We say, a inean proportional ; because we shall shortly see that the opposite line, —$, is in the

same sense another mean ; although a rule will presently be given, for distinguishing between them,

and for selecting one as that which may be called, by eminence, the mean proportional.

2K2
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between the two others, a and y ; while y is the Third Proportional to

the two lines a and j3 ; and a is, at the same time, the third proportional to

7 and j3. Under the same conditions, we have

so that this mearif j3, between a and y, is also the fourth proportional (226) to

itself, as first, and to those two other lines. We have also (comp. again 149),

\aj a \yj y

IY...&.M^ /3_^«V
aj y \y

whence it is natural to write,

]

and therefore by (103),

although we are not here to write j3 = (ya)*, nor j3 = (ay)*. But because we

have always, as in algebra (comp. 199, (8.) ), the equation or identity, (- qY = q^,

we are equally well entitled to write,

the symbol q^ denoting thus, in general, either of two opposite quaternions,

whereof however one, namely that one of which the amjle is acute, has been

already selected in 199, (1.), as that which shall be called by us the Square

Boot of the quaternion q, and denoted by ^q. We may therefore establish

the formula,

vn...|B..j(g.„ =
.J(«-).,.

if a, /3, 7 form, as above, a continued proportion ; the upper signs being taken

when (as in fig. 42) the angle aoc, between the extreme lines a, 7, is bisected

by the line ob, or j3, itself', but the lower signs, when that angle is bisected by

the opposite line, - |3, or when j3 bisects the vertically opposite angle (comp.

again 199, (3.) ) : but the proportion of tensors,

YIII. ..T7:Ti3 = Ti3:Ta,

and the resulting formulae

IX. . . T/3^ = Ta . T7, TjS = y {Ta. T7),

in each case holding good. And when we shall speak simply of the Mean
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Proportional between two vectors^ a and 7, whicli make any acute, or right, or

obtuse angle with each other, we shall always hencefoi-th understand the

former of these two bisectors ; namely, the bisector ob of that angle ago itself^

and not that of the opposite angle : thus taking upper signs, in the recent

formula VII.

(1.) At the limit when the angle ago vanishes, so that U-y = JJa, then

U/3 = each of these two unit-lines ; and the mean proportional j3 has the same

common direction as each of the two given extremes. This comes to our

agreeing to write,

X. . . -v/l = + 1, and generally, X'. . . ^/(a') = + a,

if a be any positive scalar.

(2.) At the other limit, when ago = ir, or TJ7 = - TJo, the length of the

mean proportional j3 is still determined by IX., as the geometric mean (in the

usual sense) between the lengths of the two given extremes (comp. the two

figures 41 [p. 132] ) ; but, even with the supposed restriction (225) on the

plane in which all the lines are situated, an ambiguity arises in this case, from

the doubt which of the two opposite perpendiculars at g, to the line aoc, is to be

taken as the direction of the mean vector. To remove this ambiguity, we shall

suppose that the rotation round the axis of i (to which axis all the lines con-

sidered in this Chapter are, by 225, perpendicular), from the first line ga to

the second line ob, is in this case positive ; which supposition is equivalent to

writing, for present purposes,

XI.* . . >/ - 1 = + t ; and XI'. . . -/(- a") = ia, if a > 0.

And thus the mean proportional between two vectors (in the given plane)

becomes, in all cases, determined ; at least if their order (as first and third) be

given.

(3.) If the restriction (225) on the common plane of the lines, were removed,

we might then, on the recent plan (227), fix definitely the direction, as well as

the length, of the mean ob, in every case but one : this excepted case being that

in which, as in (2.), the two given extremes, ga, oc, have exactly opposite

directions; so that the angle (aoc = tt) between them has no one definite

bisector. In this case, tlie sought point b would have no one determined

position, but only a locus : namely the circumference of a circle, with o for

* It is to be carefully observed that this square root of negative unity is not, in any sense,

imaginary, nor even ambiguous, in its geometrical interpretation, but denotes a real and given right

versor (181).
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centre, and with a radius equal to the geometric mean between oa, go, while

its plane would be perpendicular to the given right line aoc. (Comp. again

the figures 41 ; and the remarks in 148, 149, 153, 154, on the square of a

right radial, or versor, and on the partially indeterminate character of the

square root of a negative scalar, when interpreted, on the plan of this Calculus,

as a real in geometry.)

228. The quotient of any two complanar and right quaternions has been

seen (191, (6.) ) to be a scalar ; since then we here suppose (225) that q \\\
i, we

are at liberty to write,

1. . .^q = x\ Yq:i = i/; Yq = pi = iy
',

and consequently may establish the following Reduction of a Quaternion in the

given plane (of i) to a Standard Binomial Form* (comp. 221)

:

11. . . q = X + iy, if q \\\
i

;

X and 1/ being some two scalars, which may be called the two constituents (comp.

again 221) of this binomial. And then an equation between two quaternions)

considered as binomials of this form, such as the equation,

III, . . q' = q, or III'. . . x' + i/ = x + iy,

breaks up (by 202, (5.) ) into two scalar equations between their respective

constituents, namely,

IY. . .x' = x, y =yy

notwithstanding the geometrical reality of the right versor, i.

(1.) On comparing the recent equations II., III., IV., with those marked

as III., v., VI, in 221, we see that, in thus passing from general to complanar

quaternions, we have merely suppressed the coefficients ofj and k, as being for

our present purpose, null', and have then written x and y, instead of w

and X.

(2.) As the word " binomial " has other meanings in algebra, it may be

convenient to call the form II. a Couple ; and the two constituent scalars x

and y, of which the values serve to distinguish one such couple from another,

may not unnaturally be said to be the Co-ordinates of that Couple, for a reason

which it may be useful to state.

* It IB permitted, by 227, XI., to write this expression as a; + y V - 1 ; but tbe form a; + iy is

shorter, and perhaps less liable to any ambiguity of interpretation.
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(3.) Conceive, then, that the plane of fig. 60 [p. 192] coincides with that

of i, and that positive rotation round Ax . * is, in that figure, directed towards

the left-hand] which may be reconciled with our general convention (1271, hy

imagining that this axis of i is directed from o towards the back of the figure

;

or below* it, if horizontal. This being assumed, and perpendiculars bb', bb''

being let fall (as in the figure) on the indefinite line oa itself, and on a normal

to that line at o, which normal we may call oa', and may suppose it to have

a length equal to that of oa, with a left-handed rotation aoa', so that

V. . . OA^ = i . oa, or briefly, Y\ . . a = la,

while /3' = ob', and /3" = ob'', as in 201, and g' = /3 : a, as in 202

;

then, on whichever side of the indefinite right line oa the point b may be

situated, a comparison of the quaternion q with the binomial form II. will

give the two equations,

Yl..,xi = ^q)=^':a; y{=Yq:i = ^": ia) = ^" : a'

;

so that these two scalars, x and y, are precisely the ttco rectangular co-ordinates

of the point b, referred to the two lines oa and oa', as two rectangular unit-

axes, of the ordinary (or Cartesian) kind. And since every other quaternion,

q' = x' + iy\ in the given plane, can be reduced to the form y : a, or oc is to oa,

where c is a point in that plane, which can be projected into c' and c" in the

same way (comp. 197, 205), we see that the two new scalars, or constituents,

x' and y', are simply (for the same reason) the co-ordinates of the new point c,

referred to the same pair of axes.

(4.) It is evident (from the principles of the foregoing Chapter), that if

we thus express as couples (2.) any two complanar quaternions, q and q\ we

shall have the following general transformations for their smw, difference, and

product :

VII. . . q" ±q= {i/ ±x) ^ i {i/ ±y)\

VIII. , , ^ , q= {afx - y'y) + i {afy + y'x),

(5.) Again, for any one such couple, q, we have (comp. 222) not only

Sg- = X, and Yq = iy, as above, but also,

lX..,'Kq = x-iy; X. . . Ng = a;' + ^/^ XI. . . Tq = ^/ix' + y')
;

XII. ..jjq= ;.yy
^^

; XIII. . .
i = :^-^; &c.

* Compare the second Note to page 111.
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(6.) Hence, for the quotient of any two such couples, we have,

- = ^ = —,—^, ^ + tp = /Kg',
q x + iij x' + if

x" = XX + y'y, y" = y'x - xy.

(7.) The law of the norms (191, (8.) ), or tlie formula, "Nq'q = N7' . Ng-, is

expressed here (comp. 222, (3.) ) by the well-known algebraic equation, or

identity,

XV. . . {x' + y'') [x^ + y^) = (xx - y'yf + [x'y + y'xY ;

in which xyx'if may be anyfour sealars.

SECTION 2.

On Continned Proportion of Four or more ITectors; ^^hole

Powers and Roots of tttuaternions ; and Roots of Unity.

229. The conception of continued proportion (227) may easily be extended

from the case of three to that oi four or more (coraplanar) vectors; and thus

a theory may be formed of cuhes and higher whole poivers of quaternions, witli a

correspondingly extended theory of roots of quaternions, including roots of

scalars, and in particular of unity. Thus if we suppose that ihefour vectors

a/378 form a continued proportion, expressed by the formulae,

I...-«a = e, „henoe 11...1MJ^
y p a a y p a \a

(by an obvious extension of usual algebraic notation,) we may say that the

quaternion S : a is the cube, or the third power, of /3 : a ; and that the latter

quaternion is, converselj'', a cube-root (or third root) of the former ; which last

relation may naturally be denoted by writing,

III. . . 2 = f-Y, or Iir. ..B = f-)'a (comp. 227, IV., V.).
a \a J \d/

230. But it is important to observe that as the equation q^ = Q, in which

5- is a sought and Q is a given quaternion, was found to be satisfied by two

opposite quaternions q, of the form ± \/Q (comp. 227, VII.), so the slightly

less simple equation g-^ = Q is satisfied by three distinct and real quaternions,

if Q be actual and real ; whereof each, divided by either of the other two,

gives for quotient a real quaternion, which is equal to one of the cube-roots of
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positive unity. In fact, if we conceive (comp. the annexed fig. 54) that ^'

and /3" are two other but equally long vectors in the given plane, obtained

from j3 by two successive and positive rotations,

each through the third part of a circumference, so that

|3"
i3' i3'

or IV'. . . ^ = ^, = ^,

and therefore

•^'
i3" i3'

we shall have

v--(!>(l)IfJ=!----e
so that we are equally entitled, at this stage, to write, instead of III. or IIF.,

these other equations

:

a \a/ \a

or

^^df' ^"&'VII'.

231. A (real and actual) quaternion Q may thus be said to have three

(real, actual, and) distinct cube-roots ; of which however only one can have an

angle less than sixty degrees ; while none can have an angle eqnal to sixty

degress, unless the proposed quaternion Q degenerates into a negative scalar.

In every other case, one of the three cube-roots of Q, or one of the three values

of the symbol Qi, may be considered as simpler than either of the other two,

because it has a smaller angle (comp. 199, (1.) ) ; and if we, for the present,

denote this one, which we shall call the Principal Cube-Root of the quaternion

Q, by the symbol ^/ Q, we shall thus be enabled to establish the formula of

inequality,

VIII...zyQ<J, if lQktt.
o

232. At the limit, when Q degenerates, as above, into a negative scalar,

one of its cube-roots is itself a negative scalar, and has therefore its angle = v
;

while each of the two other roots has its angle = ^. In this case, among tliese

two roots of which the angles are equal to each other, and are less than that

Hamilton's Elements of Quaternions. 2 L
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of tlie third, we shall consider as simpler, and therefore as principal, the one

which answers (comp. 227, (2.) ) to a positive rotation through sixty degrees
;

and so shall be led to write,

IX...3/-l=i-±i^^ and X. ../.y-l =
^;

using thus the positive sign for the radical ^3, by which i is multiplied in the

expression IX. for 2 ^Z - 1 ; with the connected formula,

IX'. ..y(-a^) = ^(l + «V3), if «>0;

although it might at first have seemed more natural to adopt as principal the

scalar value, and to write thus,

y-i = -i;

which latter is in fact one value of the symbol, (- 1)^.

(1.) We have, however, on the present plan, as in arithmetic,

XL ..yi = l; and Xr. . .y (a^) = a, if a > 0.

(2.) The equations,

XII. . .
(lli^']' = - 1, and 5III. . . f-^^y^Y = . 1,

can be verified in calculation, by actual cubing, exactly as in algebra ; the only

difference being, as regards the conception of the subject, that although i

satisfies the equation i^ =- ], it is regarded Itere as altogether real ; namely,

as a real right versor* (181).

233. There is no difficulty in conceiving how the same general principles

may be extended (comp. 229) to a continued proportion of « + 1 complanar

vectors,

I. . . a, ai, 02, . . . a«,

when n is a whole number greater than three ; nor in interpreting, in con-

nexion therewith, the equations,

IL..^=:f^Y; III...'^=f^¥; IV...«X = f-"^"a.

* This conception differs fundamentally from one which had occurred to several able writers,

before the invention of the quaternions ; and according to which the symbols 1 and V — 1 were inter-

preted as representing a pair of equally long and mutually rectangular right lines, in a given plane. In

Quaternions, no line is represented by the number, One, except as regards its length; the reoiow being,

mainly, that we require, in the present Calculus, to be able to deal with all possible planes ; and that

no one right line is common to all such.
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Denoting, for the moment, what we shall call the principal n*^ root of a qua-

ternion Q by the symbol \/Q, we have, on this plan (comp. 231, YIII.),

V...^(5/Q]<-, if zQ<7r;
n

Y1...L {V- 1) = -
;

"VII. . . y [V- !):»•> 0;

this last condition, namely that there shall be a positive (scalar) coefficient y of

iy in the binomial (or couple) form x -v iy (228), for the quaternion ^/ - I, thus

serving to complete the determination of that principal w'* root of negative

unity ; or of any other negative scalar, since - 1 may be changed to - a, if

« > 0, in each of the two last formulae. And as to the general w'* root of a

quaternion, we may write, on the same principles,

VIII. . . Q» = 1" . J/Q

;

where the factor 1", representing the general n*'* root of positive unity, has n

different values, depending on the division of the circumference of a circle into

n equal parts, in the way lately illustrated, for the case n = 3, by figure 54

;

and only differing from ordinary algebra by the reality here attributed to i.

In fact, each of these n^^ roots of unity is with us a real versor ; namely the

quotient of two radii of a circle, which make with each other an angle, equal to

the n*^ part of some whole number of circumferences.

(1 .) We propose, however, to interpret the particular symbol *'*, as always

denoting the principal value of the w'* root of i ; thus writing,

IX. . . »« = J//;

whence it will follow that when this root is expressed under the form ofja

couple (228), the two constituents x and y shall both be positive, and the

quotient y : x shall have a smaller value than for any other couple x^- iy (with

constituents thus positive), of which the «'* power equals i.

(2.) For example, although the equation

q^ = {x + iyY = i,

is satisfied by the two values, ± (I + i) : <^2, we shall write definitely,

(3.) And although the equation,

q^ = {x+ iyf = i,

2 L 2
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is satisfied by the three distinct aud real couples, (i ± v^3) : 2, and - «, we shall

adopt only the one value,

(4.) In general, we shall thus have the expression,

XII. . . e" = cos -— + e sin—-
;

^Zn in

which we shall occasionally abridge to the following :

Xir...i» = cis^;
Zn

and this root^ «", thus interpreted, denotes a versor, which turns any line on

which it operates, through an angle equal to the n*'^ part of a right angle, in

the positive direction of rotation, round the given axis of i.

234. If m and n be any ttvo positive whole numberx, and q any quaternion,

the definition contained in the formula 233, II., of the whole power, $", enables

us to write, as in algebra, the two equations :

I. . .
q"'q'' = j'"+"

;

II. . . (j")"* = q"""
;

and we propose to extend the former to the case of null and negative whole

exponents, writing therefore,

III. . .q° = 1] lY. . .
?"•-" = q"'

: j"
;

and in particular,

V. . . 5^' = 1 : (? = - = reciprocal* (134) of q.

We shall also extend the formula II., by writing,

1 m

YI. . . (f)"" = ?",

whether m be positive or negative ; so that this last symbol, if m and n be

still whole numbers, whereof n may be supposed to be positive, has as many

distinct values as there are units in the denominator of its fractional exponent,
m

when reduced to its least terms ; among which values of q", we shall naturally

consider as the principal one, that which is the w"^ power of the principal w'*

root (233) of q.

* Compare the first Note to page 123.
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(1.) For example, the symbol q^ denotes, on this plan, the square of any

cube-root oi q; it has therefore three distinct values, namely, the three values

of the cube-root of the square of the same quaternion q ; but among these we

regard as principal, the square of the principal cube-root (231) of that proposed

quaternion.

(2.) Again, the symbol g^ is interpreted, on the same plan, as denoting

the square of any fourth root of q ; but because (1*)'*= 1* = ± 1, this square has

only tivo distinct values, namely those of the square root g^, the fractional

exponent f being thus reduced to its least terms ; and among these the

principal value is the square of the principalfourth root, which square is, at the

same time, the principal square root (199, (I.), or 227) of the quaternion q.

(3.) The symbol q-^ denotes, as in algebra, the reciprocal of a square-root

of q ; while q~^- denotes the reciprocal of the square, &c.

(4.) If the exponent t, in a symbol of the form q*, be still a scalar, but a

surd (or incommensurable) , we may consider this surd exponent, t, as a limit,

towards which a variable fraction tends : and the symbol itself may then be

interpreted as the corresponding limit of ^ fractional poioer of a quaternion,

which has however (in this case) indefinitely many values, and can therefore

be of little or no use, until a selection shall have been made, of one value of

this surd poiver as princijml, according to a law which will be best understood

by the introduction of the conception of the amplitude of a quaternion, to

which in the next section we shall proceed.

(5.) Meanwhile (comp. 233, (4.)), we may already definitely interpret the

symbol i'' as denoting a vevsor, which turns any line in the given plane,

through t right angles, round Ax . /, in the positive or negative direction,

according as this scalar exponent, t, whether rational or irrational, is itself

positive or negative ; and thus may establish the formula,

TTTT H tir . . tir

Vll. . . V = GOB -^ + I Bin -jr-

;

or briefly (comp. 233, Xir.),

YIIL ..i' = cis^.
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SECTION 3.

On the Amplitudes of Ctnaternions in a given Plane ; and on
Trigonometric Expressions for such Quaternions, and for

their Ponders.

235. Using the binomial or couple form (228) for a quaternion in the

plane of i (225), if we introduce two new and real scalars, r and 2, whereof

the former shall be supposed to be positive, and which are connected with the

two former scalars x and y by the equations,

1.. . .x = r cos s, y = r sin z, r > 0,

we shall then evidently have the formulae (comp. 228, (5.) )

:

11... Tlq = T{x + iy) =r;

III. . . Uq = U (a; + iy) = cos s + i sin z
;

which last expression may be conveniently abridged (comp. 233, XIF., and

234, YIII.) to the following :

IV. . . TJg = cis s ; so that V. . . g = r cis s.

And the arcual or angular quantity, z, may be called the Amplitude* of the

quaternion q ; this name being here preferred by us to " Angle^^ because we

liave already appropriated the latter name, and the corresponding symbol L q,

to denote (130) an migle of the Euclidean kind, or at least one not exceeding,

iu either direction, the limits and tt ; whereas the amplitude, z, considered as

obliged only to satisfy the equations I., may have any real and scalar value.

We shall denote this amplitude, at least for the present, by the symbol, f am . q,

* Compare the Note to Art. 130.

t The symbolV was spoken of, in 202, as completing the system of notations peculiar to the present

Calculus ; and in fact, besides the three letters, i, j, k, of which the laws are expressed by ih.e funda-

mentalformula (A) of Art. 183, and which M-ere originally (namely in the year 1843, and in the two

following years) the only peculiar symbols of quaternions {^.^el^oiQ to page 160), that Calculus does not

habitually employ, with peculiar significations, any more than ^hejive characteristics of operation, K,

S, T, U, V, for conjuyate, scalar, tensor, versor, and vector (or riyht part) : although perhaps the mark

N for norm, which in the present work has been adopted from the Theory of Numbers, will gradually

come more into use than it has yet done, in connexion with quaternions also. As to the marks, Z.,

Ax., I, E, and now am. (or am,.), for anyle, axis, index, reciprocal, and amplitude, they are to be

considered as chiefly available for the present exposition of the system, and as not often wanted, nor

employed, in the subsequent ^rac^ice thereof; and the same remark applies to the recent abridyment

cis, for cos + i sin ; to some notations in the present section for powers and roots, serving to express

the conception of one >*'* root, &c., as distinyuished from another; and to the characteristic P, of

what we shall call in the next section the ponential of a quaternion, though not requiring that

notation afterwards. No apology need be made for employing the purely yeometrical siyns, L, ||, |||,

for perpendicularity, parallelism, and complanarity : although the last of them was perhaps first intro-

duced by the present writer, who has found it frequently useful.
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or Bimply, am q; and thus shall have the following formula, of connexion

between amplitude and angle,

YI. . . (2 =) am . g- = 2mr ±lq\

the upper or the lower sign being taken, according as Ax .q = ± Ax . i ; and n

being any whole number, positive or negative or null. "We may then write

also (for any quaternion q\\\i) the general transformations following

:

VII. . . TJq = cis am q ; YIII. . . g = Tg' . ois am g'.

(1.) Writing q = ^: a, the amplitude am . q, or am (j3 : a), is thus a scalar

quantity, expressing {with its proper sign) the amount of rotation, round Ax . i,

from the line a to the line j3 ; and admitting, in general, of being increased or

diminished by any whole number of circumferences, or of entire revolutions, when

only the directions of the two lines, a and (5, in the given plane of i, are given.

(2.) But the particular quaternion, or right versor, i itself, shall be con-

sidered as having definitely, for its amplitude, one right angle ; so that we shall

establish the particular formula,

IX. . . am .i = Li = -^'

(3.) When, for any other given quaternion q, the generally arbitrary

integer n in YI. receives any one determined value, the corresponding value of

the amplitude may be denoted by either of the two following temporary

symbols,* whicli we here treat as equivalent to each other,

amft.g-, or L^q',

so that (with the same rule of signs as before) we may write, as a more definite

formula than YI., the equation :

X. . . am„ .q = inq = 2mr ±Lq',

and may say that this last quantity is the n^^ value of the amplitude of q ; while

the zero-value, amo q, may be called the principal amplitude (or the principal

value of the amplitude).

(4.) With these notations, and with the convention, amo (- 1) = + t, we

may write,

XI. . . amo q = Uq = ±Lq',

XII. . . am„ a = am„ 1 = z„ 1 = 2mr, if a > ;

and
XIII. . . am„ (- a) = am„ (- 1) = z,, (- 1) = {2n + l)7r,

if a be still a positive scalar.

* Compare the recent Note, respecting the notations employed.
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236. From the foregoing definition of amplitude, and from the formerly

established connexion of ?nulfiplicafion of versors with, composition of rotations

(207), it is obvious that (within the given plane, and with abstraction made of

tensors) multiplication and division of quaternions answer respectively to (alge-

braical) addition and subtraction of amplitudes : so that, if the symbol am . q be

interpreted in the general (or indefinite) sense of the equation 235, VI., we

may write

:

I. . . am [q'. g-) = am / + am g- ; II. . . am [q' : g') = am /- am g ;

implying hereby that, in each formula, one of the values of the first member

is among the values of the second member; but not here specifying which

value. With the same generality of signification, it follows evidently that,

for Si product of any number of (complanar) quaternions, and for a whole power

of any one quaternion, we have the analogous formulae

:

III. . . am ng = S am q ; IV. . . am .q^=p.B.m.q\

where the exponent p may be any positive or negative integer, or sero.

(1.) It was proved, in 191, II., that for any two quaternions, the formula

Ug''g ^ Ug'. Ug holds good ; a result which, by the associative principle of

multiplication (223), is easily extended to any number of quaternion factors

(complanar or diplanar), with an analogous result for tensors : so that we

may write, generally,

V. ..un^ = nug; VI. ..Tng = nT^.

(2.) Confining ourselves to the first of these two equations, and combining

it with III., and with 235, VII., we arrive at the important formula:

VII. . . n cis am q (= IlUg = Ullg = eis am Yiq) =• cis 2 am g

;

whence in particular (comp. IV.),

VIII. . . (cis am qY = cis [p . am g'),

at least if the exponent p be still any whole number.

(3.) In these last formulae, the amplitudes am . q, am . g', &o., may repre-

sent any angular quantities^ z, z\ &c. ; we may therefore, write them thus,

IX. . . n cis s = eis Ss ; X. . . (cis zf = cisjos
;

including thus, under abridged forms^ some known and useful tlieorems,

respecting cosines and sines of sums and multiples of arcs.
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(4.) For example, if the number of factors of the form cis s be twOy we

have thus,

IX'. . . cis z'. cis s = CIS [z' + z)
;

X'. . . (cis zY = cis 2s

;

whence
cos [z + z) = S (cis z'. cis z) = cos s' cos z - sin 2' sin 2

;

sin (s' + s) = r^Y (cis z' . cis z) = cos z' sin z + sin z' cos 2

;

cos 22 = (cos s)^ - (sin s)'* ; sin 22 = 2 cos 2 sin 2
;

with similar results for more factors than two.

(5.) Without expressly introducing the conception, or at least the notation

of amplitude^ we may derive the recent formula IX. and X., from the conside-

ration of the Tpoicer V- (234), as follows. That power of ?, with a scalar exponent^ ty

has been interpreted in 234, (5.), as a symbol satisfying an equation which

may be written thus

:

XI. . . i^ = cis 2, if 2 = itir ;

or geometrically as a versor, which turns a line through t right angles, where t

may be ani/ scalar. "We see then at once, from this interpretation, that if f be

either the same or any other scalar, the formula,

XII. . . t\ i^' = i^'*', or XIII. . . n . i* = »»,

must hold good, as in algebra. And because the number of the factors «' is

easily seen to be arbitrary in this last formula, we may write also,

XIY. . . [i^Y = iv\

if p be any whole* number. But the two last formulae may be changed by

XI., to the equations IX. and X., which are therefore thus again obtained
;

although the later forms, namely XIII. and XIY., are perhaps somewhat

simpler : having indeed the appearance of being mere algebraical identities,

although we see that their yeometrical interpretations, as given above, are

important.

(6.) In connexion with the same interpretation XI. of the same useful

symbol i\ it may be noticed here that

XY. ..£.{* = r*;

• It will soon be seen that there is a sense, although one not quite so definite, in which this

formula holds good, even when the exponent p is fractional, or surd ; namely, that the second member
is then one of the values of the first.

Hamilton's Elements of Quatbrnions. 2M
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and that therefore,

XYI. . . cos ^= S.*' = i (i' + i-')
;

XVII. . . sin 1"= i-' V. i' = I i-' {i' - i-*].

(7.) Hence, by raising the double of each member of XYI. to any

positive whole power p, halving, and substituting z for ^tir, we get the

equation,

XYIII. . . 2^^008 zy = i{i^ + i-*y = I {iP' + i-P') + y {i^~')^ + ii'-P)') + &c.

pip — 11
= cos pz+p COS {p-2) z + ^-^——i cos {p - 4:) z + &c.,

with the usual rule for halving the coefficient of cos Oz, if p be an even

integer ; and with analogous processes for obtaining the known expansions of

2^'* (sin zY, for any positive whole value, even or odd, of p ; and many other

known results of the same kind.

237. If p be still a whole number, we have thus the transformation,

I. . .
qP = {r cis z)p = rP cisjoz = (Tg-)^ cis (jo.amg')

;

in which (comp. 190, 161) tlie two factors, of the tensor and versor kinds,

may be thus written :

II. . . T {qY = [Tqf = IV ;
III. . . U {qP) = (Uy)? = JJq^

;

and any value (235) of the amplitude am.g' may be taken, since all will

conduct to one common value of this ivhole j^otver cp. And if, for I., we

substitute this slightly different formula (comp. 235, (3.) ),

lY. . . {(f)n = ^qP
• cis (jo.amwg-), with ja = —r, n' > 0,

m\ n\ n being whole numbers whereof the first is supposed to be prime to the

second, so that the exponentp is here a fraction in its least terms, vnth a. positive

denominator n', while the factor Tq^ is interpreted as a positive scalar (of which

the positive or negative logarithm, in any given system, is equal to jo x the

logarithm of Tq), then the expression in the second member admits of n'

distinct values, answering to different values of n ; which are precisely the w'

values (comp. 234} of the fractional power qP, on principles already established

:

the principal value of that power corresponding to the value n = 0.

(1.) For any value of the integer w, we may say that the symbol (?^)n,

defined by the formula lY., represents the «'* value of the power q^ ; such

values, however, recurring periodically, when p is, as above, a, fraction.
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(2.) Abridging (!?)„ to 1p„, we have thus, generally^ by 235, XII.,

V. . . 1^« = cis 2/?W7r, if p be any fraction,

a restriction which however we shall soon remove ; and in particular,

VI. . . Principal value of 1^ = 1^0= 1 •

(3.) Thus, making successively i?
= i, P = -j, we have

VII. ..!*« = cis mr, \K = + 1, l*i = - 1, 1*3 = + 1, &o.

;

VIII... 1J. = cis ?|r, H = i, l»,= zili^^, i*, =ll^, 1*3=1, &e.

(4.) Denoting in like manner the n^^ value of (- 1)^ by the abridged

symbol (- 1)p„, we have, on the same plan (comp. 235, XIII.}, for any

fractional* value of j!>,

IX. . . (- 1)^, = ci8jtj(2« + l)7r; whence (comp. 232),

X. . . (- l)K = cis - = + «, (- l)*i = cis -^ = - i, (- 1)^2 = + «', &o.

;

and

XI. . . (- 1)». = i±i^, (-l)t, = -l, (- 1)». = i^iv^, &0.,

these three values of (- 1)* recurring periodically.

(5.) The formula IV. gives, generally, by V., the transformation,

XII. . . {qP)n = (gP)o cis 2pmr = l\ [q% \

so that the n^^ value of q^ is equal to the principal value of that power of j,

multiplied by the corresponding value of the same power of positive unity) and

it may be remarked, that if the base a be any positive scalar^ the principalp*^

power, («^)o, is simply, by our definitions, the arithmetical value of aP.

(6.) The n*^ value of the 2^^^ power of any negative scalar, - a, is in like

manner equal to the arithmetical p*^ power of the positive opposite, + a, multi-

plied by the corresponding value of the same power of negative unity ; or in

symbols,

XIII. . . (- a)Pn = (- !)''« («'')o = {aP), cisi?(2» + l)7r.

(7.) The formula IV., with its consequences V. VI. IX. XII. XIII., may
be extended so as to include, as a limit, the case when the exponent p being still

scalar, becomes incommensurable, or surd; and although the number of values

of the power ^ becomes thus unlimited (comp. 234, (4.) ), yet we can still

* As before, this restriction is only a temporary one.

2M2
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consider one of them as the principal value of this (now) surd power : namely

the value,

Xiy. . . {qP)o = TqP . cis (p amo q),

which answers to the principal amplitude (235, (3.) ) of the proposed quater-

nion q.

238. We may therefore consider the symlol,

in which the hase^ g-, is any quaternion; while the exponent, p, is any scalar, as

being now fully interpreted; but no interpretation has been as yet assigned

to this other symbol of the same kind,

in which both the base q, and the exponent q', are supposed to be (generally)

quaternions, although for the purposes of this Chapter complanar (225).* To

do this, in a way which shall be completely consistent with the foregoing con-

ventions and conclusions, or rather which shall include and reproduce them, for

the case where the new quaternion exponent, q\ degenerates (131) into a scalar,

will be one main object of the following section : which however will also

contain a theory of logarithms of quaternions, and of the connexion of both

logarithms and powers with the properties of a certain function, which we

shall call the ponential of a quaternion, and to consider which we next

proceed.

SECTION 4.

On tbe Ponential and liOgaritbm of a Q,uaternion ; and on Po^vers

of Ctuaternions, ifvitb Ctuaternions for their Exponents.

239. If we consider the polynomial function,

I. . . P (g', m) = 1 + g-i + $'2 + . . g-m,

in which q is any quaternion, and m is any positive whole number^ while it is

supposed (for conciseness) that

jr ^ ^ f;_ ( <t
*•'•• •^'" 1.2.3..WV r(;« + i),

then it is not difficult to prove that however great, but finite and given, the

* [For the general case see 316.]
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tensor Tq may be, a finite number m can be assigned, for which the inequality

III. .,T(P{q,m + n)-'P{q,m))<a, iia> 0,

shall be satisfied, however large the (positive whole) number n may be, and

however small the (positive) scalar a, provided that this last is given. In other

words, if we write (comp. 228),

IV. . . q = a! + ii/, P {q, m) = X„ + iY^,

a finite value of the number m can always be assigned, such that the follow-

ing inequality,

V. . . (X^ + n - XmY + {YmHi ~ I»n) < ^^t

shall hold good, however large the number n, and however small (but given

and > 0) the scalar a may be. It follows evidently that each of the two scalar

series, or succession of scalar functions,

VL..Xo = l, X, = l + x, X, = l + x + ^-^,.. X„,..

VlL..Fo = 0, r, = y, r, = y + ar^,... ¥„,,...

converges ultimately to a fixed and finite limit, whereof the one may be called

Xoc , or simply X, and the latter Tm , or Y, and of which each is a certain

function of the two scalars, x and y. Writing then

VIII. . . Q = X.+ iF« = X+ iY,

we must consider this quaternion Q (namely the limit to which the following

series of quaternions,

IX. ..P(y,0) = l, P(?,l) = l + ^, P(^,2)=l + ^ + |,..P(?.m),...

converges ultimately) as being in like manner a certain function, which we

shall call the ponentialfunction, or simply the Ponential of q, in consequence of

its possessing certain exponential properties ; and which may be denoted by

any one of the three symbols,

P (g', go), or P {q), or simply Tq.

"We have therefore the equation,

X . . . Ponential of q = Q = Tq = 1 + qi + qi + . . + j.

,

with the signification II. of the term $'„.

(1.) In connexion with the convergence of this ponential series, or with the
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inequality III., it may be remarked that if we write (oomp. 235) r = Tg, and

Vm = Tg-OT, we shall have, by 212, (2.),

XL . .T(P(^, w + w)-P(g',m))<P(r, w+«)-P(r, w);

it is sufficient then to prove that this last difference, or the sum of the n posi-

tive terms, rm+i, . . rm*ny can be made < a. Now if we take a numberp>2r-\,

we shall have rp+i < |rp, Va < i^j'+u <^o-j ^^ ^^^* ^ ^^^^^ number m>p>2r-l
can be assigned, such that r„, < a ; and then,

XII. . .P(r,m + «) -P(r, w) <a(2-» + 2-' + .. + 2-«)<a!;

the asserted inequality is therefore proved to exist.

(2.) In general, if an ascending series, with positive coefficients, such as

XIII. . . Ao + Aig- + Kiq^ + «S;c., where Aq > 0, Ai > 0, &c.,

be convergent when q is changed to o. positive scalar, it will d fortiori converge,

when 3' is a quaternion.

240. Let q and q' be any two complanar quaternions, and let q'' be their

sum, so that

1.../'=/+?, /nil /HI?;

then, as in algebra, with the signification 239, 11. of qm and with correspond-

ing significations of q'm and q^m^ we have

iq' + a)"*
11. . . /'*»=

-, \, .. = g'mqo + q'm-iqi + /m-2?2 + . . + /o^m,

where qo = q\ = 1. Hence, writing again r = Tq, r« = Tjm, and in like

manner / = Tq\ &c., the two differences,

III. . . P (/, m) . P {r, w) - P (r + /, m),

and lY. . . P (r + /, 2m) - P (/, m) . P (r, m),

can be expanded as sums of positive terms of the form /p'.rp (one sum con-

taining ^m [m + 1), and the other containing w (w + 1) such terms)* ; but, by

239, III., the sum of these two positive differences can be made less than any

given small positive scalar «, since

V. . . P(r + /, 2m)-P(r + /, m) <a, if « > 0,

* [For the total number of terms in P (r + »•', w) is 1 + 2 + 3 + . . . + (w + 1) = J C" + 1) ('^ + 2).

On expansion of III. the series is seen to be "Zr'pi.rp where i? -f ^' > m, and there are (ffi + 1)*

— ^(>» -f 1) (w + 2) terms, all of which are positive ; similarly for IV. From the expanded form of

III. it is seen at once that

T(P(j', m) .P(j, m) - P(? + j', m) ) < P(r', m) . P (r, m) - P (r + r', m).]
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provided that the number m is taken large enough ; each difference, therefore,

separately tends to 0, as m tends to co ; a tendency which must exist djortioriy

when the tensors, r, /, are replaced by the quaternions, q, q'. The function

Pg is therefore subject to the Exponential Law,

VL..P(/+?)=P/.Pg=P^.P?', if /IIU.

(1.) If we write (comp. 237, (5.) ),

YII. . . PI = E, then YIII. . . Pa? = (£*)o = arithmetical value of e*

;

where e is the known base of the natural system of logarithms, and x is any

scalar. We shall henceforth write simply 6* to denote this principal (or

arithmetical) value of the «** power of c, and so shall have the simplified

equation,

VIII'. ,.Vx = e.

(2.) Already we have thus a motive for writing, generally,

IX. ..P^ = £9;

but this formula is here to be considered merely as a definition of the sense in

which we interpret this exponential symbol, t'; namely as what we have lately

called the ponential function, Vq, considered as the sum of the infinite but

converging series, 239, X. It will however be soon seen to be included in a

more general definition (comp. 238) of the symbol q^'.

(3.) For any scalar x, we have by VIII. the transformation :

X. . . a? = IPa? = natural logarithm ofponential of x.

241. The exponential law (240) gives the following general decomposition

of a ponential into factors,

I. . . P^ = P (a; + iy) = Vx . Viy
;

in which we have just seen that the factor Pa? is a positive scalar. The other

factor, P/y, is easily proved to be a versor, and therefore to be the versorofVq,

while Vx is the temor of the same ponential ; because we have in general,

II. . .P^.P(-^) = P0 = 1, and III. . . PKg = KP^,

since IV. . . (Kg-)'" = K (?"•) = (say) K?"* (comp. 199, IX.)
;,

and therefore, in particular (comp. 150, 158),

V. . . l:Pty=P(-t^) =KP«V, or VI. . . NP/y = 1.

I
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We may therefore write (comp. 240, IX., X.),

VII. . . TPy = VSg = Pa: = £^ YIII. . .x = Sq = ITPg ;

IX. . . UP^ = PY^ = PtV = e'y = cis y (comp. 235, lY.)

;

this last transformation being obtained from the two series,

X. . . SViy = 1 - ^ + &c. = cos 7/;

XI. . . r^ YP*y = y- -^ + &c. = sm y.

Hence the ponential Vq may be thus transformed

:

XII. . . Pg = P (a- + it/) = e"' cis p.

(1.) If we had not chosen to assume as known the series for cosine and sine,

nor to select (at first) any one unit of angle, such as that known one on which

their validity depends, we might then have proceeded as follows. Writing

XIII. . . P*> =/!/ + %, /(- y) = +/y, <t>{-y)=- (py,

we should have, by the exponential law (240),

XIY. . ./(2/ + /) =S(Piy.Piy) =fy.fy' - <py .
<t>y ;

XY. . .f(y - y') = /y .//+ 0y . ^/;

and then 'Ca.'d functional equation, which results, namely,

XYI. . ./(j^ + /) +/(y -yO = 2/y .fy',

would show that

XYII, ../?/ = cos f- X a right angle),

whatever unit of angle may be adopted, provided that we determine the

constant c by the condition,

XYIII. . . c = least positive root of the equationfy (= SIVy) = ;

or nearly,

XYIir. . . c = 1"5708, as the study of the series* would show.

* In fact, the value of the constant c may be obtained to this degree of accuracy, by simple inter-

polation between the two approximate values of the function/,

/{1-5) = + 0-070737, /(1-6) = - 0-029200
;

and of course there are artifices, not necessary to be mentioned here, by which a far more accurate

value can be fou nd
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(2.) A motive would thus arise for representing a right angle by this nume-

rical constant, c ; or for so selecting the angular unity as to have the equation

(tt still denoting two right angles),

XIX. . . TT = 2c = least positive root of the equation fy = - 1]

giving nearly,

XIX'. . . TT = 3-14159, as usual;

for thus we should reduce XYII. to the simpler form,

XX. . ./y = cosy.

(3.) As to the function ^y, since

XXI. . . {fyy + {^yy = Fiy . P (- iy) = 1,

it is evident that <py = ±smy', and it is easy to prove that the upper sign is

to be taken. In fact, it can be shown (without supposing any previous

knowledge of cosines or sines) that (pc is positive, and therefore that

XXII. . . ^c = + 1, or XXIII. . . Tic = i ;

whence
XXIY. . . 0y = S . i-' -Piy = SPe {y - c) =f{y - c),

and
XXV. ..Pt>=/y + «/(y-c).

If then we replace c by ^, we have

XXVI. . . ^2/ = cos f y - -
J

= sin 2/ ; and XXVII. . . P/j/ = cis y, as in IX.

(4.) The series X. XI. for cosine and sine might thus be deduced, instead

of being assumed as known : and since we have the limiting value,

XXVIII. . . lim. y"- sin y = \\m. y^ r^ VP«> = 1,
j/ = o y = o

it follows that the unit of angle, which thus gives Viy = cis y, is (as usual) the

angle subtended at the centre by the arc equal to radius ; or that the number ir

(or 2c) is to 1, as the circumference is to the diameter of a circle.

(5.) If any other angular unit had been, for any reason, chosen, then a right

angle would of course be represented by a different number, and not by 1-5708

nearly ; but we should still have the transformation,

XXIX. . . Viy = cis ( - X a right angle ),

though not the same series as before, for cos y and sin y.

Hamilton's Elements of Quaternions.
.

"

a N
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242. The usual unit being retained, we see, by 241, XII., that

I. . . P . 2w7r = 1, and II. . . P (^ + 2m7r) = Vq,

if n be any whole number ; it follows, then, that the inverse ponentialfunction,

P"^g', or what we may call the Imponential, of a given quaternion q, has inde-

finitely many values, which may all be represented by the formula,

III. . . Pn~^ q = ITg' + i am^ q ;

and of which each satisfies the equation,

IV. ..PP„-^? = ^;

while the one which corresponds to n = 0, may be called the Principal ImpO"

nential. It will be found that when the exponent p is any scalar, the definition

already given (237, lY., XII.) for the w''* value of the j?'* poicer of q enables us

to establish the formula,

V. . . {qP)n = P ip^n-'q) ;

and we now propose to extend this last formula, by a new definition, to the more

general case (238), when the exponent is a quaternion q': thus writing generally,

for any two complanar quaternions, q and q' the General Exponential Formula,

YI. . . (g^')„ = P (?T„-?)

;

the principal value of q^' being still conceived to correspond to w = 0, or to the

principal amplitude of q (comp. 235, (3.) ).

(1.) For example,

YII. . . (£^)o = P(?Po-^£) = P?, because Po'^e = le = 1
;

the ponential Pg*, which we agreed, in 240, (2.), to denote simply by t^, is

therefore now seen to be in fact, by our general definition, ih.Q principal value

of that power, or exponential.

(2.) With the same notations,

YIII. . . £'^ = cisy, Qosy = 1 {e'v + E-^y), sin y = ^. (e*^ - e^y)

;

these two last only differing from the usual imaginary expressions for cosine

and sine, by the geometrical reality* of the versor i.

* Compare 232, (2.), and the Notes to pp. 253, 258.
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(3.) The cosine and sine of a quaternion (in the given plane) may now be

defined by the equations :

IX. . . cos ^ = i (f»^ + e-*5) ; X. . . sin 2' =
^^

(c*? - e"*?)

;

and we may write (comp. 241, IX.),

XI. . . cis g- = £'? = P??.

(4.) With this interpretation of cisg', the exponential properties, 236, IX.,

X., continue to hold good ; and we may write,

XII. . . (?«')n = P (?'11V) . P («/ am„ q) = [TqY cis (/ am„ q) ;

a formula which evidently includes the corresponding one, 237, lY., for the

«'^ value of the p*'* power of q, when p is scalar.

(5.) The definitions III. and VI., combined with 235, XII., give generally,

XIII. . . \n^' = (1?% = P • 2«Wg' ;
XIY. . . (23% = ^n^'- (2'')o

;

this last equation including the formula 237, XII.

(6.) The same definitions give,

XY...Po-H- = |; XYL..(fOo = .-^;

which last equation agrees with a known interpretation of the symbol,

V-i

considered as denoting in algebra a real quantity.

(7.) The formula YI. may even be extended to the case where the exponent

q is a quaternion^ which is not in the given plane of », and therefore not com-

planar with the base q ; thus we may write,

XYII. . . (*^)o = P UV-H) = P
f
- ^"j = - ^ ;

but it would be foreign (225) to the plan of this Chapter to enter into any

further details, on the subject of the interpretation of the exponential symbol

q^\ for this case of diplanar quaternions, though we see that there would be no

difficulty in treating it, after what has been shown respecting complanars.

243. As regards the general logarithm ^ of a quaternion q (in the given

plane), we may regard it as any quaternion wliich satisfies the equation,

I. ..£?'= P/ = g;

and in this view it is simply the Imponential P'^g', of which the w'^ value is

2 N 2
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expressed by the formula 242, III. But the principal imponential, which

answers (as above) to n = 0, may be said to be the principal logarithm, or

simply the Logarithm, of the quaternion q, and may be denoted by the symbol,

so that we may write,

1. . .\q = Po"V = ITq + {amo q ;

or still more simply,

II. . .l^ = l(Tg.U?)=lT^ + lU^,

because ITUg' = 11 = 0, and therefore,

III. . . lUg = /amo q.

We have thus the two general equations,

lY. ..Sl? = lTg; V. ..V1? = 1U^;

in which ITg' is still the scalar and natural logarithm of the positive scalar Tq.

(1.) As examples (comp. 235, (2.), and (4.) ),

YI. . .Ie = |i7r; YII. . . 1 (- 1) = iV.

(2.) The general logarithm of q may be denoted by any one of the symbols,

log . q, or log q, or (log ?)„,

this last denoting the n*^ value ; and then we shall have,

YIII. . . (log q)n = Ig + 2imr.

(3.) The formula,

IX. . . log . g^g- = log q' + log g-, if q'
\\\ g,

holds good, in the sense that every value of the first member is one of the

values of the second (comp. 236).

(4.) Principal value of q^' = £«'^?
; and one value of log .

q'^' = qlq.

(5.) The quotient of two general logarithms,

X...(logg).,:(logg)„=-j^^-j:2^,

may be said to be the general logarithm of the quaternion, q\ to the complanar

quaternion base, q ; and we see that its expression involves* two arbitrary and

independent integers, while its principal value may be defined to be \q' : \q.

* As the corresponding expression in algebra, according to Graves and Ohm.
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SECTION 5.

On Finite^ (or Polynomial) Equations ofAlgebraic Form, Involving

Complanar Ciuaternions ; and on the Existence of n Real

Ctuaternlon Roots, of any such Equation of the n*'' Regree.

244. We have seen (233) that an equation of the form,

I. . . g« - Q = 0,

where n is any given positive integer, and Q is anyf given, real, and actual

quaternion (144), has always n realj actual, and unequal quaternion roots, q,
1

complanar with Q ; namely, the n distinct and real values of the symbol Q"

(223, VIII. )j determined on a plan lately laid down. This result is, however,

included in a much more general Theorem, respecting Quaternion Equations of

Algebraic Form ; namely, that if qi, q^, . . qn be any n given, real, and com-

planar quaternions, then the equation,

II. . . ?" + q.q''-' + q^q""-^ + . . + ^„ = 0,

has always n real quaternion roots, q ,
q", . . §'("), and no more in the given plane

;

of which roots it is possible however that some, or all may become equal, in

consequence of certain relations existing between the n given coefficients.

245. As another statement of the same Theorem, if we write,

I. . .F„q^q'' + qiq""-^ + . . + qn,

the coefficients qi . . qn being as before, we may say that every such polynomial

function, Ynq, is equal to a product of n real, complanar, and linear (or binomial)

factors, of the form q - q'
', or that an equation of the form,

11. . .Y,q^ [q- q')[q- f) . , [q- q^^)),

can be provedi in all cases to exist : although we may not be able, with our

present methods, to assign expressions for the roots, q, . . §'('*), in terms of the

coefficients qi, . . . qn.

* By saying finite equations^ we merely intend to exclude here equations with infinitely many
terms, such as Pj = 1, which has been seen (242) to have infinitely many roots, represented by the

expression q = 2imr, where n may be any whole number.

t It is true that we have supposed Q \\\ i (225) ; but nothing hinders iis, in any other case, from

substituting for i the versor UVQ, and then proceeding as before.
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246. Or we may say that there is always a certain system of n real quater-

nions ^y &c.,
Ill

i, which satisfies the system of equations, of known algebraic

form,

III... ?r + ?Y" + ?Y" + .. = + ^2;

247. Or because the difference F^g' - F^g^' is divisible \>jq - q\ as in algebra,

under the supposed conditions of complanarity (224), it is sufficient to say

that at least one real quaternion q' always exists (whether we can assign it or

not), which satisfies the equation,

IV. . . Ynq' = 0,

with the foregoing form (245, I.) of the polynomial function f.*

248. Or finally, because the theorem is evideutly true for the case w = 1,

while the case 244, I., has been considered, and the case g'^ = is satisfied by

the supposition g- = 0, we may, without essential loss of generality, reduce

the enunciation to the following :

Every equation of the form,^

I. . . \[^ _
^) (^ _ ^') . . (^ _ ^(«-i)) = Q,

in wliich q, ^' , . . and Q are any n real and given quaternions in the given

plane, whereof at least Q and g' may be supposed actual (144), is satisfied by

at least one real, actual, and complanar quaternion, q [see 253 (l.)]*

249. Supposing that the m - 1 last of the n - 1 given quaternions

q'. .
g^""^) vanish, but that the n - tn first of them are actual, where m may be

any whole number, from 1 to n - 1, and iutroducing a new real, known,

complanar, and actual quaternion qo, which satisfies the condition,

Q
II. . . go'" = -

9Q
v(n-m)'

CI

* [Thus —^ s F„.iq = 2"-! + ^i g"-2 + q'2 q"'^ + . . + q'n-i, which ia of the form 245, I. If

then every equation of this form has a root, Fn-iq" = 0, and q" is a second root of Fug-.]

t The corresponding /o)'?rt, of the algebraical equation of the «'* degree, was proposed by Mourey,

in his very ingenious and original little work, entitled La vraie theorie des Quantites Negatives, et des

Quantites preteiidues Imaginaires (Paris, 1828). Suggestions also, towards the geometricalproof of the

theorem in the text have been taken from the same work ; in which, however, the curve here called

(in 251) Via. oval is not perhaps defined with sufficient precision : the inequality, here numbered as

251, XII., being not employed. It is to be observed that Mourey's book contains no hint of the

present calculus, being confined, like the Double Algebra of Prof. De Morgan (London, 1849), and like

the earlier work of Mr. Warren (Cambridge, 1828), to questions ivithin the plane: whereas the very

conception of the Quaternion involves, as we have seen, a reference to Tridimensional Spacb.
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we may write thus the recent equation I.,

and may (by 187, 159, 235) decompose it into the two following

:

IV. . . T/^ = 1 ; and V. . . Vfq = 1, or YI. . . am/g = 2j97r

;

in which p is some whole number (negatives and zero included)

.

250. To give a more geometrical form to the equation, let X be any given

or assumed line
1|| «, and let it be supposed that a, j3, . . and p, a, or oa, ob,

. . . and op, os, are n - m + 2 other lines in tlie same planes, and that
<f)p

is a

known function of p, such that

VII. . . a = q% /3 = q'% . . /o = gX, <t = joX,

and
^pV* p-a /o - j3 /op\'" AP BP

^^
\(tJ a j3 Vosy OA oB

the theorem to be proved may then be said to be, that whatever system of real

poinis, o, A, B, . . and s, in a given plane, and whatever positive whole number m,

may he assumed, or given, there is always at hast one real point p, in the same

plane, which satisfies the two conditions :

IX. . . T^p = 1 ; X. . . am ^/) = 2j07r.

251. Whatever value <
|||

?' we may assume for the versor (or unit-vector)

U|0, there always exists at lead one value of the tensor Tp, which satisfies the

condition IX. ; because the function T^p vanishes with Tp, and becomes

infinite when Tp =oo, having varied continuously (although perhaps with

fluctuations) in the interval. Attending then only to the least value (if there

be more than one) of Tp, which thus renders T^p equal to unity, we can

conceive a real, imambiguous, and scalar function tpi, which shall have the

two following properties

:

XI. . . T<p {4i) = 1 ; XII. . . T0 {x4i) < 1, if a; > 0, < 1.

And in this way the equation, or system of equations,

XIII. . . p = 4i, or XIV. . . Up = (, Tp = ^Pl,

may be conceived to determine a real, finite, and plane closed curve, which we

shall call generally an Oval, and which shall have the two following pro-

perties : 1st, every right line, or ray, drawn /row the origin o, in any arbitrary
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direction within the plane, meets the curve once, but once only ; and Ilnd, no one

of the n-m other given points a, b, . . is on the oval, because ^a = 0j3 = . . = 0,*

252. This being laid down, let us conceive a point p to perform one circuit

of the oval, moving in the positive direction relatively to the given interior

point o; so that, whatever the given direction of the line os may be, the

amplitude am (/o : tr), if supposed to vary continuously, "f will have increased by

four right angles, or by 2ir, in the course of this one positive circuit ; and conse-

quently, the amplitude of the left-hand factor {p : o-)"*, of ^p, will have

increased, at the same time, by 2w7r. Then, if the point a be also interior to

the oval, so that tlie line oa must be prolonged to meet that curve, the ray ap

will have likewise made one positive revolution, and the amplitude of the

factor [p - a): a will have increased by 2ir. But if a be an exterior point, so

that the finite line oa intersects the curve in a point m, and therefore never

meets it again if prolonged, although the prolongation of the opposite line ao

must meet it once in some point n, then while the point p performs first what

we may call the positive half-circuit from m to n, and afterwards the other

positive half-circuit from n to m again, the ray ap has only oscillated about its

initial and final direction, namely that of the line ao, without ever attaining

the opposite direction; in this case, therefore, the amplitude am (ap : oa), if

still supposed to vary continuously, has only fluctuated in its value, and has

(upon the whole) undergone no change at all. And since precisely similar

remarks apply to the other given points, b, &c., it follows that the amplitude,

am ^p, of the product (YIII.) of all these factors, has (by 236) received a total

increment = 2 {m + t) ir, ii t be the number (perhaps zero) of given internal

points. A, B, . . ; while the number m is (by 249) at least = 1. Thus, while p

* [A curve traced out by a point moving so that the product of powers of its distances from fixed

points is equal to a constant parameter, consists of closed curves or ovals surrounding the fixed points

and enclosing all ovals corresponding to smaller parameters. If the parameter is small, each oval

encloses but one fixed point, but as it increases, two ovals will combine into a curve with a " certain

undulation " (254 (4.) ), It is not generally true that a ray OP from one of the fixed points meets an

undulatory oval only once. In this case OP will oscillate in its motion as P traces out the oval. But

am . <|>p = m L POS + 2 (ir - z. PAO) = const., defines a set of curves diverging like half-lines or rays

from the fixed points, and approximating to straight lines at great distances from them. By tlie pro-

perties of Conjugate Functions each of these curves which originates from cuts at right angles each

oval round and does not meet it again. Near 0, am . <^p is nearly equal to m L POS plus a con-

stant. From this it appears that IX. and X. can always be satisfied, and that as P traces out an

oval round without oscillation, am .
<pf>

continually increases or diminishes without oscillation. The
ovals are lines of magnetic force, and the orthogonal curves are traces of equipotential surfaces for a

system of electric currents normal to the plane.]

t That is, so as not to receive any sudden increment, or decrement, of one or more whole circum-

ferences (comp. 235, (1.) ),

1
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performs (as above) one positive circuity the amplitude am ^p has passed at least

m times, and therefore at leant once, through a value of the form 2pTr ; and con-

sequently the condition X. has been at least once satisfied. But the other

condition, IX., is satisfied throughout, by the supposed construction of the

oval : there is therefore at least one real position p, upon that curve, for which

^|0 or /g- = 1 ; so that, for this position of that point, the equation 249, III.,

and therefore also the equation 248, I., is satisfied. The theorem of Art. 248,

and consequently also, by 247, the theorem of 244, with its transformations

245 and 246, is therefore in this manner proved.

253. This conclusion is so important, that it may be useful to illustrate

the general reasoning, by applying it to the case of a quadratic equation, of

the form,

or

I.

II.
'^ a\c. / OS OA

We have now to prove (corap. 250, VIII.) that a (real) point p exists, which

renders the fourth proportional (226) to the three lines oa, op, ap equal

to a given line os, or ab, if this latter be drawn = os

;

or which satisfies the following condition of similarity of

triangles (118),

III. . . A AGP a PAB

;

which includes the equation of rectangles,

IV. . . OP . AP = OA • AB.
fig. 65, Us.

(Compare the annexed figures, 55, and 55, his.) Conceive, then, that a conti-

nuous curve* is described as a locus (or as

part of the locus) of p, by means of this

equality IV., with the additional condi-

tion when necessary, that o shall be

within it; in such a manner that when

(as in fig. 56) a right line from o meets

the general or total locus in several points, m, m', n', we reject all but the

Fig. 56.

* This curve of the fourth degree is the well-known Cassinian ; hut when it hreaks up, as in

fig. 56, into two separate ovals, we here retain, as the oval of the proof, only the one round o, rejecting

for the present that round a.

Hamilton's Elements of Quaternions, 30
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point M which is nearest to o, as not belonging (comp. 251, XII.) to the oval

here considered. Then while p moves upon that oval, in the positive direction

relatively to o, from m to n, and from n to m again, so that the ray op per-

forms one positive revolution, and the amplitude of the factor op : os increases

continuously by 27r, the ray ap performs in like manner one positive revolu-

tion, or (on the whole) does not revolve at all, and the amplitude of the factor

AP : OA increases by 2ir or by 0, according as the point a is interior or exterior

to the oval. In the one case, therefore, the amplitude am (pp of the product

increases by 47r (as in fig. 55, bis) ; and in the other case, it increases by 27r

(as in fig. 56) ; so that in each case, it passes at least once through a value of

the form 2p7r, whatever its initial value may have been. Hence, for at least

one real position, p, upon the oval, we have

V. . . am ^/o = 2pTr, and therefore VI. . . U^jO = 1

;

but VII. . . T^(0 = 1,

throughout, by the construction, or by the equation of the locus IV. ; the

geometrical condition <j)p = l (II.) is therefore satisfied by at least one real vector

p ; and consequently the quadratic equation fq = 1 (I.) is satisfied by at least

one real quaternion root, q = p:\ (250, VII.). But the recent form I. has the

same generality as the earlier form,

VIII. . . Yzq = q^ + q^q + 3-2=0 (comp. 245),

where qi and qz are any two given, real, actual, and complanar quaternions
;

thus there is always a real quaternion q' in the given plane, which satisfies

the equation,

Vlir. . . F,q' = q"' + q,q' + q^ = (comp. 247) ;

subtracting, therefore, and dividing hy q - q\ as in algebra (comp. 224), we

obtain the following depressed or linear equation q,

IX.. ..q + ^ + q^ = 0, or IX'. . . ^ = /' = - / - ^i (comp. 246).

The quadratic VIII. has therefore a second real quaternion root, ^' related in this

manner to 'Cq.q first ; and because the quadratic function ^^q (comp. again 245)

is thus decomposable into two linear factors, or can be put under the form,

x...M=(g-?0(?-n,

it cannot vanish for any third real quaternion, q ; so that (comp. 244) the quad-

ratic equation has no more than two such real roots.



Abt. 253.] RELATIONS BETWEEN THE BOOTS. 283

(1.) The cubic equation may therefore be put under the form (oomp. 248),

X'. . .Ezq = q^+q^q^+q2q + qz-'q[q-q'){q-q") + qz = (i',

it has therefore one real root, a&j q\ by the generalproof{2b2), which has been

above illustrated by the case of the quadratic equation ; subtracting therefore

(comp. 247) the equation Fg^' = 0, and dividing by g* - g', we can depress the

cubic to a quadratic, which will have two new real roots, q^ and q'^
; and thus

the cubic function may be put under the form,

XI. ..Y3q={q- q) [q - q) [q - g'"'),

which cannot vanish for &nj fourth real value of q; the cubic equation X.

has therefore no more than three real quaternion roots (oomp. 244) : and similarly

for equations of higher degrees.

(2.) The existence of two real roots q of the quadratic I., or of two real

vectors, p and p\ which satisfy the equation II., might have been geometrically

anticipated, from the recently proved increase = 47r of amplitude <^p, in the

course of one circuit, for the case of fig. 55, bis, in cousequeuce of which there

must be two real positions, p and p', on the one ovaloi that figure, of which each

satisfies the condition of similarity III. ; and for the case of fig. 56, from the

consideration that the second (or lighter) oval, which iu this case exists, although

not employed above, is related to a exactly as the^rs^ (or dark) oval of the

figure is related to o ; so that, to the real position p on the first, there must

correspond another real position p', upon the second.

(3.) As regards the law of this correspondence, if the equation II. be put

under tbe form,

xiL..f^Y-f^Y-^=o,
\aj \a/ a

and if we now write

XIII. . . p = qa, we may write XIV. . . g'l = - 1, qi = -a:a,

for comparison with the form VIII. ; and then the recent relation IX'. (or

246) between the two roots will take the form of the following relation

between vectors,

XV. . .p + p'=a; or XV'. . . op' = |o'=o-p = pa;

so that the point p' completes (as in the cited figures) the parallelogram opap',

and the line pp' is bisected by the middle point c of oa. Accordingly, with

this position of p', we have (comp. III.) the similarity, and (comp. II. and

226) the equation,

XVI. . . A aop' a p'ab ; XVII. . . ^p' = ^(a -p) = ^jo = 1.

202
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(4.) The other relation between the two roots of the quadratic YIII.,

namely (comp. 246),

XVIII. ..?Y' = ?2, gives XIX...^/ = -<t;
a

and accordingly, the line cr, or os, is a fourth proportional to the three lines

DA, OP, and AP, or a, p, and -p.

(5.) The actual solution^ by calculation^ of the quadratic equation YIII. in

complanar quaternions, is performed exactly as in algebra; the formula being,

XX. ..q = -iqi± \/(ki' - ?2)»

in which, however, the square root is to be interpreted as a real quaternion, on

principles already laid down.

(6.) Cubic and biquadratic equations, with quaternion coefl&cients of the

kind considered in 244, are in like manner resolved by the tnown formulce of

algebra ; but we have now (as has been proved) three real (quaternion) roots

for the former, and/owr such real roots for the latter.

254. The following is another mode of presenting the geometrical reason-

ings of the foregoing Article, without expressly introducing the notation or

conception of amplitude. The equation ^p = 1 of 253 being written as

follows,

I...<T = XiO = ^(p-a), or II. . . T(T = Txio, and III. . . U(t = Uxp,
a

we may thus regard the vector o- as a known function of the vector p, or the

point s as & function of the point p; in the sense that, while o and a oxe fixed,

p and s vary together : although it may (and does) happen, that s may return

to a former position without p having similarly returned. Now the essential

property of the oval (253) may be said to be this : that it is the locus of the

points p nearest to o, for which the tensor T^p lias a given value, say b ; namely

the given value of Ha, or of os, when the point s, like o and a, is given. If then

we conceive the point p to move, as before, along the oval, and the point s also

to move, according to the law expressed by the recent formula I., this latter

point must move (by II.) on the circumference of a given circle (comp. again

fig. 56), with the given origin o for centre; and the theorem is, that in so

moving, s will pass, at least once, through every position on that circle, while p

performs one circuit of the oval. And this may be proved by observing that

(by III.) the angular motion of the radius os is equal to the sum of the angular

motions of the two rays, op and ap ; but this latter sum amounts to eight right

angles for the case of fig. 65, bis, and to four right angles for the case of fig. 56

;
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the radius os, and the point s, must therefore have revolved twice in the first

case, and once in the second case, which proves the theorem in question.

(1.) In the first of these two cases, namely when a is an interior point,

each of the three angular velocities is positive throughout, and the mean angular

velocity of the radius os is double of that of each of the two rays op, ap. But in

the second case, when a is exterior, the mean angular velocity of the ray ap is

zero ; and we might for a moment doubt, wlietlier the sometimes negative velocity

of that ray might not, for parts of the circuit, exceed the always positive velocity

of the ray op, and so cause the radius os to move bachcards, for a while. This

cannot be, however ; for if we conceive p to describe, like p', a circuit of the

other (or lighter) oval, in fig. 56, the point s (if still dependent on it by the

law I.) would again traverse the whole of the same circumference as before

;

if then it could ever fluctuate in its motion, it would pass more than twice

through some given series of real positions on that circle, during the successive

description of the two ovals by p ; and thus, within certain limiting values of

the coefficients, the quadratic equation would have more than two real roots : a

result which has been proved to be impossible.*

(2.) While s thus describes a circle round o, we may conceive the con-

nected point B to describe an equal circle round a ; and in the case at least of

fig. 56, it is easy to prove geometrically, from the constant equality (253, lY.)

of the rectangles op . ap and oa . ab, that these two circles (with t'u and t'u'

as diameters), and the two ovals (with mn and m'n' as axes), have two common

tangents, parallel to the line oa, which connects what we may call the two given

foci {ov focal points), o and a: the new or third circle, which is described on

ihiafocalinterval OK as diameter, passing through the four points of contact on

the ovals, as the figure may serve to exhibit.

(3.) To prove the same things by quaternions, we shall find it convenient

to change the origin (18), for the sake of symmetry, to the central point c;

and thus to denote now cp by p, and ca by a, writing also ca = Ta = a, and

representing still the radius of each of the two equal circles by b. We shall

then have, as i\iQ joint equation of the system of the two ovak^ the following

:

IV...T(p + a).T(p-a)=2«5;

V. ..T(f-l)=2c, if q = ^ and c = --
a a

But because we have generally (by 199, 204, &c.) the transformations,

VI. . . S .
gr' = 2Sy' - Tq' = T?^ + 2Yq^ = 2NS^ - N^ = N? - 2NV?,

* [See the Note to 261, page 280,]
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the square of the equation V. may (by 210, (8.) ) be written under either of

the two following forms

:

VII. . . (N^ - 1)' + 4NV<? = 4c' ; YIII. ..(Nq + 1)' - 4NS^ = 4c'

;

whereof the first shows that the maximum value of TYi^ is c, at least if 2c < 1,

as happens for this case of fig. 56 ; and that this maximum corresponds to the

value Tj' = 1, or Tp = a : results which, when interpreted, reproduce those of

the preceding sub-article.

(4.) When 2c> 1, it is permitted to suppose Sg* = 0, NYg' = Ng' = 2c - 1

;

and then we have only one continuous oval, as in the case of fig. 55, his ; but

if c < 1, though > |-, there exists a certain undulation in the form of the curve

(not represented in that figure), TYg being a minimum for Sg = 0, or for

jO _L a, but becoming (as before) a maximum when Tq - 1, and vanishing

when Sg' = 2c + 1, namely at the two summits m, n, where the oval meets the

axis.

(5.) In the intermediate case, when 2c = 1, the Cassinian curve lY. becomes

(as is known) a lemniscata ; of which the quaternion equation may, by Y., be

written (comp. 200, (8.)) under any one of the following forms:

IX...T(g^-l) = l; or X...N(?' = 2S.g^ or XL . . Tg^ = 2SU.g';

or finally,

XII. ..Tp' = 2Ta'cos2z^;
a

which last, when written as

Xir. . . cp^ = 2cA^ . cos 2acp,

agrees evidently with known results.

(6.) This corresponds to the case when
«

Xlll...a = ^, and XIY.../> = p'= + ^, in253,XIL,

that quadratic equation having thus its roots equal; and in general, for all

degrees, cases of equal roots answer to some interesting peculiarities ofform of

the ovals, on which we cannot here delay.

(7.) It may, however, be remarked, in passing, that if we remove the

restriction that the vector p, or cp, shall be in a given plane (225), drawn

through the line which connects the two foci, o and a, the recent equation Y.

will then represent the surface (or surfaces) generated by the revolution of the

oval (or ovals), or lemniscata, about that line oa as an axis.
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255. If we look back, for a moment, on the formula of similarity,

253, III,, we shall see that it involves not merely an equality of redanglesy

253, lY., but also an equality of angles, aop and pab ; so that the

angle gab represents (in the figures 55) a given difference of the base angles

AOP, PAG of the triangle gap : but to construct a triangle, by means of such

a given difference, combined with a given base, and a given rectangle of sides,

is a known problem of elementary geometry. To solve it briefly, as an

exercise, by quaternions, let the given base be the line aa',

with o for its middle point, as in the annexed figure 57

;

let baa' represent the given difference of base angles,

paa' - aa'p ; and let ga . ab be equal to the given rect-

angle of sides, AP . a'p. We shall then have the similarity

and equation,

I. . . A OA p a pab ; II. . .
i- = •-

-p:- c>j

a p - a xig. u,.

whence it follows by the simplest calculations, that

or that jO is a mean proportional (227) between a and /3. Draw, therefore,

a line gp, which shall be in length a geometric mean between the two given

lines, OA, ob, and shall also bisect their angle aob ; its extremity will be the

required vertex, p, of the sought triangle aa'p : a result of the quaternion

analysis, which geometrical synthesis* easily confirms.

(1.) The equation III. is however satisfied also (comp. 227) by the opposite

vector, op' = po, or p' = - p ; and because j3 = (/> : a) . p, we have

TV P±£-P_/3_P' nr TV p'b _0P_0B_ op'

/o + a a p a PA GA OP GA

so that the /owr following triangles are similar (the two first of them indeed

being equal) :

V. . . A a'gp' a AGP a pgb aAp's ;

as geometry again would confirm.

(2.) The angles ap'b, bpa, are therefore supplementary, their sum being

equal to the sum of the angles in the triangle gap ; whence it follows that

* In fact, the two triangles I. are similar, as required, because theii' angles at o and p are equal,

and the sides about them are proportional.
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the four points a, p, b, p' are concircular :* or in other words, the quadrilateral

APBp' is inscriptible in a circle ^ of which (we may add) the. centre c is on the

circle gab (see again fig. 67), because the angle aob is doichie of the angle

ap'b, by what has been already proved.

(3.) Quadratic equations in quaternions may also be employed in the

solution of many other geometrical problems ; for example, to decompose a

given vector into two others, which shall have a given geometrical mean, &c.

SECTION 6.

On the n^ - n Imaginary (or Symbolical) Roots of a ilnaternion

Equation of the ^"^ Degree, with coefficients of the kind

considered in the foregoing Section.

256. The polynomial function Fnq (245), like the quaternions q, q^, . . qn

on which it depends, may always be reduced to the form of a couple (228) ;

and thus we may establish the transformation (comp. 239),

I. . .Fnq = Fn {x + iy) = X„ + iYn = On {x, y) + iHn{x, y\

Xn and F„, or G„ and ffn, being two known, real, finite, and BGala,Y functions

of the two sought scalars, x and y ; which functions, relatively to them, are

each of the n^^ dimension, but which involve also, though only in the first

dimension, the 2w given and real scalars, Xi, yi, . . . Xn, yn- And since the one

quaternion (or couple) equation, Fnq = 0, is equivalent (by 228, IV.) to the

system of the two scalar equations,

II. . . X„ = 0, r„ = 0, or III. . . Gn{x, y) = 0, Hn{x, y) = 0,

we see (by what has been stated in 244, and proved in 252) that such a

system, of two equations of the w*^ dimension, ca)i always be satisfied by n

systems (or pairs) of real scalars, and by not more than n, such as,

lY...x\/', x",y"',.. d"),yW;

* Geometrically, the construction gives at once the similarity,

A AGP <x FOB, whence Z. bpa = opa + pao = poa'
;

and if we complete the parallelogram apa'p', the new similarity,

A oa'p a op'b, gives Z ap'b = oa'p + a'po = aop ;

thus the opposite angles bpa, ap'b are supplementary, and the quadrilateral apbp' is inscriptible. It

will be shown, in a shortly subsequent section [261, (6.)], that these four points, A, p, b, p', form a

harmonic group upon their common circle.
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although it may happen that tivo or more of these systems shall coincide with

(or become equal to) each other.

(1.) If X and y be treated as co-ordinates (comp. 228, (3.) ), the two

equations II. or III. represent a system of two curves, in the given plane ; and

then the theorem is, that these two curves intersect each other [generally*) in n

real points, and in no more : although two or more of these n points may

happen to coincide with each other.

(2.) Let h denote, as a temporary abridgment, the old or ordinary imaginary

^

y^ - 1, of algebra, considered as an uninterpreted symbol, and as not equal to

any real versor, such as i (comp. 181, and 214, (3.) ), but as following the rules

ofscalars, especially as regards the commutative property of multiplication (126)

;

so that

V. . . A* + 1 = 0, and VI. , . hi = ih, but VII. , . h not = ± i.

(3.) Let q denote still a real quaternion, or real couple, x + iy; and with

the meaning just now proposed of h, let [g-] denote the connected but

imaginary algebraic quantity, or bi-scalar (214, (7.) ), x + hy; so that

VIII. . . q = X + iy, but IX. . . [^q"] = x + hy

;

and let any biquaternion (214, (8.)), or (as we may here call it) bi-couple, of

the fonn [2^] + i [q'^, be said to be complanar with i; with the old notation

(123) of complanarity.

(4.) Then, for the polynomial equation in real and complanar quaternions,

F„q = (244, 245), we may be led to substitute the following connected alge-

braical equation, of the same degree, n, and involving real scalars similarly :

X. . . lF„q] = H» + [q,-] [q-]--^ + .. + [q,,] = ;

which, after the reductions depending on the substitution V. of - 1 for h^,

receives the form,

XL..[i?;y]=X„ + AF„ = 0;

where Xn and Yn are the same real and scalarfunctions as in I.

(5.) But we have seen in II., that these two real functions can be made to

vanish together, by selecting any one of n real pairs IV. of scalar values, x and y ;

* Cases of equal roots may cause points of intersection, which are generally imaginary, to become
real, but coincident with each other, and with /orwer real roots : for instance the hyperbola, x^ -y'^ = a,

is intersected in two real and distinct points, by the pair of right lines xy = 0, if the scalar a > or < ;

but for the case a = 0, the two pairs 0/ lines, x^ — y'^ = and xy = 0, may be considered to havefour
coincident intersections at the origin.

HAMILTOiN's ELKMENTS OF QUATKRNJONS, 2 P
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the General Algebraical Equation X., of then*^ Degree^ has therefore n Meal or

Imaginary Boots* of the Form x + 1/ ^ - 1 ; and it has no more than n such

roots.

(6.) Elimination of y, hetvveen the two equations II. or III., conducts

generally to an algebraic equation in en, of the degree n^ ; which equation has

therefore n'^ algebraic roots (5.), real or imaginary ; namely, by what has been

lately proved, n real and scalar roofs x\ . . a;^'*), with real and scalar values

y\ . . y^^) (comp. lY.) of y to correspond ; and n[n - 1) other roots, with the

same number of corresponding values of y, which may be thus denoted,

XII. . . [a;("")], . . [a!("')] ; XIII. . . [2/(«")], . . [^z^-')]

;

and which are either themselves imaginary (or bi-scalar, 214, (7.) ), or at least

correspond^ by the supposed elimination, to imaginary or bi-scalar values of

y ; since if icf^+M and y^"*^\ for example, could both be real, the quaternion

equation Fnq = 0, would then have an (w + Ijst real root, of the form,

g-C^+i) = aj(«+i) + ty(«+i), contrary to what has been proved (252).

257. On the whole, then, it results that the equation Fnq = in complanar

quaternions, of the w'* degree, with real coefficients, while it admits of only

n real quaternion rootSf

I. . . q\ f, . . g(") (244, &o.),

is symbolically satisfied also (comp. 214, (3.) ) by w(w - 1) imaginary quaternion

roots, or by w* - w bi-quaternions (214, (8.) ), or bi-couples (256, (3.) ), which

may be thus denoted,

and of which the first, for example, has the form,

III. . .
[g(«+i)] = [a;(»+i)] + i [2/C»")] = a;/«+^) + hxj*"^') + e (2//+') + Ay,/""))

;

where a?/"*^), cej***^), y}<^^\ and 2/,/"+*) are four realscalars, but h is the imaginary

of algebra (256, (2.)).

* This celebrated Theorem of Algebra has long been known, and has been proved in other ways ;

but it seemed necessary, or at least useful, for the purpose of the present work, to prove it anew, in

connexion with Quaternions : or rather to establish the theorem (244, 262), to which in the present

Calculus it corresponds. Compare the Note to page 278.
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(1.) There must, for instance, be n{n - 1) imaginary n^^ roots of unity, in

the given plane of i (comp. 256, (3.) ), besides the n real roots already deter-

mined (233, 237) ; and accordingly in the case w = 2, we have the four

following square-roots ofl \\\
i, two real and two imaginary :

IV. . . + 1, - 1 ; + hi, - hi

;

for, by 256, (2.), we have

V. . . (± hty = hh^ = (- 1) (- 1) = + 1.

And the tico imaginary roots of the quadratic equation F2q = 0, which generally

exist, at least as symbols (214, (3.) ), maybe obtained by multiplying the square-

root in the formula 253, XX. by hi ; so that in the particular case, when that

radical vanishes, the four roots of the equation become real and equal : zero

having thus only itself for a square-root.

(2.) Again, if we write (comp. 237, (3.) ),

VI a-li
-l + ^V^ ,2 H -1-^V3

so that 1, q, (f are the three real cube-roots of positive unity, in the given

plane ; and if we write also,

vii. . . e = M = --1^-^, 6' = liY = -J-i^4

80 that d and 0^ are (as usual) the two ordinary (or algebraical) imaginary cube-

roots of unity ; then the nine cube-roots ofl (|||
i) are the following ;

Vin. ..1; q,q'', 0,0'; Oq, Oq' ; 0\ Oy

;

whereof the first is a real scalar ; the two next are real couples, or quaternions

\\\i; the two following are imaginary scalars, or biscalars ; and the four that

remain are imaginary couples, or bi-couples, or biquaternions.

(3.) The sixteen fourth roots of unity {\\\
i) are :

IX. . . + 1 ; ±i', ±h; ±hi; ± i {1 + h) {1 ±i)

;

the three ambiguous signs in the last expression being all independent of

each other.

2F 2
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(4.) Imaginary roots, of this sort, are sometimes useful, or rather necessary,

in calculations respecting ideal intersections,* and ideal contacts, in geometry :

although in what remains of the present Volume, we shall have little or no

occasion to employ them.

(5.) We may, however, here observe, that when the restriction (225) on

the plane of the quaternion q is removed, the General Quaternion Equation of

the n*^ Degree admits, by the foregoing principles, no fewer than n* Roots,

real or imaginary ; because, when that general equation is reduced, by 221 , to

the Standard Quadrinomial Form,

X. ..Fnq=Wn + iXn + jYn + 1cZ„ = 0,

it breaks up (comp. 221, VI.) into a System of Four Scalar Equations, each

(generally) of the n*^ dimension, in w, x,y, z', namely,

XI. . . TTn = 0, X„ = 0, F„ = 0, Z„ = ;

and if x, y, z be eliminated between these four, the result is (generally) a

scalar (or algebraical) equation of the degree n^, relatively to the remaining

constituent, w ; which therefore has «* (algebraical) values, real or imaginary

:

and similarly for the three other constituents, x, y, z, of the sought quater-

nion q.

(6.) It may even happen, when no plane is given, that the number of roots

(or solutions) of a finitef equation in quaternions shall become infinite ; ias has

been seen to be the case for the equation q^ = - 1 (149, 154), even when we

confine ourselves to what we have considered as real roots. If imaginary roots

be admitted, we may write, still more generally, besides the two bi-scalar values,

± h, the expression,

XII. ..{-lY = v + hv', ^v = ^v' = Sw' =0, N«? - Nt^' = 1

;

V and v' being thus any two real and right quaternions, in rectangular planes,

provided that the norm of ihQ first exceeds that of the second by unity.

(7.) And in like manner, besides the two real and scalar values, ± 1, we

have this general symbolical expression for a square root of positive unity,

with merely the difference of the norms reversed

:

'Kill. . . l^ = V + hv\ S«? = S«;' = S^;^J' = 0, N«?'-N«? = l.

* Comp. Art. 214, and the Notes there referred to.

t Compare the Note to page 277.
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SECTION 7.

On the Reciprocal of a ITector, and on Harmonic means of

Vectors ; fvith Remarks on the Anharmoiiic iluaternion

of a Crroup of Four Points, and on Conditions of Con-

circularity.

258. When two vectors, a and a', are so related that

I. . . a' = - Ua : Ta, and therefore II. . . a = - Va' : Ta,

or that

III. . . Ta . Ta' = 1, and lY. . . Ua + Ua' = 0,

we sliall say that each of these two vectors is the Reciprocal* of the other

;

and shall (at least for the present) denote this relation between them, by

writing

V. ..a=Ea, or YI. ..a = Ea';

80 that for every vector a, and everi/ right quotient v,

YII. . . Ra = - Ua : Ta ; YIII. . . R^a = RRa = a
;

and
IX. . . RIt? = lUv (comp. 161, (3.), and 204, XXXY'.).

259. One of the most important properties of such reciprocals is contained

in the following theorem :

J^ any two vectors oa, ob, have oa', ob' for their reciprocals, then (comp.

fig. 58) the right line a'b' is parallel to the tangent od, at the a

origin o, to the circle oab ; and the two triangles, gab, ob'a', / \ X^^l::^

are inversely similar (118). Or in symbols,

I. . . if oa' = E. . OA, and ob' = E. . ob,

then

A oab a' obV. c b' a'

Fig. 58.

(1.) Of course; under the same conditions, the tangent at o to the circle

oa'b' is parallel to the line ab.

(2.) The angles bag and ob'a' or bod being equal, the fourth proportional

(226) to ab, AG, and ob, or to ba, oa, and gb, has the direction of oi), or the

direction opposite to that of a'b'; and its length is easily proved to be the

* Accordingly, under these conditions, we shall afterwards denote this reciprocal of a vector a by
the symbol a-^ ; but we postpone the use of this notation, until we shall be prepared to connect it with

a general theory of products andpowers of vectors. Compare 234, V., and the first Note to page 123.

And as regards the temporary use of the characteristic R, compare the second Note to page 262.
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reciprocal (or inverse) of the length of the same line a'b', because the similar

triangles give,

II. . . (oA : ba) . ob = (ob' : a'b') . ob = 1 : a'b',

it being remembered that

III. . . OA . oa' = OB . ob' = 1

;

we may therefore write,

IV. ..(oa:ba).ob = R.aV, or V. . .

^^fi
/^ = ^ (^i3 " ^«)»

whatever two vectors a and j3 may be.

(3.) Changing a and /3 to their reciprocals, the last formula becomes,

YI. . . B(i3 - a) =^^\q • ^^ ; or YII...(oa':bV).ob'=II.ab.

(4.) The inverse similarity I. gives also, generally, the relation,

VIIL..K& = |^.
a ±Cp

(5.) Since, then, by 195, II., or 207, (2.),

IX. . . K:^±l = Kt^^
, we have X. .

.

—

WfT^^iTfTn-X'a a Ep li(p±a)

the lower signs agreeing with VI.

(6.) In general, the reciprocals of opposite vectors are themselves opposite
;

or in symbols,

XI. . . R (- a) = - Ea.

(7.) More generally,

XII. . . Etra = or' Ea,
if X be any scalar.

(8.) Taking lower signs in X., changing a to y, dividing, and taking con-

jugates, we find for any three vectors a, j3, y {complanar or diplanar) the

formula

:

By-E/3 / Ey B(/3-«)Y g Y-/3 OA bc

Ea-Ej3 ^E(/3-7)* Ea ; i3-a* -7 AB*Co'

if a = oA, j3 = OB, and y = 00, as usual.

(9.) If then we extend, to any four points of space, the notation (25.),

XIV. . . (abcd) =— .—

,

'' BC DA

interpreting each of these ivio factor-quotients as a quaternion, and defining that

their product (in ^A«s orc?er) is the anharmonic quaternion function, or simply the



Aets. 259-260.] ANHAEMOMC AND EVOLUTIONARY QTJATERNIONS. 295

Anharmonie, of the Group offourpom fs a, b, c, d, or of the {plane or gauche)

Quadrilateral abcd, we shall have the following general and usehil formula of

transformation :

X Y. . . (oABc = K -^—~ = K -^-,,
^ ^ Ka - lip B A

where oa', ob', oc' are supposed to be reciprocals of oa, ob, oc.

(10.) With this notation XIV., we have generally, and not merely for

collinear groups (35.), the relations

:

XVI. . . (abcd) + (acbd) = 1 ; XVII. . . (abcd) . (adcb) = 1.

(11.) Let 0, A, B, c, D be any five points^ and oa', . . od' the reciprocals of

oa, . . CD ; we shaU. then have, by XV.,

XVIII. . .
5J^ = K (ocba), ^ = K (oadc)

;

B C DA ^

and therefore,

XIX. . . K (a'b'c'd') = (oadc) (ocba) = - (oadcba),

if we agree to write generally, for any six points^ the formula,*

AB CD EF
XX. . . (abcdef) = — .— .— •

^
"^ BC DE fa

(12.) If then the five points o . . d be complanar (225), we have, by 226,

and by XIV.,

XXI. . . K (a'bVd') = (abcd), or XXF. . . (a'bVd') = K (abcd)
;

the anharmonic quaternion (abcd) being thus changed to its conjugate^ when the

four rays oa, . . od are changed to their reciprocals.

260. Another very important consequence from the definition (258) of

reciprocals of vectors, or from the recent theorem (259), may be expressed as

follows

:

If any three coinitial vectors^ oa, ob, oc, he chords of one common circle, then

(see again fig. 58) their three coinitial reciprocals, oa', ob', oc', are termino-

* There is a convenience in calling, generally, this product of three quotients, (abcdef), the

evolutionary quaternion, or simply the Evolutionary, of the Group of Six Points, A . . F, or (if they be

not collinear) of the plane or gauche Sexagon abcdef : because the equation,

(abca'b'c') =— 1,

expresses either Ist, that the three pairs of points, aa', bb', cc', form a collinear involution (26.) of a

well-known kind; or Ilnd, that those three pairs, or the three corresponding diagonals of the

hexagon, compose a complanar or a homoepheric Involution, of a new kind suggested by quaternions

(comp. 261, (11.) ).
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coUinear (24) : or, in other words, if the four points o, a, b, c be concirculaVi

then the three points a', b', cf are situated on one right line.

And conversely, if three coinitial vectors, oa', ob', oc', thus terminate on

one right line, then their three coinitial reciprocals, oa, ob, oc, are chords of

one circle ; the tangent to which circle, at the origin, is parallel to the right

line; while the anharmonic function (259, (9.)), of the inscribed quadrilateral

oabc, reduces itself to a scalar quotient of segments of that line (which there-

fore is its own conjugate, by 139) : namely,

I. . . (oABc) = bV : bV= ( qoaVc') = (o . oabc),

if the symbol oo be used here to denote the point at infinity on the right line

a'bV ; and if, in thus employing the notation (35) for the anharmonic of a

plane pencil, we consider the null chord, oo, as having the direction* of the

tangent, od.

(1.) If /o = OP be the variable vector of a point p upon the circle gab, the

quaternion equation of that circle may be thus written :

II. . . R^ = E,/3 + a; (Ra - B/3), where III. . . j» = (oabp)
;

the coefficient x being thus a variable scalar (comp. 99, L), which depends on

the variable position of the point p on the circumference.

(2.) Or we may write,

TTT- -D fRa + wRjS
i V . . . Kp = z >^

t ->rU

as another form of the equation of the same circle gab ; with which may use-

fully be contrasted the earlier form (comp. 25.), of the equation of the line ab,

V...p =
ta + wj3

t + u

(3.) Or, dividing the second member of lY. by the first, and taking con-

jugates, we have for the circle,

VL..^^ + ?| = ^ + «; while VII...^+^=i! + w,
« P P P

for the right line.

(4.) Or we may write, by II.,

this latter symbol, by 204, (18.), denoting any scalar.

* Compare the remarks in the Note to page 140, respecting the possible determinateness of

signification of the symbol UO, when the zero denotes a line, which vanishes according to a law.



Aet. 260.] ANHARMONIC OF A CIECTJLAR GROUP. 297

(5.) Or still more briefly,

IX. . . V (OABP) = ; or IX'. . . (gabp) = V"^ 0.

(6.) If the four points o, a, b, c be still concirciilar, and if p be any fifth

point in their plane, while POi, . . PCi are the reciprocals of po, . . pc, then

by 259, XXI., we have the relation,

X. . . (OiAiBiC) = K (OABC) = (OABC) = Y~^ ,*

ihoifour new points Oi . . Ci are therefore generally concircular.

(7.) If, however, the point p be again placed on the circle oabc, those four

new points are (by the present Article) collinear ; being the intersections of

the pencil p . oabc with a parallel to the tangent at p. In this case, therefore,

we have the equation,

XI. . . (p . oabc) = (oiAiBiCi) = (oabc)
;

so that the constant anharmonie of the pencil (35) is thus seen to be equal to

what we have defined (259, (9.) ) to be the anharmonie of the group.

(8.) And because the anharmonie of a circular group is a scalar, it is equal

(by 187, (8.) ) to its own tensor, either positively or negatively taken : we may
therefore write, for any inscribed quadrilateral oabc, the formula,

XII. . . (oabc) = + T (OABC) = + (oA . Bc) : (aB . Co),

= + a quotient of rectangles of opposite sides ; the upper or the lower sign being

taken, according as the point b' falls, or does not fall, hetioeen the points a!

and c': that is, according as the quadrilateral oabc is an uncrossed or a crossed

one.

(9.) Hence it is easy to infer that for any circular group o, a, b, c, we
have the equation,

XIII. ..U— = + U-;
AB CB

the upper sign being taken when the succession oabc is a direct one, that is,

when the quadrilateral oabc is uncrossed ; and the lower sign, in the contrary

case, namely, when the succession is (what may be called) indirect, or when
the quadrilateral is crossed : while conversely this equation XIII. is sufficient

to prove, whenever it occurs, that the anharmonie (oabc) is a negative or a

positive scalar, and therefore by (5.) that the group is circular (if not linear),

as above.

(10.) If A, B, c, D, E be any fve homospheric points (or points upon the

surface of one sphere), and if o be any sixth point of space, while oa', . . oe'

Hamilton's Elsuents of Quatbknions. a Q
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are the reciprocals of oa, . . oe, then the five new points a' . . e' are generally

homospheric (with each other) ; but if o happens to be on the sphere abode,

then a'. . e' are complanar, their common plane being parallel to the tangent

plane to the given sphere at o : with resulting anharmonic relations, on which

we cannot here delay.

261. An interesting case of the foregoing theory is that when the generally

scalar anharmonic of a circular group becomes equal to negative unity : in which

case (comp. 26), the group is said to be harmonic. A few remarks upon such

circular and harmonic groups may here be briefly made : the student being

left to fill up hints for himself, as what must be now to him an easy exercise

of calculation.

(1.) For sucli a group (comp. again fig. 58), we have thus the equation,

I. . . (oABc) = - 1 ; and therefore II. . . a'b' = bV;

or III. . . R/3 = i (Ra + Ry)

;

and under this condition, we shall say (comp. 216, (5.) ) that the Vector /3 is

the Sarmonic Mean between the two vectors, a and y.

(2.) Dividing, and taking conjugates (comp. 260, (3.), and 216, (5.) ), we

thus obtain the equation,

IV... ^.2 = 2
a y

Gt

VI. . . j3 = - 7

e thus denoting here the vector oe (fig. 58) of the middle point of the chord

AC. We may then say that tlie harmonic mean between any two lines is (as

in algebra) ihQ fourth proportional to their semisum, and to themselves.

(3.) Geometrically, we have thus the similar triangles,

VIII. . . A AOB OC EGG

;

VIII'. . . A AGE a BGC
;

whence, either because the angles gba and oca, or because the angles gac and

OBC are equal, we may infer (comp. 260, (5.) ) that, when the equation I. is

satisfied, the four points o, a, b, c, if not collinear, are concircular.

(4.) We have also the similarities,

IX. . . A GEO a CEB, and IX'. . . A gea a aeb
;

or the equations,

X...&-?=5^, and X'...ti=?^;
y — e -i a-£-c

! ; or V. . . /3 =
2a 2y

: y= a
y + a y + a

^a, if VII..,
£

. £ = i (7 + a)

;
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in fact we have, by VI. and VII.,

XI...%5: = 2; XII... ^Y=l --"-!---)- fl--ee -£\ "E ££/\6
(5.) Hence the line ec, in fig. 58, is the mean proportional (227) between

the lines EO and eb ; or in words, the semisum (oe), the semidiference (eo),

and the excess (be) of the semisum over the harmonic mean (ob), form (as in

algebra) a continued proportion (227).

(6.) Conversely, if any three coinitial vectors, eg, ec, eb, form thus a con-

tinued proportion, and if we take ea = ce, then the four points oabc will

compose a circular and harmonic group ; for example, the points apbp' of

fig. 57 are arranged so as to form such a group.*

(7.) It is easy to prove that, for the inscribed quadrilateral oabc of fig. 58,

the rectangles under opposite sides are each equal to half of the rectangle under

the diagonals ; which geometrical relation answers to either of the two anhar-

monic equations (comp. 259, (10.) )

:

XIII. . . (OBAC) = + 2
;

Xlir. . . (OCAB) = + i.

(8.) Hence, or in other ways, it may be inferred that these diagonals,

OB, AC, are conjugate chords of the circle to which they belong : in the sense

that each passes through the pole of the other, and that thus the line db is the

second tangent from the point d, in which the chord AC prolonged intersects

the tangent at o.

(9.) Under the same conditions, it is easy to prove, either by quaternions

or by geometry, that we have the harmonic equations

:

XIV. . . (abco) = (bcoa) = (coab) = - 1

;

so that AC is the harmonic mean between ab and ao; bo is such a mean

between bc and ba ; and ca between co and cb.

(10.) In any such group, any two opposite points (or opposite corners of the

quadrilateral), as for example o and b, may be said to be harmonically conju-

gate to each other, with respect to the two other points, a and c ; and we see that

when these two points a and c are given, then to every third point o (whether

in a given plane, or in space) there always corresponds a fourth point b, which

is in this sense conjugate to that third point : this fourth point being always

complanar with the three points a, c, o, and being even concircular with them,

• Compare the Note to 255, (2.). In fig. 58, the centre of the circle oabc is concircular with the

three points o, e, b.

2Q 2



300 ELEMENTS OE QUATERNIOKS. [II. ii. § 7-iii. § 1.

unless they happen to be collinear with each other ; in which extreme (or

limiting) case, the fourth point b is still determined, but is now collinear with

the others (as in 26, &c.).

(11.) When, after thus selecting two* points, a and c, or treating them as

given ot: fixed, we determine (10.) the harmonic conjugates b, b', b", with respect

to them, of any three assumed points, o, o', o^', then the three pairs of points,

o, B ; o', b' ; o'\ b'', may be said to form an Involution,-^ either on the right

line AC, (in which case it will only be one of an already well-known kind), or

in a plane through that line, or even generally in space : and the two points

A, c may in all these cases be said to be the two Double Points (or Foci) of this

Involution. But the field thus opened, for geometrical investigation by

Quaternions, is far too extensive to be more than mentioned here.

(12.) We shall therefore only at present add, that the conception of the

harmonic mean between tioo vectors may easily be extended to any number of

such, and need not be limited to the plane : since we may define that rj is the

harmonic mean of the n arbitrary vectors oi, . . a„, when it satisfies the

equation,

Xy. ..Eq = i(Iiai + .. + Ea«); or XYI. . . «Er, = 2Ea.
n

(13.) Finally, as regards the notation Ea, and the definition (258) of the

reciprocal of a vector, it may be observed that if we had chosen to define

reciprocal vectors as having similar (instead of opposite) directions, we should

indeed have had the positive sign in the equation 258, VII. ; but should

have been obliged to write, instead of 258, IX., the much less simple formula,

Blv = - lEt^.

* There is a sense in which the geometrical process here spoken of can be applied, even when

the two fixed points, or foci, are imaginary. Compare the Geometrie Superieitre of M. Chasles,

page 136.

t Compare the Note to 259, (11.).
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CHAPTER IIL

ON DIPLANAR QUATERNIONS, OR QUOTIENTS OF VECTORS IN

SPACE: AND ESPECIALLY ON THE ASSOCIATIVE PRINCIPLE
OF MULTIPLICATION OF SUCH QUATERNIONS.

SECTION 1.

On some Enanciations of the Associative Property, or Principle,

of Multiplication of Diplanar (Quaternions.

262. In the preceding chapter we have confined ourselves almost entirely,

as had been proposed (224, 225), to the considerations of quaternions in a

given plane (that of i) ; alluding only, in some instances, to possible exten-

sions* of results so obtained. But we must now return to consider, as in the

First Chapter of this Second Book, the subject of General Quotients of Vectors

:

and especially their Associative Multiplication (223), which has hitherto been

only proved in connexion with the Distributive Principle (212), and with tlie

Laws of the Symbols, i,j, k (183). And first we shall give a few geometrical

enunciatio7is of that associative principle, which shall be independent of the

distributive one, and in which it will be sufficient to consider (comp. 191) the

multiplication ofversors] because the multiplication of tensors is evidentli/ an

associative operation, as corresponding simply to arithmetical multiplication,

or to the composition of ratios in geometry.f We shall therefore suppose,

throughout the present chapter, that q, r, s are some three given but arbitrary

versorSy in three given and distinct planes \% and our object will be to throw some

• As in 227, (3.); 242, (7.); 254, (7.); 257, (6.) and (7.); 259, (8.), (9.), (10.), (H.) ; 260,

(10.); and 261, (11.) and (12.).

t Or, more generally, for any three pairs of magnitudes, each pair separately heing homogeneous.

X If the factors y, r, s were complanar, we could always (by 120) put them under the forms,

3 7 5
? = -. >• = -, » = -

;

a fi y
and then should have (comp. 183, (1.) ) the two equal ternary products,

5 )8 5 57
sr .q = -- = -= -- = s.rq;

pa a y a

80 that in this case (comp. 224) the associative property would be proved without any difficulty.
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additional light, by new enunciations in this section, and by new demon-

strations in the next, on the very important, although very simple, Associative

Formula (223, II.), which may be written thus

:

I. . . sr,q = s .rq;

or thus, more fully,

II. . . q'q = t, if / = sr, s' = rq, and t = ss'

;

/, s\ and t being here three new and derived versors, in three new and derived

planes.

263. Already we may see that this Associative Theorem of Multiplicationt

in all its forms, has an essential reference to a System of Six Planes, namely

the planes of these six versors,

IV. . . q,r, s, rq, sr, srq, or lY'. . . q, r, s, s', q\ t

;

on the judicious selection and arrangement of which, the clearness and

elegance of every geometrical statement or proof of the theorem must very

much depend : while the versor character of the factors (in the only part of

the theorem for which proof is required) suggests a reference to a Sphere,

namely to what we have called the unit-sphere (128). And the three following

arrangements of the six planes appear to be the most natural and simple that

can be considered : namely, 1st, the arrangement in which the planes all pass

through the centre of the sphere ; Ilnd, that in which they all touch its surface;

and Ilird, that in which they are the six fices of an inscribed solid. We
proceed to consider successively these three arrangements.

264. When the y?/'s^ arrangement (263) is adopted, it is natural to employ

arcs of great circles, as representatives of the versors, on the plan of Art. 162.

Eepresenting thus the factor q by the arc ab, and r by the successive arc bc,

we represent (167) their product rq, or s', by ac ; or by any equal arc (165),

sucli as DE, in fig. 69, may be supposed to be. Again, representing s by ef,

we shall have df as the representative of the

ternary product s . rq, or s/, or t, taken in one

order of association. To represent the other ter-

nary product, sr . q, or q'q, we may first deter-

mine three new points, g, h, i, by arcual

equations (165), between gh, bc, and between

HI, EF, so that bc, ef intersect in h, as the

arcs representing / and s had intersected in e ; and then, after thus finding

an arc gi which represents sr or q', may determine three other points k, l, m,
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by equations between kl, ab, and between lm, gi, so that these two new ares,

KL, LM, represent q and q\ and that ab, gi intersect in l ; for in this way we

shall have an arc, namely km, which represents q'q as required. And the

theorem then is, that this last arc km is equal to the former arc df, in the full

seme of Art. 165 ; or that when (as under the foregoing conditions of con-

struction) thefice arcual equations,

I. . . r. AB = n KL, n BO = n GH, n EF = a HI, a AC = a DE, o GI = a LM,

existy then this sixth equation of the same kind is satisfied also,

II. . . A DF = A KM :

the two points, k and m, being both on the same great circle as the two pre-

viously determined points, d and f ; or d and m being on the great circle

through F and k : and the two arcs, df and km, of that great circle, or the

two dotted arcs, dk, fm in the figure, being equally long, and similarly

directed (165). .

(1.) Or, after determining the nine points a . . i so as to satisfy the three

middle equations I., we might determine the three other points k, l, m, without

any other arcual equations, as intersections of the three pairs of arcs ab, df
;

AB, Gi ; DF, GI ; and then the theorem would be, that (if these three last points

be suitably distinguished from their own opposites upon the sphere) the two

extreme equations I., and the equation II., are satisfied.

(2.) The same geometrical theorem may also be thus enunciated : If the

first, third, and fifth sides (kl, gh, ed) of a spherical hexagon klghed be respec-

tively and arcually equal (165) to the first, second, and third sides (ab, bc, ca) of

a spherical triangle abc, then the second, fourth, and sixth sides (lg, he, dk) of

the same hexagon are equal to the three successive sides (mi, if, fm) of another

spherical triangle mif.

(3.) It may be also said, that if five successive sides (kl, . . ed) of one

spherical hexagmi be respectively and arcually equal to the five successive

diagonals (ab, mi, bc, if, ca) of another such hexagon (ambicf), then the

sixth side (dk) of \hQ first is equal to the sixth diagonal (fm) of the second.

(4.) Or, if we adopt the conception mentioned in 180, (3.), of an arcual

sum, and denote such a sum by inserting + between the symbols of the two

summands, that of the added arc being written to the left-hand, we may state

the theorem, in connexion with the recent fig. 69, by the formula :

III. . . A DF + A BA = A EF + A BC, if a DA = a EC

;

where b and f may denote any two points upon the sphere.
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(5.) We may also express* the same principle, although somewhat less

simply, as follows (see again fig. 59, and compare sub-art. (2,))

:

IV. . . if A ED + n GH + A KL = 0, then A DK + n HE + A LG = 0.

(6.) If, for a moment, we agree to write (comp. Art. 1),

Y. . . A AB = B - A,

we may then express the recent statement IV. a little more lucidly thus

:

VI. ..ifD-E + H-G + L-K = 0, then k-d + e-h + g-l = 0.

(7.) Or still more simply, if a
,

n.\ rs' he supposed to denote any three

diplanar arcs, which are to be added according to the rule (180, (3.) ) above

referred to, the theorem may be said to be, that

VII... (a'' + a') +n=A"+(A'+ a);

or in words, that Addition of Arcs on a Sphere is an Associative Operation.

(8.) Conversely, if any independent demonstration be given, of the truth

of any one of the foregoing statements, considered as expressing a theorem of

spherical geometry,i a neic proof -m)! thereby be furnished, of tlie associative

property of multiplication of quaternions.

265. In the second arrangement (263) of the six planes, instead of repre-

senting the three given versors, and their partial or total products, by arcs, it

is natural to represent them (174, II.) by angles on the sphere. Conceive then

that the two versors, q and r, are repre- ,g

sented, in fig. 60, by the two spherical ^ ^^^
angles, eab and abe; and therefore (175) // ^^>^^.

that their product, rq or /, is represented /y
^^^-^^'^"^-^

by the external vertical angle at e, of the /V^---^^ ~x^ \
triangle abe. Let the second versor r be .y \ ^"^""~^~~^- - ' f^^
also represented by the angle fbc, and the J^_

"^''"~-'-„ _^><o\
third versor s by bcf ; then the other

^
nn- ^„

^
•^ ' Fig. 60.

binary product, sr or /, will be repre-

sented by the external angle at f, of the new triangle bcf. Again, to

represent the first ternary product, t = ss' = s . rq, we have only to take the

Some of these formulae and figures, in connexion with the associative principle, are taken,

though for the most part with modifications, from the author's Sixth Lecture on Quaternions, in

which that whole subject is very fully treated. Comp. the Note to page 160.

t Such a demonstration, namely a deduction of the equation II. from the five equations I., by

known properties of spherical conies, will be briefly given in. the ensuing section.
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external angle at d of the triangle ecd, if d be a point determined by the

two conditions, that the angle ecd sliall be equal to bcf, and dec supple-

mentary to BRA. On the other hand, if we conceive a point d' determined

by the conditions that d'af shall be eqnal to eab, and afd' supplementary to

CFB, then the external angle at d', of the triangle afd', will represent the

second ternary product, q'q = sr .q, which (by the associative principle) must

be equal to the first. Conceiving then that ed is prolonged to g, and fd' to h,

the two spherical angles, gdc and ad'h, must be equal in all respects ; their

vertices d and d' coinciding, and the rotations (174, 177) which they represent

being not only equal in amount, but also similarly directed. Or, to express the

same thing otherwise, we may enunciate (262) the Associative Principle by

saying, that when the three angular equations,

I. . . ABE = FBC, BCF = ECD, DEC = TT - BEA,

are satisfied, then these three other equations,

II. . . DAF = EAB, FDA = CDE, AFD = TT - CPB,

are satisfied also. For not only is this theorem of spherical geometry a con-

sequence of the associative principle of multiplication of quaternions, but con-

versely any independent demonstration* of the theorem is, at the same time,

a proof of the principle.

266. The third arrangement (263) of the six planes may be illustrated

by conceiving a gauche hexagon, ab'ca'bc', to be inscribed in a sphere, in such

a manner that the intersection d of the three planes,

c'ab', b'ca', a'bc', is on the surface ; and therefore that

the three small circles, denoted by these three last

triliteral symbols, concur in one point d; while the

second intersection of the two other small circles,

ab'c, ca'b, may be denoted by the letter d', as in the

annexed fig. 61. Let it be also for simplicity at

first supposed, that (as in the figure) the five circular

successions,

I. . . c'ab'd, ab'cd', b'ca'd, ca'bd', a'bc'd,

are all direct ; or that the five inscribed quadrilaterals, denoted by these symbols

* Such as we shall sketch, in the following section, vrith the help of the known properties of the

tpkerical conies. Compare the Note to the foregoing Article.

Hamilton's Elements of Quaternions. 3 R
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I., are all uncrossed ones. Then (by 260, (9.) ) it is allowed to introduce

three versors, q, r, s, each having two expressions, as follows :

XT TT B'D _-. AB' tt r>A' TT ca'
II. ..o'=U —^ = +U —-; ,. = XJ-7- = + U —,:

DC AC BD CB

^ cd' ^ bd'
s = TJ —,- = + u -7-

;

CA A B

although (by the cited sub- article) the last members of these three formulae

should receive the negative sign, if the first, third, and fourth of the successions

I. were to become indirect, or if the corresponding quadrilaterals were crossed

ones. "We have thus (by 191) the derived expressions,

m, ^ da' ^^ a'b , cd' ^ d'a
. . . s = rq=\J —T=U —-, : q = sr =[j —t=U —-, :

DC BC CB AB

whereof, however, the two versors in the first formula would differ in their

signs, if the fifth succession I. were indirect ; and those in the second

formula, if the second succession were such. Hence,

IV. . . t = ss^ = s . rq = 11 —, : q'q = sr . q = 11 —r;
BC AC

and since, by the associative principle, these two last versors are to be equal,

it follows that, under the supposed conditions of construction, the four points,

B, c', A, d', compose a circular and direct succession ; or that the quadrilateral,

Bc'AD',''^is plane, inscriptihle,* and uncrossed.

267. It is easy, by suitable changes of sign, to adapt the recent reasoning

to the case where some or all of the successions I. are indirect ; and thus to

infer, from' the associative principle, this theorem of spherical geometry : if

ab'ca'bc' he a spherical hexagon, such that the three small circles c'ab', b'ca', a'bc'

concur in one point d, then, 1st, the three other small circles, ab'c, ca'b, bc'a, concur

in another point, j/ ; and Ilnd, of the six circular successions, 266, 1., and bc'ad',

the number [of those which are indirect is always even (including zero). And
conversely, any independent demoustrationf of this geometrical theorem

will be a new proof of the associative principle.

268. The same fertile principle of associative multiplication may be

enunciated in other ways, without limiting the factors to be versors, and

* Of course, since the four points bc'ad' are known to be homospheric (comp. 260, (10.) ), the

inscripiihility of the quadrilateral in a circle would follow from its being plane, if the latter were

otherwise proved : but it is here deduced from the equality of the two versors IV., on the plan of

260, (9.).

t An elementary proof, by stereographic projection, will be proposed in the following section.



Aets. 266-268.] THIRD ARRANGEMENT, SPHERICAL HEXAGON. 307

without introducing the conception of a sphere. Thus we may say (comp.

264, (2.) ), that if o . abcdef (comp. 35) be any pencil of six rays in space^

and o . a'b'c'' any pencil of three rays, and if the three angles aob, cod, eof of

the first pencil be respectively equal to the angles b'oc', c'oa', a'ob' of the

second, then another pencil of three rays, o . a"b"c''', can be assigned, such

that the three other angles boc, doe, foa of i\iQ first pencil shall be equal to

the angles b'^oc'', c'^oa'', A'^oB^of the third : equality of angles (with one vertex)

being here understood (comp. 165) to iticlude complanarity, and similarity of

direction of rotations.

(1.) Again (comp. 264, (4.)), we may establish the following formula, in

which the four vectors 0/37^ form a complanar proportion (226), but £ and t

are any two lines in space :

I ^^-?& M ^.e.X. . •
—

y ^*- —
i

7« a £ y a

for, under this last condition, we have (comp. 125),

11 5^ = ?^ L5 2i
ye ay £ a B e

(2.) Another enunciation of the associative principle is the following :

III... if «& = -«, then 1^ = 1;
7 a £ a y o

for if wo determine (120) six new vectors, rjOi, and kK/ul, so that

IV.

(0 B V ft . OK- = -, - = -, whence - = -,
rj y L a i i

and

K a fi y

we shall have the transformations,

V ^-^^-^ LH - - L H - !L7 - f^ VT ^ _ ^

^"'K~ eO'e' nd' er,'e~ P~B~S' °^ ^
fl
~

S'

(3.) Conversely, the assertion that this last equation or proportion VI. is

true, whenever the twelve vectors a . . fi are connected by the five proportions

IV., is a form of enunciation of the associative principle ; for it conducts

(comp. IV. and V.) to the equation,

VII. . • - . -7i = --
• 7i> at least if £ III u d;

e r}U e rj a m » »

but, even with this last restriction, the three factor-quotients in VII. may
represent any three quaternions.

2 R 2
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SECTION 2.

On fsome Creometrical Proofs of the Associative Property of Multi-

plication of ituaternions, n'hich are independent of the

Distributive"^ Principle.

269. We propose, in this section, to furnish three geometrical Demonstra-

tions of the Associative Principle, in connexion with the three figures (59-61)

which were employed in the last section for its Enunciation ; and with the

three arrangements of six planes, which were described in Art. 263. The two

first of these proofs will suppose the knowledge of a few properties of spherical

conies (196, (11.) )
; but the third will only employ the doctrine of stereographic

projection, and will therefore be of a more strictly elementary character. The

Principle itself is, however, of such great importance in this Calculus, that its

nature and its evidence can scarcely be put in too many different points of

view.

270. The only properties of a spherical conic, which we shall in this

Article assume as known,t are the three following : 1st, that through any

three given points on a given sphere, which are not on a great circle, a conic

can be described (consisting generally of two opposite ovals), which shall have

a given great circle for one of its two cyclic arcs ; Ilnd, that if a transversal arc

cut both these arcs, and the conic, the intercepts (suitably measured) on this

transversal are equal; and Ilird, that if the vertex of a spherical angle move

along the conic, while its legs pass always through two fixed points thereof, those

legs intercept a constant interval, upon each cyclic arc, separately taken.

Admitting these three properties, we see that if, in fig. 59, we conceive a

spherical conic to be described, so as to pass through the three points b, r, h,

* Compare 224 and 262; and the Note to page 245.

t The reader may consult the Translation (Dublin, 1841, pp. 46, 50, 65) by the present Dean
Graves, of two Memoirs by M. Chasles, on Cones of the Second Degree, and

Spherical Conies. [If a cone have one system of cyclic sections parallel

to APB, on inversion from o, the vertex of the cone, it is seen to have a

second system parallel to the tangent plane at o to the sphere through the C'

vertex and the circle apb. In the figure the circle oab is the section of

this sphere by the plane through two edges of the cone oa and ob, while

CO (parallel to ab) and oc' (tangent to oab) are the traces of the cyclic

planes. Z.c'ob = z.bao = Zaoc proves the Ilnd property. Again, if oa'

and ob' are the traces on the cyclic plane parallel to apb by the planes poa

and POB respectively, Z.APB = Za'ob', oa' being parallel to pa and ob' to

pb. But as p moves along the circle apb, the angle ai'b is constant, and thus the Ilird property is

also proved.]
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and to have the great circle daec for one cyclic arc, the second and third

equations I. of 264 will prove that the arc glim is the other cyclic arc for this

conic ; the first equation I. proves next that the conic passes through k
;

and if the arcual chord fk be drawn and prolonged, the two remaining

equations prove that it meets the cyclic arcs in d and m ; after which, the

equation II. of the same Art. 264 immediately results, at least with the

arrangement* adopted in the figure.

(1.) The 1st property is easily seen to correspond to the possibility of

circumscribing a circle about a given plane triangle, namely that of which

the comers are the intersections of a plane parallel to the plane of the given

cyclic arc, with the three radii drawn to the three given points upon the

sphere : but it may be worth while, as an exercise, to prove here the Ilud

property by quaternions.

(2.) Take then the equation of a cyclic conCy 196, (8.), which may (by 196,

XII.) be written thus :

I...S^S^ = N§; andlet II. .. S^' S g = N^',
a /3 p a j3 p

p and p^ being thus tico rays (or sides) of the cone, which may also be con-

sidered to be the vectors of two points p and p' of a spherical conic, by

supposing that their lengths are each unity. Let r and / be the vectors of

the two points t and t' on the two cyclic arcs, in which the arcual chord pp'

of the conic cuts them ; so that

III. ..S-=0, S^ = 0, and IV. . . Tr = T/=l.
o (5

The theorem may then be stated thus : that

Y. . .ii p = XT + x'Ty then VI. . . p' = x't ^- xr'
\

or that this expression VI. satisfies II., if the equations I. III. IV. V. be

satisfied.

Now, by III. V. VI., we have

VII. ..S^ = a.'S- = -S^, S§ = ;rS-^ = -,s6
a a X a p p x p

whence it follows that the first members of I. and II. are equal, and it only

• Modifications of that arrangement may be conceived, to wliich however it would be easy to

adapt the reasoning.
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remains to prove that their second members are equal also, or that T/ = Tp,

ifT/=Tr.

Accordingly we have, by V. and YI.,

VIII. . .
4-"^ =^ .^ = S-^0, by 200, (11.), and 204, (19.) j

p + p X + a> T + T

and the property in question is proved.

271. To prove the associative principle, with the help of fig. 60, three

other properties of a spherical conic shall be supposed known :* 1st, that for

every such curve two focal points exist, possessing several important relations

to it, one of which is, that if these two foci and one tangent arc be given^ the

conic can be constructed ; Ilnd, that if, from any point upon the sphere, two

tangents be drawn to the conic, and also tico arcs to the foci, then one focal arc

makes with one tangent the same angle as the other focal arc with the other

tangent ; and Ilird, that if a spherical quadrilateral be circumscribed to such

a conic (supposed here for simplicity to be a spherical ellipse, or the o2}posite

ellipse being neglected), opposite sides subtend supplementary/ angles, at either of

the two (interior) foci. Admitting these known properties, and supposing the

arrangement to be as in fig. 60, we may conceive a conic described, which

shall have e and f for its two focal points, and shall touch the arc bc ; and

then the two first of the equations I., in 265, will prove that it touches also

the arcs ab and cd, while the third of those equations proves that it touches

AD, so that ABCD is a circumscribed f quadrilateral: after which the three

equations II., of the same article, are consequences of the same properties of

the curve.J

272. Finally, to prove the same important Principle in a more com-

pletely elementary way, by means of the arrangement represented in fig. 61,

or to prove the theorem of spherical geometry enunciated in Art. 267, we

* The reader may again consult pages 46 and 60 of th.e Translation lately cited. In strictness,

there are of convse four foci, opposite two by two.

t The writer has elsewhere proposed the notation, ef (. .) abcd, to denote the relation of the focal

points E, p to this circumscribed quadrilateral.

X [The two cyclic arcs and a point determine a spherical conic. Referring to the Note on 270,

describe a sphere to touch one cyclic plane at the point o. Then if oa is given, take the section apb

of the sphere by a plane parallel to the second cyclic plane, and the cone is determined. Recipro-

cating this, the 1st property follows. The Ilnd property is the reciprocal of the Ilnd of 270, and

the Ilird is easily derived by reciprocating the IlIrd of 270, remembering that for a point p' on the

remaining arc of the circle apb, L ap'b + /. apb = ir.]
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may assume the point d as the pole of a stereographic projection, in which the

three small circles through that point shall be repre-

sented by right lines, but the three others by circles,

all being in one common plane.* And then (inter-

changing accents) the theorem comes to be thus

stated

:

IfA\ b', c' be any three points (comp. fig. 62)

on the sides bc, ca, ab of any plane triangle, or on

those sides prolonged, then, 1st, the three circles,

I. . . c'ab', a'bo', b'ca',

will meet in one point d ; and Ilnd, an even number (if any) of the six (linear

or circular) successions,

II. . . ab'c, bc'a, ca'b, and IF. . . c'ab'd, a'bc'd, b'ca'd,

will be direct ; an even number therefore also (if any) being indirect. But,

under this/orm,t the theorem can be proved by very elementary considerations,

and still without any employment of the distributive principle (224, 262).

(1.) The frst part of the theorem, as thus stated, is evident from the

Third Book of Euclid ; but to prove both parts together, it may be useful to

proceed as follows, admitting the conception (235) of amplitudes, or of angles

as representing rotations, which may have any values, positive or negative, and

are to be added with attention to their signs.

(2.) We may thus write the three equations,

III. . . ab'c = rnr, bc'a = nV, ca'b = w'V,

to express the three colUneations, ab'c, &c. of fig. 62 ;J the integer, n, being

odd or even, according as the point b' is on the finite line ac, or on a pro-

longation of that line ; or in other words, according as the first succession II.

is direct or indirect : and similarly for the two other coeflScients, n' and n'\

* [Invert figure 61 from the point d. The sphere hecomes a plane, and the circles through d

right lines, the other circles remain circles.]

t The Associative Principle of Multiplication was stated nearly under ihia form, and was illus-

trated by the same simple diagram, in paragraph XXII. of a communication by the present author,

which was entitled Letters on Quaternions, and has been printed in the First and Second Editions of

the late Dr. Nichol's Ci/clopadta of the Physical Scietices (London and Glasgow, 1857 and 1860). The
same communication contained other illustrations and consequences of the same principle, which it

has not been thought necessary here to reproduce ; and others may be found in the Sixth of the

author's already cited Lectures on Quaternions (Dublin, 1853), from which (as already observed) some

of the formulae and figures of this Chapter have been taken.

X [ab'c being the angle through which b'a must be turned in the positive direction so as to coincide

with B'c.3
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(3.) Again, if opqr be anyfour points in one plane, we may establisli the

formula,

rV". . . POQ + QOR = POR + 2w7r,

with the same conception of addition of amplitudes ; if then d be any point in

the plane of the triangle abc, we may write,

Y. . . ab'd + db'c = WTT, bc'd + dc'a = wV, ca'd + da'b = w'V ;

and therefore,

VI. . . (ab'd + do'a) + (bc'd + da'b) + (ca^'d + db'c) = (w + w' + n") ir.

(4.) Again, if any four points opqti be not merely complanar but concir-

Gular, we have the general formula,

VII. . . OPQ + QRO = pir,

the integer p being odd or even, according as the succession opqti is direct or

indirect ; if then we denote by d the second intersection of the first and second

circles I., whereof c' is a first intersection, we shall have

VIII. . . ab'd + dc'a = jOTT, bc'd + da'b = joV,

p and y being odd, when the two first successions IF. are direct, hut'jven in

the contrary case.

(5.) Hence, by VT., we have,

IX. . . ca'd + db'o = yV, where X. . . p + p' + p'' = n + n' + n"
;

the third succession IF. is therefore always circular, or the third circle I. passes

through the intersection d of the two first ; and it is direct or indirect, that is to

say,^'' is odd or even, according as the number of even coefficients, among the

five previously considered, is itself even or odd ; or in other words, according

as the number of indirect successions, among the five previously considered, is

even (including zero), or odd.

(6.) In every case, therefore, the total number of successions of each hind

is even, and both parts of the theorem are proved : the importance of the

second part of it (respecting the even partition, if any, of the six successions II.

ir.) arising from the necessity of proving that we have always, as in algebra,

XL . . sr . g = + s . rq, and never XII. . . sr .q = - s . rq, '.

if q, r, s be any three actual quaternions.

(7.) The associative principle of multiplication may also be proved, without

the distributive principle, by certain considerations of rotations of a system, on

which we cannot enter here.
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SECTION 3.

On some Additional Formulae.

273. Before concluding the Second Book, a few additional remarks may

be made, as regards some of the notations and transformations which have

already occurred, or others analogous to them. And first as to notation,

although we have reserved for the Third Book the interpretation of such

expressions as j3a, or a% yet we have agreed, in 210, (9.), to abridge the

frequently occurring symbol (Ta)* to Ta^ ; and we now propose to abridge it

still further to Na, and to call this square of the tensor (or of the length) of a

vector, a, the Norm of that Vector-, as we had (in 190, &c.), the equation

Tq^ = N^-, and called Ng* the norm of the quaternion q (in 145, (11.)). We
shall therefore now write generally, /or any vector a, the formula,

I . . . {TaY = Ta» = Na.

(1.) The equations (comp. 186, (1.) (2.) (3.) (4.)),

II. . . Np = 1 ; III. . . Np = Na ; IV. . . N(p - a) = Na ;

V...N(p-a)=NO-a),

represent, respectively, the unit-sphere \ the sphere through a, with o for

centre ; the sphere through o, with a for centre ; and the sphere through b,

with the same centre a.

(2.) The equations (comp. 186, (6.) (7.)),

YL . . N(p + a) = N(p - a) ; YII. . . N(/o - /3) = N(p - a),

represent, respectively, the plane through o, perpendicular to the line oa
;

and the plane which perpendicularly bisects the line ab.

274. As regards transformations, the few following may here be added,

which relate partly to the quaternion forms (204, 216, &c,) of the Equation

of the Ellipsoid.

(1.) Changing K(k : p) to Rp : Ek, by 259, YIII., in the equation 217,

XYI., of the ellipsoid, and observing that the three vectors p, Bp, and Ek are

complanar, while 1 : Tp = TEp by 258, that equation becomes, when divided

Hamilton's Elements of Quaternions. 2 S
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by TE/o, and when the value 217, (5.) for t^ is taken, and the notation 273 is

employed

:

of which the first member will soon be seen to admit of being written* as

T (i/o + pic), and the second member as k^ - ^^

(2.) If, in connexion with the earlier forms (204, 216) of the equation of

the same surface, we introduce a neio auxiliary vector^ <t or os, such that (comp,

216, YIII.)

|j^ = p4-2/3S|,

the equation may, by 204, (14.), be reduced to the following extremely

simple form

:

III. ..T(T = Ti3;

which expresses that the locus of the neio auxiliary point s is what we have

called the mean sphere^ 216, XIV. ; while the line ps, or <r - p, which connects

any two corresponding points, p and s, on the ellipsoid and sphere, is seen to

be parallel to the fixed line j3 ; which is one element of the homology, mentioned

in 216, (10.).

(3.) It is easy to prove that

IV. ..S 1 = 8^8'^, andtherefore V. . . S~: S^ = S'^:S?,tab o o o o

if p' and a be the vectors of two new but corresponding points, p' and s', on

the ellipsoid and sphere ; whence it is easy to infer this other element of the

homology, that any two corresponding chords, pp' and ss', of the two surfaces,

intersect each other on the cyclic plane which has 8 for its cyclic normal (comp.

216, (7.)) : in fact, they intersect in the point t of which the vector is,

^^ Xp + x'p X<T + x'a . „ ^p , , Q p .

VI. . . r =— 7- = ;— , if a; = S ^, and x =-^\\
X + X X + X B c

and this point is on the plane just mentioned (comp. 216, XI.), because

VII. ..S^ = 0.

Compare the Note to page 241.



Akt. 274.] HOMOLOGIES OF ELLIPSOID AND SPHERE. 315

(4.) Quite similar results would have followed, if we had assumed

YIIL ..a=(-S ^ + V|^i3 = p - 2j3S^,

which would have given again, as in III.,

IX. ..T(T=Tj3, but with X. ..S- = -s2s^;
7 ay

the other cyclic plane, with y instead of S for its normal, might therefore have

been taken (as asserted in 216, (10.) ), &q another ^ilane of homology of ellipsoid

and sphere, with the same centre of homology as before : namely, the point at

infinity on the line /3, or on the axis (204, (15.) ) of one of the two circum-

scribed cylinders of revolution (comp. 220, (4.) ).

(5.) The same ellipsoid is, in tivo other ways, homologous to the same

mean sphere, with the same two cyclic planes as planes of homology, but with

a new centre of homology, which is the infinitely distant point on the axis of

the second circumscribed cylinder (or on the line ab' of the sub-article last

cited)

.

(6.) Although not specially connected with the ellipsoid, the following

general transformations may be noted here (comp. 199, XII., and 204,

XXXIT.) :

XL..TVv/? = V^{J(T?-S^)); XIL . . tan izy = (TY:S) v/? =
J||^^.

(7.) The equations 204, XVI. and XXXV., give easily,

XIIL . . UV? = UVUy ; XIV. ..UIV^ = Ax.?; XV. . . TIV^ = TY^

;

or the more symbolical forms,

Xlir. . . UVU = UV ; XIV. . . UIV = Ax. ; XV'. . . TIV = TV

;

and the identity 200, IX. becomes more evident, when we observe that

XVI.. .q-'^q = q{l-Kq).

(8.) We have also generally (comp. 200, (10.) and 218, (10.) ),

XVTT izi = (g-l)(gg-^l) ^ Ng-l+2Vg
q+1 {q + l){Kq+l) N? + 1 + 2Sy

'

(9.) The formula,*

XVIII. . . U {rq + Kqr) = U(Sr . S^ + Vr . Yq) = r^' {rY)i q-\

in which q and r may be any two quaternions, is not perhaps of any great

* This formula -was given, but in like manner without proof, in page 587 of the author's

Lectures on Quaternions. [It may be expressed in terms olp= {j^q^)^. Use 210, XI. and XII.]

2 S 2
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importance in itself, but will be found to furnish a student with several useful

exercises in transformation.

(10.) When it was said, in 257, (1.), that zero had only itself for a square-

roof, the meaning was (comp. 225), that no binomial expression of the form

X -\- iy (228) could satisfy the equation,

XIX. . .O^q^={x + iyf = (iP' - y^) + 2ixy,

for any real or imaginary values of the two scalar coefficients x and y, different

from zero ;* for if bi-quaternions (214, (8.) ) be admitted, and if h again

denote, as in 256, (2.), the imaginary of algebra, then (comp. 257, (6.) and

(7.) ) we may write, generally, besides the real value, 0* = 0, the imaginary

expression,

....0^=v^-hv', if ^v=^v'=^vv'=^v'-^v=Q',

V and v' being thus any tioo real right quaternions, with equal norms (or with

equal tensors), in planes perpendicular to each other.

(11.) For example, by 256, (2.) and by the laws (183) of ijk, we have the

transformations,

XXI. . . (^• + hJY = i" -f + h iij +ji) = + ^0 = ;

so that the biquaternion i + hj is one of the imaginary values of the

symbol 0^

(12.) In general, when bi-quaternions are admitted into calculation, not

only the square of one, but the product of two such factors may vanish, without

either of them separately vanishing : a circumstance which may throw some

light on the existence of those imaginary (or symbolical) roots of equations,

which were treated of in 257.

(13.) For example, although the equation

XXII. . . g' - 1 = (^ - 1) (^ + 1) = 0.

has no real roots except ± 1, and therefore cannot be verified by the substitution

of any other real scalar, or real quaternion, for q, yet if we substitute for q the

bi-quaternionf v + hv', with the conditions 257, XIII., this equation XXII. is

verified.

* Compare the Note to page 289.

f This includes the expression ± Ai, of 257, (1.), for a symbolical square-root of positive unity.

Other such roots are ± hj, and ± hk. [It is probable that Hamilton used the word Bi-quatemion in

order to distinguish clearly the V — 1 of algebra from the geometrical reals i, j, and k of the new
Calculus. In his earlier writings t, J, and k are called imaginaries ; and in a Paper read before the

Royal Irish Academy on November 11, 1844, the scalar of a quaternion is called the "real part,"

and the vector, the " imaginary part." See p. 3, vol. iii., of the Proc. R.I.A.]
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(14.) It will be found, however, that when two imaginary but non-evanes-

cent factors give thus a null product, the norm of each is zero
;
provided that we

agree to extend to hi-quaternions the formula Ng- = Sg-^ - Yj^ (204, XXII.) ; or

to define that the Norm of a Biquaternion (like that of an ordinary or real

quaternion) is equal to the Square of the Scalar Fart, minus the Square of the

Bight Fart : each of these two parts being generally imaginary, and the former

being what we have called a Bi-scalar.

(15.) With this definition, if q and q' be any two real quaternions, and if

h be, as above, the ordinary imaginary of algebra, we may establish the

formula

:

XXIII. . . N [q+hq') = (S? + h^qj - [Yq + hYqJ;

or (comp. 200, YII., and 210, XX.),

XXIV. . . N (? + hq') = N^ - N?' + 2AS . qKq'.

(16.) As regards the norm of the sum of any two real quaternions, or real

vectors (273), the following transformations are occasionally useful (comp.

220,(2.)):
XXV. . . N (/ + g) = N (T?'. U^ + Tg . W)

;

XXVI. ..N(j3 + a) = N(Ti3.Ua+Ta.TJj3);

in each of which it is permitted to change the norms to the tensors of which

they are the squares, or to write T for N.
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CHAPTER I.

ON THE INTERPRETATION OF A PRODUCT OF VECTORS, OR
POWER OF A VECTOR, AS A QUATERNION.

SECTION 1.

On a First Method of interpreting a Product ofTwo Yectors

us a iiuaternion.

Art. 275. In the First Book of these Elements we interpreted, 1st, the

difference of any two directed right lines in space (4.) ; Ilnd, the sum of two

or more such lines (5-9) ; Ilird, the product of one sucli line, multiplied by
or into a positive or negative number (15) ; IVth, the quotient of such a line,

divided by such a number (16), or by what we have called generally a

Scalar (17) ; and Yth, the sum of a system of such lines, each affected (97)

with a scalar coefficient (99), as being in each case itself (generally) a Directed

Line* in Space, or what we have called a Vector (1).

276. In the Second Book, the fundamental principle or pervading con-

ception has been, that the Quotient of two such Vectors is, generally, a

Quaternion (112, 116). It is however to be remembered, that we have

included under this general conception, which usually relates to what may be

called an Oblique Quotient, or the quotient of two lines in space making either

an acute or an obtuse angle with each other (130), the three following particular

cases : 1st, the limiting case, when the angle becomes null, or when the two

lines are similarly directed, in which case the quotient degenerates (131) into a

positive scalar ; Ilnd, the other limiting case, when the angle is equal to two

right angles, or when the lines are oppositely directed, and when in consequence

the quotient again degenerates, but now into a negative scalar ; and IlIrd, the

intermediate case, when the angle is right, or when the two lines are perpen-

dicular (132), instead of being parallel (15), and when therefore their quotient

* The Fourth Froportional to any three complanar lines has also been since interpreted (226), as

being another line in the same plane,

Hamilton's Elements oe Quaternions. ' ^
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becomes wliat we have called (132) a Right Quotient, or a Right Quaternion :

which has been seen to be a case not less important than the two former

ones.

277. But no Interpretation has been assigned, in either of the two fore-

going Books, for a Product of tico or more Vectors ; or for the Square, or

other Power of a Vector : so that the Symbols,

I. . . /3a, y(5a, . . and II. . . a^ a', . . a"S . . . a',

in which a, (5, y . . denote vectors, but t denotes a scalar, remain as yet

entirely uninterpreted ; and we are therefore free to assign, at this stage, ant/

meanings to these new symbols, or netv combinations of symbols, which shall not

contradict each other, and shall appear to be consistent with convenience and

analogy. And to do so will be the chief object of this First Chapter of the

Third (and last) Book of these Elements : which is designed to be a much

shorter one than either of the foregoing.

278. As a commencement of such Interpretation we shall here define, that

a vector a is multiplied by another vector /3, or that the latter vector is multi-

plied into* the former, or that the product |3a is obtained, when the multiplier-

line j3 is divided by the reciprocal Ea (258) of the multiplicand-line a ; as we had

proved (136) that one quaternion is multiplied into another, when it is divided by

the reciprocal thereof. In symbols, we shall therefore write, as a first defi-

nition, the formula

:

L..j3a = i3:Ra; where IL. .Ea = -Ua : Ta(258, YIL).

And we proceed to consider, in the following section, some of the general

consequences of this definition, or interpretation, of a Product of two Vectors,

as being equal to a certain Quotient, or Quaternion.

SECTION 2.

On some Consequences of the foregoing Interpretation.

279. The definition (278) gives the formula :

Q . a
I. . . /3a = :^ ; and similarly, V. . . a/3 = ^j^^

;

it gives therefore, by 259, YIII., the general relation,

IL../3a = Ka/3; or IF. . . a/3 = E:/3a.

* Compare the Notes to pages 147, 159.
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The Products of two Vectors, taken in two opposite orders, are therefore Con-

jugate Quaternions ; and the Multiplication of Vectors, like that of Quaternions

(168), is (generally) a Non- Commutative Operation.

(1.) It follows from II. (by 196, comp. 223, (1.)), that

III. . . Sj3a = + Saj3 = i fjSa + a/3).

(2.) It follows also (by 204, comp. again 223, (1.))) that

IV. . . Vi3a = - VajS = i (jSa - ajS).

280. Again, by the same general formula 259, VIII., we have the trans-

formations,

I...—2— =K^^ = K-^ +K— = ^ + -^-
^[a + a') E/3 R/3 Ri3 Ra Ra"

it follows, then, from the definition (278), that

IL..^(a + aO=i3a + ^a';

whence also, by taking conjugates (279), we have this other general equation,

III. . . (a + a') i3
= ajS + a'/3.

Multiplication of Vectors is, therefore, like that of Quaternions (212), a Doubly

Distributive Operation.

281. As we have not yet assigned any signification for a ternary product

of vectors, such as 7j3a, we are not yet prepared to pronounce, whether the

Associative Principle (223) of Multiplication of Quaternions does or does not

extend to Vector-Multiplication. But we can already derive several other

consequences from the definition (278) of a binary product, /3a ; among which,

attention may be called to the Scalar character of a Product of two Parallel

Vectors ; and to the Right character of a Product of two Perpendicular Vectors,

or of two lines at right angles with each other.

(1.) The definition (278) may be thus written,

I.../3a = -T^.Ta.U(/3:a);
it gives, therefore,

II. . . Ti3a = T/3 . Ta ; III. . . U/3a = - UO : a) = U/3 . Ua

;

the tensor and versor of the product of two vectors being thus equal (as for

quaternions, 191) to the product of the tensors, and to ih.Q product of the versors,

respectively.

2T2
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(2.) Writing for abridgment (comp. 208),

lY...a = Ta, 5 = T/3, 7 = Ax.(j3:a), a; = z(/3:a;,

we have thus,

V. . . Tj3a = ba; YI. . . Sj3a = Saj3 = - ba cosa;

;

VII. . . SUj3a = SUa^ = - COSa:

;

VIII. . . Z/3a = tt - ^ ;

so that (comp. 198) the angle of the product of any two vectors is the supple-

ment of the angle of the quotient.

(3.) We have next the transformations (comp. again 208),

rX. . . TV/3a = TVa^ = 5a sin ^ ; X. . . TVU/3a = TVUa/3 = sin a:

;

XI. . . IV/3a = - yha sin x
;

XI'. . . IVa/3 = + yah sin x ;

XII. . .lUVjSa = Ax. /3a = - 7; Xir. . .lUVajS = Ax . a/3 = + 7 ;

SO that the rotation round the axis of a product of two vectors, from the multiplier

to the multiplicand, is positive.

(4.) It follows also, by IX., that the tensor of the right part of such a

product, (5a, is equal to the parallelogram under the factors ; or to the double of

the area of the triangle gab, whereof those two factors a, /3, or oa, ob, are two

coinitial sides: so that if we denote here this last-mentioned area by the

symbol
A GAB,

we may write the equation,

XIII. . . TV/3a = parallelogram under a, /3, = 2A gab
;

and the index, IV/3a, is a right line perpendicular to the plane of W\ib parallelo-

gram, of which line the length represents its area, in the sense that they bear

equal ratios to their respective units (of length and of area).

(6.) Hence, by 279, IV.,

XrV. . . T (/3a - a/3) = 2 X parallelogram = 4A gab.

(6.) For any two vectors, a, /3,

XV. . . Sj3a = - Na .S(/3 : a) ; XVI. . . V/3a = - Na.V(/3 : a)

;

or briefly,*

XVII.../3a = -Na.(i3:a),

with the signification (273) of Na, as denoting (Ta)^

* All the consequences of the interpretation (278), of the product j8a of two vectors, might be

deduced from this formula XVII. ; which, however, it would not have been so natural to have

assumed for a definition of that symbol, as it was to assume the formula 278, I.
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(7.) If the two factor-lines be perpendicular to each other, so that a; is a

right angle, then ihQ parallelogram (4.) becomes a rectangle, ^mdithQ product j3a

becomes a right quaternion (132) ; so that we may write,

XVIII. . . Sj3a = Saj3 = 0, if /3 ± a, and reciprocally.

(8.) Under the same condition of perpendicularity,

XIX. . . ZjSa = z a/3 = ^ ; XX. . . I/3a = - yba) XXI. . . Ia/3 = + yaJ.

(9.) On the other hand, if the two factor-lines hQ parallel, the right part

of their product vanishes, or that product reduces itself to a scalar, which is

negative or positive according as the two vectors multiplied have similar or

opposite directions ; for we may establish the formula,

XXII. . . if /3 II
a, then Yj3a = 0, YajS = ;

and, under the same condition of parallelism,

XXIII. . . j3a = ajS = S/3a = SajS = + ha,

the upper or the lower sign being taken, according as a; = 0, or = tt.

(10.) We may also write (by 279, (1.) and (2.)) the following formula of

perpendicularity and formula ofparallelism

:

XXIY. . . if j3 ± a, then (5a = - a/3, and reciprocally

;

XXY. . . if /3 II a, tlien /3a = + a/3, with the converse.

(11.) If a, /3, 7 be any three unit-lines, considered as vectors of the corners

A, B, c of a spherical triangle, with sides equal to three new positive scalars,

a, b, c, then because, by XYII., /3a = - /3 : a, and 7/3 = - 7 : /3, the sub-

articles to 208 allow us to write,

XXYI. . . S (Y7/3 . Y/3a) = sin a sin c cos b
;

XXYII. . . lY (Y7/3 . Y/3a) = ± /3 sin « sin c sin b ;

XXYIII. . . (lY : S) (Y7i3 . Y/3a) = ± /3 tan b ;

upper or lower signs being taken, in the two last formulae, according as the

rotation round /3 from a to 7, or that round b from a to c, is positive or

negative.

(12.) The equation 274, I., of the Ellipsoid, may now be written thus :

XXIX...T(t/> + pK)=Ti^-lV; or XXX. . . T (t/> + ^k) = Ni - Nk.
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282. Under the general head of a product of two parallel vectors, two

interesting cases occur, which furnish two first examples of Powers of Vectors :

namely, 1st, the case when the two factors are equal, which gives this remark-

able result, that the Square of a Vector is always equal to a negative Scalar]

and Ilnd, the case when the factors are (in the sense already defined, 258)

reciprocal to each other, in which case it follows from the definition (278) that

their product is equal to Positive Unity : so that each may, in this case, be con-

sidered as equal to unity divided hy the other, or to the Power of that other

which has Negative Unity for its Exponent.

(1.) When /3 = a, the product /3a reduces itself to what we may call the

square of a, and may denote by a^ ; and thus we may write, as a particular

but important case of 281, XXIII., the formula (comp. 273),

I. ..a» = -a^ = -(Ta)* = -Na;

so that the square of any vector a is equal to the negative of the norm (273) of

that vector ; or to the negative of the square of the number Ta, which expresses

(185) the length of the same vector.

(2.) More immediately, the definition (278) gives,

II. .. a'* = aa = a : Ea = - (Ta)* = - Na, as before.

(3.) Hence (compare the notations 161, 190, 199, 204),

III. ..S.a' = -Na; IV...Y.a^ = 0;
and

V. ..T.a'' = T(a'^)= + Na=(Ta)^ = Ta^;

the omission of the parentheses, or of the point, in this last symbol of a tensor,*

for the square of a vector, as well as for the square of a quaternion (190), being

thus justified : and in like manner we may write,

YI. ..U.a^ = U(a^)=-l = (Ua)^ = Ua';

the square of an unit-vector (129) being always equal to negative unity, and

parentheses (or points) being again omitted.

(4.) The equation

Yll...p' = a\ gives Vir. ..N/> = Na, or Vir...T^ = Ta;

it represents therefore, by 186, (2.), the sphere with o for centre, which passes

through the point a.

* Compare the Note to page 214.
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(5.) The more general equation,

YIII. . . (p - a)^ = (/3 - a)\ (comp.* 186, (4.),

)

represents the sphere with a for centre, which passes through the point b.

(6.) For example, the equation,

IX. ..[p-aY = a\ (comp. 186, (3.),

)

represents the sphere with a for centre, which passes through the origin o.

(7.) The equations (comp. 186, (6.), (7.)),

X. . . (p + af = (p - af ;
XL . . (p - i5Y = {p- a)\

represent, respectively, the plane through o, perpendicular to the line oa;

and the plane which perpendicularly bisects the line ab.

(8.) The distributive principle of vector-multiplication (280), and the formula

279, III., enable us to establish generally (comp. 210, (9.) ) the formula,

XII. . .
(i3 ± a)^ =

i3^ ± 2Si3a + a'
;

the recent equations IX. and X. may therefore be thus transformed :

IX'. . . p^ = 2Sap ; and X'. . . Sap = 0.

(9.) The equations,

XIII. . . p^ + a' = ; XIV. . . p^ + 1 = 0,

represent the spheres with o for centre, which have a and 1 for their respec-

tive radii ; so that this very simple formula, p^ + 1 = 0, is (comp. 186, (1.)

)

a form of the Equation of the Unit-Sphere (128), and is, as such, of great

importance in the present Calculus.

(10.) The equation,

XV. . . p' - 2Sap + c = 0,

may be transformed to the following,

XVI. . . N(p - a) = - (p - a)^ = C - a« = C + Na;
or

XVr. . . T (p - a) = v/(c - a') = ^{c + Na)
;

it represents therefore a (real or imaginary) sphere, with a for centre^ and

with this last radical (if real) for radius.

* Compare also the sub-articles to 273.
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(11.) This sphere is therefore necessarily real, if c be a positive scalar; or

if this scalar constant, c, though negative, be (algebraically) greater than a^, or

than - Na : but it becomes imaginary, if c + Na < 0.

(12.) The radical plane of the two spheres,

XVII. ..p'- 2Sap + c = 0, />« - 2Sa> + c' = 0,

has for equation,

XYIII...2S(a'-a))> = c'-c;

it is therefore always real, if the given vectors a, a and the given scalars c, c'

be such, even if one or both of the spheres themselves be imaginary.

(13.) The equation 281, XXIX., or XXX., of the Central Ellipsoid (or of

the ellipsoid with its centre taken for the origin of vectors), may now be still

further simplified,* as follows

:

XIX. . . T (,p + pk) = k'- i\

(14.) The definition (278) gives also,

XX. . . oRa = a : a = 1 ; Or XX'. . . Ra . a = Ra : Ra = 1

;

whence it is natural to write,t

XXI. ..Ra = l :'a = a-\

if we so far anticipate here the general theory of powers of vectors, above

alluded to (277), as to use this last symbol to denote the quotient, of unity

divided by the vector a; so as to have identically, or for every vector, the

equation,

XXII. . . a . a~^ — a~^. a = 1.

(16.) It follows, by 258, YII., that

XXIII. . . a-^ = - Ua : Ta ; and XXIV. . . j3a = /3 : a\

(16.) If we had adopted the equation XXIII. as a definitimiX of the

symbol a~\ then the formula XXIV. might have been used, as a formula of

interpretation for the symbol j3a. But we proceed to consider an entirely

different method, of arriving at the same (or an equivalent) Interpretation of

this latter symbol : or of a Binary Product of Vectors, considered as equal to

a Quaternion.

* Compare the Note to page 241. t Compare the Note to page 293.

I Compare the Note to page 324.
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SECTION 3.

On a Second Method of arriving at the same Interpretation, of a

Binary Product of Vectors.

283. It cannot fail to have been observed by any attentive reader of the

Second Book, how close and intimate a connexion* has been found to exist,

between a Right Quaternion (132), and its Index, or Index- Vector' (133).

Thus, if V and v' denote (as in 223, (1)., &o., any two right quaternions, and

if Iv, Iv' denote, as usual, their indiceSf we have already seen that

I. . .Iv' = Iv, if v' = Vj and conversely (133)

;

II. . . I {v' ±v)=Ii/±lv (206)

;

III. ..lv':lv = v':v (193)

;

to which may be added the more recent formula,

IV. ..Blv = lUv (258, IX.).

284. It could not therefore have appeared strange, if we had proposed to

establish this new formula of the same kind,

I. . . lv\ Iv = v'.V = v^v,

as a definition (supposing that the recent definition 278 had not occurred to

us), whereby to interpret the product of any two indices of right quaternions, as

being equal to the product of those two quaternions themselves. And then, to

interpret the product /3a, of ani/ two given vectors, taken in a given order, we

should only have had to conceive (as we always may) that the two proposed

factors, a and j3, are the indices of two right quaternions, v and v\ and to

multiply these latter, in the same order. For thus we should have been led to

establish the formula,

II. . . j3o = v'v, if a = Iv, and ^ = lv'
',

or we should have this slightly more symbolical equation,

III.../3a = |3.a = I-ii3.I-^a;

in which the symbols,

I-'a and 1-%

are understood to denote the two right quaternions, whereof the two lines

a and /3 are the indices.

* Compare tlie Note to page 175.

Hamilton's Elkments of Quatkknions. aU
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(1.) To establish now the substantial identity of these ttco interpretations^

278 and 284, of a Unary product of vectors j3a, notwithstanding the difference

of form of the definitional equations by which they have been expressed, we
have only to observe that it has been found, as a theorem (194), that

lY. ..v'v = Iv' :l(X:v)=lv': IRv,

but the definition (258) of Ea gave us the lately cited equation, 'Rlv = IRv
;

we have therefore, by the recent formula II., the equation,

Y...lv\lv = lv'iniv; or VI. .
.
/3 .a = jS : Ea,

as in 278, 1. ; a and /3 still denoting any two vectors. The two interpretations

therefore coincide^ at least in their results, although they have been obtained

by different processes, or suggestions, and are expressed by two different formuJce.

(2.J The result 279, II., respecting conjugate products of vectors, corre-

sponds thus to the result 191, (2.), or to the first formula of 223, (1.).

(3.) The two formulae of 279, (1.) and (2.), respecting the scalar and right

parts of the product j3a, answer to the two other formulae of the same sub-

article, 223, (1.), respecting the corresponding parts of v'v.

(4.) The doubly distributive property (280), of vector-multiplication, is on

this plan seen to be included in the corresponding but more general property

(212), q{ multiplication of quaternions.

(5.) By changing IV3', lY/, t, f, and S, to a, /3, a, h, and y, in those

formulae of Art. 208 which are previous to its sub-articles, we should obtain,

with the recent definition (or interpretation) II. of /3o, several of the con-

sequences lately given (in sub-arts, to 281), as resulting from the former

definition, 278, I. Thus, the equations,

YI., YIL, YIII., IX., X., XL, XII., XXII., and XXIII.

of 281, correspond to, and may (with our last definition) be deduced from,

the formulae,

Y., YI., YIII., XI., XII., XXII., XX., XIY., and XYI., XYIII.

of 208. (Some of the consequences from the sub-articles to 208 have been

already considered, in 281, (ll.)O

(6.) The geometrical properties of the line lYjia, deduced from the first

definition (278) of /3a in 281, (3.) and (4.), (namely, thepositive rotation round

that line, from |3 to a ; its perpendicularity to their plane ; and the representa-

tion by the same line of the parallelogram under those two factors, regard being

had to units of length and of area,) might also have been deduced from

223, (4.), by means of the second definition (284), of the same product, (5a.
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SECTION 4.

On the Symbolical Identification of a Right Quaternion with its

own Index : and on the Construction of a Product of two
Rectangular liines, by a Third liine, Rectangular to both.

285. It has been seen, then, that the recent formula 284, II. or III.,

mai/ replace the formula 278, I., as a second definition of a product of two

vectors^ which conducts to the same consequences^ and therefore ultiraately to

the same interpretation of such a product, as the first. Now, in the second

formula, we have interpreted that product^ /3a, by changing the tico factor-lines^

a and /3, to the two right quaternions^ v and v\ or I"*a and I"^j3, of which they

are the indices ; and by then defining that the sought product )3a is equal to

the product v'v^ of those two right quaternions. It becomes, therefore, im-

portant to inquire, at this stage, how far such substitution, of I"^a for o, or

of V for It?, together with the converse substitution, is permitted in this

Calculus, consistently with principles already established. For it is evident

that if such substitutions can be shown to be generally legitimate, or allow-

able, we shall thereby be enabled to enlarge greatly the existing field of

interpretation : and to treat, in all cases. Functions of Vectors^ as being, at the

same time, Functions of Right Quaternions.

286. We have first, by 133 (compare 283, 1.), the equality^

I. ..r'/3 = ry if |3 = a.

In the next place, by 206 (comp. 283, II.), we have the formula of addition

or subtraction,

II. ..I-n^±a) = rij3±I-'a;

with these more general results of the same kind (comp. 207 and 99),

III. . . r»Sa = 2l-'a ; IV. . . r^Saro = 'S.xl'^a.

In the third place, by 193 (comp. 283, III.), we have, for division, the

formula,

V. ..I-'i3:I-'a = /3:a;

while the second definition (284) of multiplication of vectors, which has been

proved to be consistent with the first definition (278), has given us the

analogous equation,

VI. . . r^^ . I-'a = /3 . a = /3o.

2U2
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It would seem, then, that we might at once proceed to define, for the purpose

of interpreting any proposed Function of Vectors as a Quaternion, that the

following general Equation exists

:

VII. ..r'a = o; or Tni...lv = v, ilLv = '^\

or still more briefly and symbolically, if it be understood that the subject of the

operation I is always a right quaternion,

IX. . . I = 1.

But, before finally adopting this conclusion, there is a case (or rather a class

of cases), which it is necessary to examine, in order to be certain that no

contradiction to former results can ever be thereby caused.

287. The most generalform of a vector function, or of a vector regarded as

a function of other vectors and of scalars, which was considered in the First

Book, was the form (99, oomp. 275),

I. . . /o = '2xa
;

and we have seen, that if loe change, in this form, each vector a to the corre-

sponding right quaternion I"'a, and then take the index of the new right

quaternion which results, we shall thus be conducted to precisely the same

vector p, as that which had been otherwise obtained before ; or in symbols,

that

II. . .'S.xa^ l^xl-^a (comp. 286, lY.).

But anotherform of a vector-function has been considered in the Second Book;

namely, the form,

IIL..p = ...i^a(226,III.);

in which a, )3, 7, 8, c . . . are any odd number ofcomplanar vectors. And before

we accept, as general, the equation YII. or YIII. or IX. of 286, we must

inquire whether we are at liberty to write, under the same conditions of com-

planarity, and with the same signification of the vector p, the equation,

IY...p^l{...p^.p^.l-'.).

288. To examine this, let there be at first only three given complanar

vectors, 7 |||
a, j3 ; in which case there will always be (by 226) a fourth vector p,

in the same plane, which will represent or construct the function [y : (5) .a;

namely, the fourth proportional to /3, 7, a. Taking then what we may call
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the Inverse Index-Functions, or operating on these four vectors a, /3, 7, p by the

characteristic J-^ we obtain /owr collinear and right quaternions (209), which

may be denoted by v, v\ v'\ v'''\ and we shall have the equation,

or Tl...v'"={v"\v'),v',

which proves what was required. Or, more symbolically,

VII.

viii...^.a=/, = i(i-v) = i^,.r

And it is so easy to extend this reasoning to the case of any greater odd

number of given vectors in one plane, that we may now consider the recent

formula lY. as proved.

289. We shall tlierefore adopts as general, the symbolical equations YII.

YIII. IX. of 286 ; and shall thus be enabled, in a shortly subsequent section,

to interpret ternary (and other) products of vectors, as well a.a powers and other

Functions of Vectors, as being generally Quaternions ; although they may, in

particular cases, degenerate (131) into scalars, or may become right quaternions

(132) : in which latter event they may, in virtue of the same principle, be

represented hy, and equated to, th&ir own indices (133), and so be treated as

vectors. In symbols, we shall write generally, for any set ofvectors a, /3, y, . • •

and any function f, the equation,

I. . ./(a, |3, 7, . . .) =/(r»a, 1-% rv, . . .) = ^,

q being some quaternion ; while in the particular case when this quaternion is

right, or when
^ = t; = s-^ = r>,

we shall write also, and usually by preference (for that case), the formula,

II. . ./(a, 13, 7, . . .) = I/(I-^a, 1-% 1-7, .,.)=p,

p being a vector.

290. For example, instead of saying (as in 281) that the Product of any

ttco Rectangular Vectors is a Right Quaternion, with certain properties of its

Index, already pointed out (284, (6.) ), we may now say that such o. product is

equal to that index. And hence will follow the important consequence, that
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the Product of any two Rectangular Lines in Space is equal to (or may be con-

structed hy) a Third Line, rectangular to both ; the Rotation round this Product-

Line, from the Multiplier-Line to the Multi^jlicand-Line, being Positive : and

the Length of the Product being equal to the Product of the Lengths of the

Factors, or representing (with a suitable reference to units) the Area of the

Rectangle under them. And generally we may now, for all purposes of

calculation and expression, identify* a Right Quaternion icith its own Index.

SECTION 5.

On some Simplifications of IVotation, or of Expression, resulting

from this Identification; and on the conception of an IJnit-

liine as a Right ITersor.

291. An immediate consequence of the symbolical equation 286, IX., is

that we may now suppress the Characteristic I, of the Index o/ a Right Quater-

nion, in all the formulae into which it has entered ; and so may simplify the

Notation. Thus, instead of writing,

Ax.q = lUYq, or Ax. = lUV, as in 204, (23.),

or Ax.q = VIYq, or Ax. = UIV, as in 274, (7.),

we may now write simply f,

1. . .Ax.q= VYq; or II. . . Ax. = UY.

The Characteristic Ax., of the Operation of talcing the Axis of a Quaternion

(132, (6.) ), mar/ therefore henceforth be replaced whenever we may think fit to

dispense with it, by this combination of two other characteristics, U and V, which

are of greater and more general utility, and indeed cannot% be dispensed with,

in the practice of the present Calculus.

* Compare the Notes to pages 121, 137, 175, 193, 203.

t Compare the first Note to page 120, and the third Note to page 203.

X Of course, any one who chooses may invent new symbols, to denote the same operations on

quaternions, as those which are denoted in these Elements, and in the elsewhere cited Lectures, hy the

letters U and V ; hut, under some form, such symbols must be used : and it appears to have heen

hitherto thought expedient, hy other writers, not hastily to innovate on notations which have been

already employed in several published researches, and have been found to answer their purpose. As

to the type used for these, and for the analogous characteristics K, S, T, that must evidently he a

mere affair of taste and convenience : and in fact they have all been printed as small italic capitals,

in some examination-papers by the author.
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292. "We are now enabled also to diminish, to some extent, the number of

technical terms, which have been employed in the foregoing Book. Thus,

whereas we defined, in 202, that the right quaternion Nq was the Eight Part

of the Quaternion q, or of the sum ^q + Yq, we may now, by 290, identify

that part with its own index-vector TVq, and so may be led to call it the vector

part, or simply the Yector,* of that Quaternion q, without henceforth speaking

of the right part : although the plan of exposition, adopted in the Second Book,

required that we should do so for some time. And thus an enunciation, which

was put forward at an early stage of the present work, namely, at the end of

the First Chapter of the First Book, or the assertion (17) that

" Scalar plus Vector equals Quaternion,"

becomes entirely intelligible, and acquires a perfectly definite signification.

For we are in this manner led to conceive a Number (positive or negative)

as being added to a Line,-\ when it is added (according to rules already estab-

lished) to that right quotient (132), of which the line is the Index. In symbols,

we are thus led to establish the formula,

1. . . q = a + a, when 11. . . q = a + I-'a ;

whatever scalar, and whatever vector, may be denoted by a and a. And
because either of these two parts, or summands, may vanish separately,

we are entitled to say, that both Scalars and Vectors, or Numbers and

Lines, are included in the Conception of a Quaternion, as now enlarged or

modified.

293. Again, the same symbolical identification of Iv with v (286, YIII.)

leads to the forming of a new conception of an Unit-Line, or Unit-Vector (129),

as being also a Right Versor (153) ; or an Operator, of which the effect is to

turn a line, in a plane perpendicular to itself, through a positive quadrant of

rotation : and thereby to oblige the Operand-Line to take a new direction, at

right angles to its old direction, but without any change of length. And then

the remarks (154) on the equation q^ = -1, where q was a right versor in the

former sense (which is still a permitted one) of its being a right radial quotient

* Compare the Note to page 193.

t On account of this possibility of conceiving a quaternion to be the sum of a number and a line,

it wac at one time suggested by the present author, that a Quaternion might also be called a Gram-

maritkm, by a combination of the two Greek words ypafi/jL-l) and apidfx6s, which signify respectively a

Zine and a Number.
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(147), or the quotient of two equally long hut mutually rectangular lines, become

immediately applicable to the interpretation of the equation,

p' = -l, or p^ + 1 = (282, XIY.)

;

where p is still au unit-vector.

(1.) Thus (comp. fig. 41, p. 132), if a be any line perpendicular to such a

vector p, we have the equations,

I. . . pa = j3 ; II. . • p^a = p|3 = a =- a]

j3 being another line perpendicular to p, which is, at the same time, at right

angles to a, and of the same length with it ; and from which a third line a,

or - a, opposite to the line a, but still equally long, is formed by a repetition of

the operation, denoted by (what we may here call) the characteristic p ; or

having that unit-vector p for the operator, or instrument employed, as a sort of

handle, or axis* of rotation.

(2.) More generally (comp. 290), if a, /3, y be any three lines at right

angles to each other, and if the length of y be numerically equal to the

product of the lengths of a and /3, then (by what precedes) the line y represents,

or constructs, or is equal to, the product of the two other lines, at least if a certain

order oi the factors (comp. 279) be observed: so that we may write the equa-

tion (comp. 281, XXI.),

IIL..ai3 = 7, if IV...(d±a, yj.a,y±i5, and Y. . . Ta . TjS = T7,

provided that the rotation round a, from |3 to y, or that round y from a to /3,

&o., has the direction taken as the positive one.

(3.) In this more general case, we may still conceive that the multiplier-

line a has operated on the multiplicand-line (5, so as to produce (or generate) the

product- line y; but not no2v by an operation of version alone, since the tensor

of (i is (generally) multiplied by that of a, in order to form, by Y., the tensor

of the product y.

(4.) And if (comp. fig. 41, bis, in which a was first changed to /3, and

then to a) we repeat this compound operation, of tension and version combined

(comp. 189), or if we multiply again by a, we obtain a fourth line /3', in the

plane of /3, y, but with a direction opposite to that of /3, and with a length

generally different : namely the line,

YI. ..a7 = aaj3 = a'/3 = j3' = -a'i3, if a = Ta.

* Compare the second Note to page 137.
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(5.) Tho operator o^ or aa, is therefore equivalent, in its effect on /3, to the

negative scalar, -a^, or - (Ta)^ or -No, considered as a coefficient, or as a

(scalar) multiplier (15) : whence the equation,

VII. ..a^ = -No(282, L),

may be again deduced, but now with a new interpretation, which is, however,

as we see, completely consistent, in all its consequences, with the one first pro-

posed (282).

SECTION 6.

On the Interpretation of a Product of Three or more ¥ectors,

as a Q,uaternlon.

294. There is now no diflBculty in interpreting a ternary product of vectors

(oomp. 277, I.), or a product of more vectors than three, taken always in some

given order ;" namely, as the result (289, I.) of the substitution of the corre-

sponding right quaternions in that product : which result is generally what we

have lately called (276) an Oblique Quotient, or a Quaternion with either an

acute or an obtuse angle (130) ; but may degenerate (131) into a scalar, or may

become "iYse// a right quaternion (132), and so be constructed (289, II.) by a

new vector. It follows (comp. 281), that Multiplication of Vectors, like that of

Quaternions (223), in which indeed we now see that it is included, is an Asso-

ciative Operation : or that we may write generally (comp. 223, II.), for any

three vectors, a, j3, y, the Formula,

I. . . 7|3 .a = y. (5a.

(1.) The formulae 223, III. and IV., are now replaced by the following

:

II. . . V. yY(3a = aSjSy - (5Sya ]

in. . . Yy(Ba = aSjSy - /BS-ya + ySajS ;
*

in which Yyfta is written, for simplicity, instead of V(7j3a}, or V. yjSa; and

with which, as with the earlier equations referred to, a student of this Calculus

will find it useful to render himself very familiar.

* [On account of the importance of these formulae, it is worth while to notice that, using the

principles of the present Book,

V7^o = i{l-K)yfia = i {ypa + a&y) = ^y {0a + ajS) - ^ (7a + ay) /3

+ ^o {y$ 4- 0y) = ySafi - $Bya + 08^87.]

Hamilton's Elbmbnts of Quaternions, sX
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(2.) Another useful form of the equation II. is the following :

lY. . .y (Ya/3 . 7) = aS^y - jSSya.

(3.) The equations IX. X. XIY. of 223 enable us now to write, for any

three vectors^ the formula

:

V. . • S-yjSa = — Sa/3y = SayjS = — SjSya = SjSa-y = - SyajS

= + volume ofparallelepiped under a, /3, y,

= ± 6 X volume ofpyramid oabc
;

upper or lower signs being taken, according as the rotation round a from /3

to y is positive or negative : or in other words, the scalar Syj3a, of the ternary

product of vectors yj3a, being positive in the first case, but negative in the

second.

(4.) The condition of complanarity of three vectors, a, /3, y, is therefore

expressed by the equation (comp. 223, XI.)

:

YL..Syi3a = 0; or Yr...Sai3y = 0; &c.

(5.) If o, j3, y be any three vectors, complanar or diplanar, the expression,

YII...g = aSi3y-/3Sya,

gives Yni. . . Syg = 0, and IX. . . Sa/38 = ;

it represents therefore (comp. II. and lY.) a fourth vector S, which is perpen-

dicular to y, but complanar with a and /3 : or in symbols,

X. S±y, and XL . . 8 JH
a, jS.

(Compare the notations 123, 129.)

(6.) For any four vectors, we have by II. and lY. the transformations,

XII. ..Y (Ya/3 .Yy8) = 8Sai3y - ySa/3g

;

XIII. . .Y (Ya/3 . YyS) = aS/3y8 - /3Say8

;

and each of these three equivalent expressions represents a^ffth vector t, which

is at once complanar with a, (5, and with y, S ; or a line oe, which is in the

intersection of the two planes, oab and ocd.

(7.) Comparing them, we see that any arbitrary vector p may be expressed

as a linear function of any three given diplanar vectors, a, (3, y, by the formula

:

XIY. . . |oSa/3y = aS/3y|0 + jSSya/o + ySa/3|0 ;

which is found to be one of extensive utility.
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(8.) Another very useful formula, of the same kind, is the following

:

XV. . . p^a(5y = Yi5y . Sap + Yya . S/3p + VajS . Syp ;

in the second member of which, the points may be omitted.*

(9.) One mode of proving the correctness of this last formula XY., is

to operate on both members of it, by the three symbols, or characteristics of

operation,

XVI.. .S. a, S.j3, S.y;

the common results on both sides being respectively the three scalar products,

XVII. . . SojO . Sa/By, Sj8/o . SajSy, Syp . SajSy ;

where again the points may be omitted.

(10.) We here employ the principle, that if the three vectors a, /3, y he

actual and diplanar, then no actual vector X can satisfy at once the three scalar

equations,

XVIII. . . SaX = 0, S/3X = 0, SyX = 0;

because it cannot he perpendicular' at once to those three diplanar vectors.

(11.) If, then, in any investigation with quaternions, we meet a system

of this form XVIII., we can at once infer that

XIX.. .X = 0, if XX...Sai37^0;

while, conversely, if X he an actual vector, then a, /3, 7 must be complanar

vectors, or Saj3y = 0, as in VF.

(12.) Hence also, vmder the same condition XX., the three scalar equa-

tions,

XXI. . . SaX = Sa/x, Sj3X = Sj3jU, SyX = SyjU,

give

XXIL..X = /i.

(13.) Operating (comp. (9.)) on the equation XV. by the symbol, or

characteristic, S . 8, in which S is any new vector, we find a result which may
be written thus (with or without the points)

:

XXin. . . = Sap . Sj3yS - S/3p . SySa + Syp . SSajS - SSp . Sa/3y ;

where a, /3, y, 8, p may denote any five vectors.

* [Another method of proving XIV. is to assume p = xa + t/& + zy. Operating by S .VJ87, S&yp
= xSaPy ; and similar expressions may be found for y and z. To prove XV. assume p = x^$y
+ !/'Yya + z'Yafi, and operate in turn by S . a, S . j8, and S.7].

2X2
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(14.) In drawing this last inference, we assume that the equation XV.
holds good, even when the three vectors, a, (5, y are complanar : which in fact

must be true, as a limit, since the equation has been proved, by (9.) and (12.),

to be valid, if y be ever so little out of the plane of a and j3.

(15.) We have therefore this new formula

:

XXrV...Yj37Sa|O + Y7aSi3p + Yai3S7p = 0, if Sa/37 = 0;

in which p may denote any fourth vector, whether m, or out of^ the common

plane of a, /3, y.

(16.) If p he 2)erpendicular to that plane, the last formula is evidently true,

each term of the first member vanishing separately, by 281, (7.) ; and if we

change p to a, vector S in the plane of a, j3, y, we are conducted to the follow-

ing equation, as an interpretation of the same formula XXIY., which expresses

a known theorem of plane trigonometry, including several others under it

:

XXV. . . sin BOG . cos add + sin coa . cos bod + sin aob . cos cod = 0,

for any four complanar and co-initial lines, oa, ob, oc, od,

(17.) By passing from od to a line perpendicular thereto, but in their

common plane, we have this other known* equation:

XXVI. . . sin BOO sin aod + sin coa sin bod + sin aob sin cod =
;

which, like the former, admits of many transformations, but is only mentioned

here as offering itself naturally to our notice, when we seek to interpret the

formula XXIV. obtained as above by quaternions.

(18.) Operating on that formula by S . §, and changing p to e, we have

this new equation

:

XXVII. . . = SaeS/SyS + SjSeSyaS + SySaj^B, if Sa(iy = ;

which might indeed have been at once deduced from XXIII.

(19.) The equation XIV., as well as XV., must hold good at the limit,

when a, |3, y are complanar ; hence

XXVIII. . . aS(5yp + ^Syap + ySafSp = 0, if Sa/Sy = 0.

* Compare page 20 of the Geometrie Superiettre of M. Chaslea.
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(20.) This last formula is evidently true, by (4.), if pjoe in the common
plane of the three other vectors ; and if we suppose it to be perpendicular to

that plane, so that

XXIX. . . /o
II YiSy II

Yya \\
Va]3,

and therefore, by 281, (9.), since S (Sj3y . /o) = 0.

XXX. . . SjSyp = S (YjSy . p) = Vi3y . p, &0.,

we may divide each term hy p, and so obtain this other formula,

XXXI. . . aYjSy + (5Yya + yVajS = 0, if SafiyU 0.

(21.) In general, the vector (292) of this last expression vanishes by II.

;

the expression is therefore equal to its own scalar, and we may write,

XXXIJ. . . aVj37 + /^Yya + yYajS = SSajSy,

whatever three vectors may be denoted by a, |3, y.

(22.) For the case of complanarityy if we suppose that the three vectors are

equally long, we have the proportion,

XXXIII. . . YjSy : Yya : Yaj3 = sin boc : sin coa : sin aob
;

and the formula XXXI. becomes thus,

XXXIY. . . OA . sin BOC + ob . sin coa + oc . sin aob =
;

where oa, ob, ocare am/ three radii of one circle, and the equation is interpreted

as in Articles 10, 11, &c.

(23.) The equation XXIII. might have been deduced from XIY.,

instead of XY., by first operating with S . S, and then interchanging S and p.

(24.) A vector p may in general be considered (221) as depending on three

scalars (the co-ordinates of its term) ; it cannot then be determined by fewer

than three scalar equations ; nor can it be eliminated between fewer than four.

(25.) As an example of such determination of a vector, let o, /3, y be again

any three given and diplanar vectors ; and let the three given equations be,

XXXY. . . Sa/> = a, Sj3/o = h, Syp = c

;

in which a, b, c are supposed to denote three given scalars. Then the sought

vector p has for its expression, by XY.,

XXXYI. . .p = e-' {aY^y + hYya + cYa/3), if XXXYII. . .e = Sa/Sy.
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(26.) As another example, let the three equations be,

XXXVIII. . . SjSyp = a\ Syap = h\ Sa/3/) = c';

then, with the same signification of the scalar e, we have, by XIV.,

XXXIX. . . p = e-^ {da + 6'/3 + cy).

(27.) As an example of elimination of a vector^ let there be the four scalar

equations,

XL. . . SojO = a, Sj3p = hy S7/0 = c, SSjO = d
;

then, by XXIII., we have this resulting equation, into which p does not enter

^

but only the four vectors, a . . 8, and the four scalars, a . . d:

XLI. . . a . S(5yB - h . SySa + c . SSaj3 - (f . SajSy = 0.

(28.) This last equation may therefore be considered as the condition ofcon-

currence of thefour planes, represented by the/owr scalar equations XL., in one

common point ; for, although it has not been expressly stated before, it follows

evidently from the definition 278 of a binary product of vectors, combined^with

196, (5.), that every scalar equation of the linearform (comp. 282, XVIIL),

XLII. . . SojO = a, or Spa = a,

in which a = OA, and p = op, as usual, represents aplane locus of the point p ; the

vector of the foot s, of the perpendicular on that planefrom the origin, being

XLIII. . . OS = (T = aRa = aa' (282, XXL).

(29.) If we conceive a pyramidal volume (68) as having an algebraical (or

scalar) character, so as to be capable of bearing either a positive or a negative

ratio to the volume of a given pyramid, with a given order of its points, we may

then omit the ambiguous sign, in the last expression (3.) for the scalar of a

ternary product of vectors : and so may write, generally, oabc denoting such a

volume, the formula,

XLIV. . . Sa/37 = 6 . OABC,

= a positive or a negative scalar, according as the rotation round oa from ob to

DC is negative or positive.

(30.) More generally, changing o to d, and oa or a to a - 8, &c., we have

thus the formula :

XLV. . . 6 . DABc = S (a- 8)(i3
- 8) (7-8) = SajSy - 8/378 + 8780 - 88a/3

;

in which it may be observed that the expression is changed to its men opposite,
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or negative, or is multiplied hy - \, when any two of the four vectors, a, /3, y, S,

or when any tico of the four points, a, b, c, d, change places ivith each other
;

and therefore is restored to its former value, by a second such binary inter-

change.

(31.) Denoting then the new origin of a, j3, y, 8 by e, we have first, by

XLIV., XLY., the equation,

XLYI. . . DABC = EABC - EBCD + ECDA - EDAB
;

and may then write the result (oomp. 68) under the more symmetric form

(because^- ebcd = becd = &o.)

:

XLYII. . . BCDE + CDEA + DEAB + EABC + ABCD = ;

in which A, b, c, d, e may denote any five points of space.

(32.) And an analogous formula (69, III.) of the First Book, for any six

points OABCDE, namely the equation (comp. 65, 70),

XLYm. . . OA . BCDE + OB . CDEA + OC . DEAB + CD . EABC + OE . ABCD = 0,

in which the additions are performed according to the rules of vectors, the

volumes being treated as scalar coefficients, is easily recovered from the fore-

going principles and results. In fact, by XLYII., this last formula may be

written as

XLIX. . . ED . EABC = EA . EBCD + EB . ECAD + EC . EABD
;

or, substituting a, /3, y, S for ea, eb, ec, ed, as

L. . . SSajSy = aSjSyS + jSSyoS + ySajSS

;

which is^ only another form of XIY., and ought to be familiar to the

student.

(33.) The formula 69, II. may be deduced from XXXI. by observing

that, when the three vectors a, /3, y are complanar, we have the proportion,

LI. . . Y/By : Yyo : Ya]3 : Y (/3y + 70 + a/3) = obc : oca : oab : abc,

if signs (or algebraic or scalar ratios) of areas be attended to (28, 63) ; and the

formula 69, I., for the case of three collinear points a, b, c, may now be

written as follows :

LIL . . a(i3-7) + /3(7-a) + 7(a-/3) = 2Y(/37 + 7a + a/3)

= 2Y(/3-a)(7-«)=0,

if the three coinitial vectors a, /3, 7 be termino-colUnear (24).

\
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(34.) The case when four coinitial vectors a, j3, 7, S are termino'complanar

(64), or when they terminate in four complanar points a, b, c, d, is expressed

by equating to zero the second or the third member of the formula XLY.*

(35.) Finally, for ternary products of vectors in general, we have the

formula

:

LIII. . . a'^'f + (Sa/37)=^ = (YajSy)^ = (aS/Sy - /BSya + ySajS)*

= a- (S/37)^ + i3^ {^yaf + 7^ (Saj3)* - 2Si37S7aSaj3.t

295. The identity (290) of a right quaternion with its index, and the con-

ception (293) of an unit-line as a right versor, allow us now to treat the three

important versors, i,j, k, as constructed by, and even as (in our present view)

identical with, their own axes; or with the three lines 01, oj, ok of 181, con-

sidered as being each a certain instrument, or operator, or agent in a right

rotation (293, (1.) ), which causes any line, in a plane perpendicular to itself,

to turn in that plane, through a, positive quadrant, without any change of its

length. With this conception, or construction, the Latvs of the Symbols ij'k

are still included in the Fundamental Formula of 183, namely,

i^=f = k^ = ijjc = -l', (A)

and if we now, in conformity with the same conception, transfer the Standard

Trinomial Form (221) from Bight Quaternions to Vectors, so as to write

generally an expression of the form,

I. . . p = ix +jy + kz, or F. . . a = ia +jb + kc, &o.,

where xyz and abc are scalars (namely, rectangular co-ordinates), we can

recover many of the foregoing results with ease : and can, if we think fit,

connect them with co-ordinates.

(1.) As to the laws (182), included in the Fundamental Formula A, the law

«* = - 1, &c., may be interpreted on the plan of 293, (1.), as representing the

reversal which results from ttco successive quadrantal rotations.

(2.) The two contrasted laws, or formulae,

ij = + k, ji = -k, (182, H. and III.)

may now be interpreted as expressing, that although a positive rotation through

a right angle, round the line i as an axis, brings a revolving line from the position

j to the position k, or + k, yet, on the contrary, a positive quadrantal rotation

round the line j, as a new axis, brings a new revolving line from a new initial

* [And the equation of the plane abc is SpV [fiy + 7a + a0) = Safiy.}

t [Since Ka$y = - yfia."]



Akts. 294, 295,] STANDAED TRTTs^OMIAL FORM FOR A VECTOR. 345

position, i, to a new final position, denoted by - k, or opposite* to the old final

position, + k.

(3.) Finally, the law ijk = - 1 (183) may be interpreted by conceiving,

that we operate on a line a, which has at first the direction of + j, by the three

lines, k, j, i, in succession ; which gives three neic but equally long lines, |3, y, S,

in the directions of - i, + k, - J, and so conducts at last to a line - a, which

has a direction opposite to the initial one.

(4.) The foregoing laws of iJk, which are all (as has been said) included

(184) in the Formula A, when combined with the recent expression I. for p,

give (comp. 222, (1.) ) for the square of that vector the value

:

II. . . p^= [ix \-jy + kzf = - (a;* + 2/* + s«)

;

this square of the line p is therefore equal to the negative of the square of its

length Tp (186), or to the negative of its norm Np (273), which agrees with

the former resultt 282, (1.) or (2.).

(5.) The condition of perpendicularity of the two lines p and a, when they

are represented by the two trinomials I. and F., may be expressed (281,

XVIII.) by the formula,

III. . . = Sap = - [ax + by ^- cz)
;

which agrees with a well-known theorem of rectangular co-ordinates.

(6.) The condition of complanarity of three lines, p, p', p" , represented by

the trinomial forms,

IV. . . p = ix -^ jy -^ kz, p' = ix' -v &c., p' = ix" + &c.

is (by 294, VI.) expressed by the formula (comp. 223, XIII.),

V. . . = ^p'pp = x" {z'y - y'z) + y" {x'z - z'x) -f s" [y'x - x'y) ;

agreeing again with known results.

(7.) When the three lines p, p, p", or op, op', op", are not in one plane, the

recent expression for ^p'pp gives, by 294, (3.), the volume of the parallelepiped

* In the Lectures, the three rectangular unit-lines, i, J, k, were supposed (in order to fix the con-

ceptions, and with a reference to northern latitudes) to be directed, respectively, towards the south,

the west, and the zenith ; and then the contrast of the two formulae, ij = -^ k,ji = - k, came to be

illustrated by conceiving, tliat we at one time turn a moveable line, which is at first dxvetieA. westward,

round an axis {ox handle) directed towards the south, with a right-handed {or screwing) «jo)!io«, through

a right angle, which causes the line to take an tcpward position, as its ^nal one ; and that at another

time we operate, in a precisely similar manner, on a line directed at first southward, with an axis

directed to the it-esl, which obliges this new line to take finally a downward (instead of, as before, an

upward) direction.

t Compare also 222, IV.

Hamilton's Elements of Quatkhnions, aY
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(comp. 223, (9.)) of which they are edges ; and this volume, thus expressed, is

a positive or a negative scalar, according as the rotation round p from p to p" is

itself positive or negative : that is, according as it has the same direction as

that round + x from + y to + s (or round i from j to k), or the direction

opposite thereto.

(8.) It may be noticed here (comp. 223, (13.) ), that if a, /3, y be any

three vectors, then (by 294, III. and Y.) we have :

VI. . . SajSy = - SyjSa = i (ajSy - yjSa) ;

VII. . . Va/3y = + VyjSa = I (ajSy + yj3«).

(9.) More generally (comp. 223, (12.) ), since a vector, considered as repre-

senting a right quaternion (290), is always (by 144) the opposite of its own

conjugate, so that we have the important formula,*

VIII. . .Ka = -a, and therefore IX. . . Kna = ± U'a,

we may write for any number of vectors, the transformations,

X. . . Sna = ± Sn'a = i (Da ± H'a),

XT. . . vna = + vn'a = |(na + n'a),

upper or lower signs being taken, according as that number is even or odd : it

being understood that

XII. . . n'a = . . . yj3«, if Da = a)3y . . .

(10.) The relations of rectangularity,

XIII. . . Ax. i J_ Ax. j ; Ax. ,/ ± Ax. k ; Ax. k ± Ax. i,

which result at once from the definitions (181), may now be written more

briefly, as follows

:

XIV. ..«-Ly; j A.k', kLi;

and similarly in other cases, where the axes, or the planes, of any two right

quaternions are at right angles to each other.

(11.) But, with the notations of the Second Book, we might also have

written, by 123, 181, such formulae of complanarity as the following, Ax.y
||1

i,

to express (comp. 225) that the axis of / was a line in the plane of i ; and it

might cause some confusion, if we were now to abridge that formula to/
|||

i.

* If, in like manner, we interpret, on our present plan, tlie symbols Uo, To, No as equivalent to

Ul-'a, Tl-'a, Nl-'a, we are reconducted (compare the Notes to page 137) to the same signification of

those symbols as before (155, 185, 273) ; and it is evident that on the same plan we have now,

Sa = 0, Va = a.
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In general, it seems convenient that we should not henceforth employ the

sign
III,

except as connecting either symbols of three lines, considered still as

complanar; or else symbols of three right quaternions, considered as being col-

linear (209), because their indices (or axes) are compianar : or finally, any two

complanar quaternions (123).

(12.) On the other hand, no inconvenience will result, if we now insert

the sign of parallelism, between the symbols of two right quaternions which

are, in the former sense (123), complanar ; for example, we may write, on our

present plan,

:KN...xi\\i, yj\\j, zk\\k,

if xyz be any three scalars.

296. There are a few particular but remarkable cases, of ternary and other

products of vectors, which it may be well to mention here, and of which some

may be worth a student's while to remember : especially as regards the

products of successive sides of closed polygons, inscribed in circles, or in spheres.

(1.) If A, B, c, D be any four concircular points, we know, by the sub-

articles to 260, that their anharmonic function [abcb], as defined in 259, (9.),

is scalar ; being also positive or negative, according to a law of arrangement ot

those four points, which has been already stated.

(2.) But, by that definition, and by the scalar (though negative) character

of the square of a vector (282), we have generally, for any plane or gauche

quadrilateral abcd, the formula :

I. . . e^ (abcd) = ab . bc . CD . da = the continued product of the four sides

;

in which the coefficient e^ is a positive scalar, namely the product of two nega-

tive or of two positive squares, as follows :

II. . . e'^ = B& . BA^ = BC* . da' > 0.

(3.) If then abcd be a plane and inscribed quadrilateral, we have, by

260, (8.), the formula,

III. . . AB . BC . CD . DA = a positivc or negative scalar,

according as this quadrilateral in a circle is a crossed or an uncrossed one.

(4). 1l\xq product a(5y of any three complanar vectors is a vector, because its

scalar part SajSy vanishes, by 294, (3.) and (4.) ; and if the factors be three

successive sides ab, bc, cd of a quadrilateral thus inscribed in a circle, their

product has either the direction of the fourth successive side, da, or else the

opposite direction, or in symbols,

lY. . . AB . BC . CD : da > or < 0,

according as the quadrilateral abcd is an uncrossed or a crossed one.

2 Y 2
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(5.) By conceiving the fourth point d to approach^ continuously and inde-

finitely, to the first point a, we find that the product of

the three successive sides of any plane triangle, abc, is given

by an equation of the form

:

V. . . AB . BO . CA = AT ;*

AT being a line (comp. fig. 63) ichich touches the circum-

scribed circle, or (more fully) which touches the segment

ABC of that circle, at the point a ; or represents the

initial direction of motion, along the circumference, from a through b to c: while

the length of this tangential product line, at, is equal to, or represents, with the

usual reference to an unit of length, the product of the lengths of the three sides,

of the same inscribed triangle abc.

(6.) Conversely, if this theorem respecting the product of the sides of an

inscribed triangle be supposed to have been otherwise proved, and if it be

rememberedy then since it will give in like manner the equation,

YI. . . AC . CD . da = AU,

if D be anp fourth point, concircular with a, b, c, while au is, as in the annexed

figures 63, a tangent to the new segment acd, we can

recover easily the theorem (3.), respecting the product

of the sides of an inscribed quadrilateral ; and thence

can return to the corresponding theorem (260, (8.) ),

respecting the anharmonic function of any such figure

abcd : for we shall thus have, by V. and VI., the

equation,

VII. . . AB . BC . CD . DA = (aT . Au) : (CA . AC),

in which the divisor ca.ac or N.ac, or ac% is always positive (282, (!.))> but

the dividend at.au is negative (281, (9,)) for the case of an uncrossed quadri-

lateral (fig. 63), being on the contrary positive for the other case of a crossed

one (fig. 63, bis).

(7.) If P be any point on the circle through a given point a, which

touches at a given origin o a given line ot = r, as represented in fig. 64, we

shall then have by (5.) an equation of the form,

VIII. oa . ap . PC = a; . ot,

fn J. ii 1. w 1-j AT CA AT AB n
Or directly by Euclid u — = u — , or v— = u —

.

L AB CB CA CB J
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in which x is some scalar coeflBcient, which varies with the position of p.

Making then oa = a, and op = p, as usual, we

shall have

or

or

IX. . . a (p - a) p = - irr,

IX'. .
p~^ - a"^ = XT : a'^jo',

EX".. . Vrp-» = Yra-^

;

and any one of these may be considered as a form

of the equation of the circle^ determined by the Fig, §4^

given conditions.

(8.) Geometrically, the last formula IX". expresses, that the line p~* - o"',

or Bjo - Era, or a'p' (see again fig. 64), if oa' = u'^ = Ha = E, . oa, and

op' = p"1 = E. . op, is parallel to the given tangent t at o; which agrees with

fig. 58, and with Art. 260.

(9.) If B be the point opposite to o upon the cirole, then the diameter ob,

or j3, as being ± t, so that 7^5'^ is a vector, is given by the formula,

X. . . t(5-' = Yra' ; or X'. . . ^ = - r : Yra'
;

in which the tangent r admits, as it ought to do, of being multiplied by any

scalar, without the value of /3 being changed.

(10.) As another verification, the last formula gives,

XI. . . ^ = Tj3 = Ta : TVUra-» = oA : sin act.

(11.) If a quadrilateral oabc be not inscriptible in a circle, then whether it

be plane or gauche^ we can always circumscribe (as in fig. 65) two circles, gab

and obc, about the two triangles, formed by drawing the diagonal ob ; and

then, on the plan of (6.), we can draw two tangents

OT, ou, to the two segments oab, obc, so as to repre-

sent the two ternary products^

OA . AB . BO, and ob . bo. co
;

after which we shall have the quaternary product,

XII. . . OA . AB . BC . CO = OT . ou : ob'^ ;

where the divisor, ob^, or bo . ob, or N . ob, is a

positive scalar, but the dividend ot . ou, and therefore

also the quotient in the second member, or the product in the first member, is a

quaternion.
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(12.) The axis of this quaternion is perpendicular to the plane tou of the

tico tangents ; and therefore to ihe plane itself oi the quadrilateral oabc, if that

be a plane figure ; but if it be gauche, then the axis is normal to the circiun-

scrihed sphere at the point o : being also in all cases such, that the rotation

round it, from ot to ou, is positive.

(13.) The angle of the same quaternion is the supplement of the angle tou

between the two tangents above mentioned ; it is therefore equal to the angle

u'oT, if ou' touch the new segment ocb, or proceed in a new and opposite direc-

Hon from o (see again fig. 65) ; it may therefore be said to be the angle between

the two arcs, gab and ocb, along which a point should move, in order to %ofrom o,

on the two circumferences, to the opposite corner b of the quadrilateral oabc,

through the two other corners, a and c, respectively : or the angle between the

arcs ocb, oab.

(14.) These results, respecting HoiQaxis and angle of the product of th^ four

successive sides, of any quadrilateral oabc, or abcd, apply without any modifi-

cation to the anharmonic quaternion (259, (9.) ) of the same quadrilateral ; and

although, for the case of a quadrilateral in a circle, the axis becomes indeter-

minate, because the quaternary product and the anharmonic function degene-

rate together into scalars, or because the figure may then be conceived to be

inscribed in indefinitely many spheres, yet the angle may still be determined by

the same rule as iu the general case : this angle being = tt, for the inscribed

and uncrossed quadrilateral (fig. 63} ; but = 0, for the inscribed and crossed

one (fig. 63, bis).

(15.) For the gauche quadrilateral oabc, which may always be conceived

to be inscribed in a determined sphere, we may say, by (13.), that the angle of

the quaternion product, L (oA , ab . bc . co), is equal to the angle of the lunule,

bounded (generally) by the two arcs of small circles oab, ocb ; with the same

construction for the equal angle of the anharmonic,

L (oabc), or L (oA ; AB . BC : co).

(16.) It is evident that the general principle 223, (10.), of the permissibility

of cyclical permutation of quaternion factors under the sign S, must hold good

for the Crtse when those quaternions degenerate (294) into vectors; and it is

still more obvious, that every permutation of factors is allowed, under the

sign T : whence cyclical permutation is again allowed, under this other sign SU

;

and consequently also (comp. 196, XVI.) under the sign I.
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(17.) Hence generally, for any four vectors, we have the three equations,

XIII. . . SajSyS = SjSySa

;

XIV. . . SUa/ByS = SU/By^a;

XY. . .z 0/378 = ^/37^0;

and in particular, for the successive sides of any plane or gauche quadrilateral

ABCD, we have the four equal angles,

XYI. . . L (ab . bc . CD . da) = z. (bc . CD . da . ab) = &c.

;

with the corresponding equality of the angles of the four anharmonics,

XYII. . . L (abcd) = L (bcda) = L (cdab) = L (dabc)
;

or of those of the four reciprocal anharmonics (259, XYII.),

XYII'. . . L (adob) = L (badc) = L (cbad) = L (dcba).

(18.) Interpreting now, by (13.) and (15.), these last equations, we derive

from them tlie following theorem, for the plane, or for space :

—

Let abcd be amjfour points, connected hy four circles, each passing through

three of the points : then, not only is the angle at a, between

the arcs abc, adc, eqfial to the angle at c, between cda and cba,

but also it is equal (comp. fig. 66) to the angle at b, between

the tico other arcs bcd and bad, and to the angle at d, between

the arcs dab, dcb.

(19.) Again, let abode be any pentagon, inscribed in a

sphere ; and conceive that the two diagonals ac, ad are drawn. ^^
We shall then have three equations, of the forms, p. gg

XYIII. . . AB . BC . CA = AT
;

AC . CD . DA = AU
;

AD . DE . EA = AV ;

where at, au, av are three tangents to the sphere at a, so that their product

is a fourth tangent at that point. But the equations XYIII. give

XIX. . . AB . BC . CD . DE . EA = (aT . AU . Av) ; (aC* . AD*)

= AW = a neio vector, tchich touches the sphere at a.

We have therefore this TJieorem, wliich includes several others under it :

—

" The product of the five successive sides of any [generally gauche) pentagon

inscribed in a sphere, is equal to a tangential vector, drawn from the point at which

the pentagon begins and ends.*^
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(20.) Let then p be a point on the sphere which passes through o, and

through three given points a, b, c ; we shall have the equation,

XX. . . = S (OA . AB . BC . CP . PO) = Sa - a) {y - (5) {p -
y) {- p)

= a'S(3yp + fi'Sycp + y'Sa(5p - p'Safiy.

(21.) Comparing with 294, XIY., we see that the condition for the four

co-initial vectors a, /3, 7, p thus terminating on one spheric surface, which

passes through their common origin o, may be thus expressed :

XXI. . Ai p = xa + y^i + zyy then p^ = xc^ + yj3^ + sy*.

(22.) If then we project (oomp. 62) the variable point p into points

a\ b\ c' on the three given chords oa, ob, oc, by three planes through that

point p, respectively parallel to the planes boc, coa, aob, we shall have the

equation

:

XXII. . . op^ = OA . oa' + OB . ob' + oc . oc\

(23.) That the equation XX. does in fact represent a spheric locus for the

point p, is evident from its meveform (comp. 282, (10.) ) ; and that this sphere

passes through the four given points, o, a, b, c, may be proved by observing

that the equation is satisfied, when we change p to any one of the four

vectors, 0, o, /3, 7.

(24.) Introducing an auxiliary vector, od or S, determined by the equation,

XXIII. . . 8Sa/3y = a^YjSy + ^'Nya + 7^Va/3,

or by the system of the three scalar equations (comp. 294, (25.) ),

XXIV. ..a^=SSa, j3^=S8^, 7^=887,

or XXIT. . . SSa-^ = 88/3-^ = SV = 1»

the equation XX. of the sphere becomes simply,

XXY. ..p^=SSp, or xxv'...sv=i;

so that D is the point of the sphere opposite to o, and 8 is a diameter (comp.

282, IX'. ; and 196, (6.) ).

(25.) The formula XXIII., which determines this diameter, may be

written in this other way :

XXVI. . . 8Sai37 = Ya (/3 - a) (7 - /3) 7

;

or XXVI". . . 6 . GABC . OD = - V (oa . ab . bo. co)
;

where the symbol oabc, considered as a coefficient^ is interpreted as in 294,
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XLIV. ; namely, as denoting the volume of the pyramid oabc, which is here

an inscribed one.

(26.) This result o£ calculation, so far as it regards the direction of the

axis of the quaternion da . ab . bc . co, agrees with, and may be used to confirm,

the theorem (12.), respecting the product of the successive sides of a gauche

quadrilateral, oabc ; including the rule of rotation, which distinguishes that

axis from its opposite.

(27.) The formula XXIII. for the diameter S may also be thus written :

XXYII. . . 8 . Sa-' jS"^ 7"^ = V (i3-^
y-^ + y-^ a' + a' ^-')

= V(/3--a-)(7--a-);

and the equation XX. of the sphere may be transformed to the following

:

XXVIII. ..0 = 8 (i3-^
- a') [y~' - a') [ff' - a') ;

which expresses (by 294, (34.), comp. 260, (10.)), that the/owr reciprocal

vectors,

XXIX. ..oA'=o' = a-^ oB' = /3' = i3-S oc' = y = 7-S ov' = p'=p-\

are termino-complanar (64) ; the plane a'bVp', in which they all terminate,

being parallel to the tangent plane to the sphere at o : because the perpendicular

let fall on this plane from o is

XXX. ..S'=8S

as appears from the three scalar equations,

XXXI. . . Sa'8 = Sj3'8 = Sy? = 1.

(28.) In general, if d be the foot of the perpendicular from o, on the plane

ABC, then

XXXII. . . 8 = Sa^y : Y Oy + ya + a/3)

;

because this expression satisfies, and may be deduced from, the three equa-

tions,

XXXIII. . . Sag-1 = 8/38-^ = Sy8-i = 1.

As a verification, the formula shows that the length T8, of this perpendicular,

or altitude, od, is equal to the sextuple volume of the pyramid oabc, divided by

the double area of the triangular base abc. (Compare 281, (4.), and 294, (3.),

(33.).)

(29.) The equation XX., of the sphere oabc, might have been obtained by

the elimination of the vector 8, between the four scalar equations XXIY. and

XXY., on the plan of 294, (27.).

Hamilton's Elements of Quatkrmons, iZ
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(30.) And another form of equation of the same sphere, answering to the

development of XXVIII., may be obtained by the analogous elimination of

the same vector 8, between the four other equations, XXIY'. and XXV.
(31.) The product of any even number of complanar vectors is generally a

quaternion with an axis perpendicular to their plane ; but the product of tlie

successive sides of a hexagon abcdef, or any other even-sided Jigure, inscribed in a

circle, is a scalar : because by drawing diagonals ac, ad, ae from the first (or last)

point A. oi the polygon, we find as in (6.) that it differs only by a scalar coefficient,

or divisor, from the product of an even number of tangents, at the first point.

(32.) On the other hand, the product of any odd number of complanar

vectors is always a line, in the same plane ; and in particular (comp. (19.) ),

the product of the successive sides of b, pentagon, or heptagon, &c., inscribed in a

circle, is equal to a tangential vector, drawn from \h& first point of that inscribed

and odd-sided polygon : because it differs only by a scalar coefficient from the

product of an odd number of such tangents.

(33.) The product of any number of lines in space is generally a quaternion

(289) ; and if they be the successive sides of a hexagon, or other even-sided

polygon, inscribed in a sphere, the axis of this quaternion (comp. (12.) ) is

normal to that sphere, at the initial (or final) point of the polygon.

(34.) But the product of the successive sides of a heptagon, or other odd-

sided polygon in a sphere, is equal (comp. (19.) ) to a vector, which touches the

sphere at the initial or final point ; because it bears a scalar ratio to the

product of an odd number of vectors, in the tangent plane at that point.*

(35.) The equation XX., or its transformation XXVIII., may be called

the condition or equation of homosphericity (comp. 260, (10.)) of the five points

0, A, B, c, p ; and the analogous equation for the five points abode, with

vectors a/BySs from any arbitrary origin o, may be written thus

:

XXXIV...0 = S(a-i3)(i3-7)(7-8)(8-£)(£-a);

or thus XXXV. . . = «a^ + 5/3' + cy' + dd' + ee\f

* [The inscription of polygons in a sphere is treated very fully in the '
' Lectures." If pi, p2, • • • pn

are the vectors from the centre to the vertices, and if n = pi — pit n = pa - P2, &c. denote the vector

sides, then hy 213 (5.) p2 = -tipiti"S p3= - J2p2 12"^ = i2«ipi n'^'a"^ and pn*-i = pi = (-)"?Pi?'S

where q = «„ tn-i . . 12 n. Hence piq = (-)" ^pi ; or when n is even piYq = Vg^ . pi or Yq
||
pi ; but

when n is odd the quaternion equation piSq + SpiVq = affords the conditions Sq = and

SpiYq = 0, or g is a vector at right angles to pi. See Lecture VI., Art. 336.]

t [On change of origin XXI. may be written in the form

a{a- () + b(0- t) + e{y - e) + d {S- e) = 0, „ {a- e)^ + b{0- e)'^ + c(y-e)'^ + d{5- €)'^ = 0.

Introducing e defined by XXXIX., XXXV. and XXXVII. follow. Eliminating a, b, e, d, and e

from five equations connecting the squares of the mutual distances between the points, analogous to

that here given, a determinant relation is at once found.]
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six times the second member of this last formula being found to be equal to

the second member of the one preceding it, if

XXXYI. . . a = BCDE, h = CDEA, C = DEAB, d = EABC, 6 = ABCD,

or more fully,

XXXYII. . . 6a = S (7 - /3)(8 - (5){e - /3) = S {y^t - ScjS + e^ - /SyS), &o.

;

so that, by 294, XLYIII. and XLYII., we have also (comp. 65, 70) the

equation,

XXXYIII. ..0 = aa + bl5 + Cy + dB + ee,

with the relation between the coefficients,

XXXIX. ..0 = a + b + c + d + e,

which allows (as above) the origin of vectors to be arbitrary.

(36.) The equation or condition XXXY. may be obtained as the result of

an elimination (294, (27.) ), of a vector k, and of a scalar g, between five scalar

equations of the/orm 282, (10.), namely the five following,

XL. ..a'--2SKa + ^ = 0, /3'-2Sicj3 + <7=0, .. £'-2Sk£ + </ = 0;

K being the vector of the centre k of the sphere abcd, of which tlie equation

may be written as

XLI. .. p'- 2Sk/o + gr = 0,

g being some scalar constant ; and on which, by the condition referred to, the

fifth point E is situated.

(37.) By treating this fifth point, or its vector e, as arbitrary, we recover

the condition or equation of concircularity (3.), of the four points a, b, c, d ; or

the formula,

XLII. . . = Y(a-i3) (i3-7) (7-8) (8 -a).

(38.) The equation of the circle abc, and the equation of the sphere abcd,

may in general be written thus

:

XLIII. . . = Y(a-/3) (/3-7) (7-/0) (P -«)

;

XLIY...0 = S(a-/3)(i3-7)(7-S)(8-/o)(/>-a);

ft being as usual the vector of a variable point p, on the one or the other locus.

(39.) The equations of the tangent to the circle abc, and of the tangent

plane to the sphere abcd, at the point a, are respectively,

XLY...0 = Y(o-/3)(/3-7)(7-a)(p-a),

and XLYI. . . = S (« -/3) (/3-7) (7- 8) (8- a) f/o - a).

2Z2
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(40.) Accordingly, whether we combine the two equations XLIII. and

XLY., or XLIV. and XLYI., we find in each case the equation,

XLVII. .. (|O-a)^ = 0, giving p^a, or p = a(20);

it being supposed that the three points a, b, c are not coUinear, and that the

four points, a, b, c, d are not complanar.

(41.) If the centre of the sphere, abcd be taken for the origin o, so that

XLVIII. ..a^ = i3^
= 7^ = g^=-?^ or XLIX...Ta = Tj3 = T7 = T8 = r,

the positive scalar r denoting the radius, then after some reductions we obtain

the transformation,

L...V(a-i3)(/3-7)(7-8)(g-a) = 2«S(i3-a)(7-a)(S-a).

(42.) Hence, generally, if k be, as in (36.), the centre of the sphere, we

have the equation (comp. XXVI'.),

LI. . . V (ab . bc . CD . da) = 12ka . abcd.

(43.) We may therefore enunciate this theorem :

" The vector part of the product offour successive sides, of a gauche quadri-

lateral inscribed in a sphere, is equal to the diameter drawn to the initial point of

the polygon, multiplied by the sextuple volume of the pyramid, which itsfour points

determine."

(44.) In effecting the reductions (41.), the following general formulce of

transformation have been employed, which may be useful on other occasions

:

LII. . . aq + qa = 2 {aSq + Sg'a) ; LII'. . . aqa = a^Kq + 2aSqa ',

where a may be any vector, and q may be any quaternion.

SECTION 7.

On tbe Fourth Proportional to Three liiplanar Sectors.

297. In general, when any four quaternions, q, q', q", <f'\ satisfy the

equation of quotients,

l...q"''.f = ^'.q,

or the equivalent formula,

iL..r=(/:?).?''=?'?-y',

we shall say that they form a Proportion ; and that the fourth, namely q'", is

the Fourth Proportional to the first, second, and third quaternions, namely to
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g, q\ and /', taken in this given order. This definition will include (by 288)

the one which was assigned in 226, for the fourth proportional to three com-

planar vectors, a, j3, y, namely that fourth vector in the same plane, S = jSa'^y,

which has been already considered ; and it will enable us to interpret (comp.

289) the spmbol

III. . . /3a"^7, when 7 wo^
|||

a, /3,

as denoting not indeed a Vector, in this new case, but at least a Quaternion,

which may be called (on the present general plan) the Fourth Proportional to

these three Biplanar Vectors, a, /3, 7. Such fourth proportionals possess some

interesting properties, especially with reference to their vector parts, which it

will be useful briefly to consider, and to illustrate by showing their connexion

with spherical trigonometry, and generally with spherical geometry.

(1.) Let a, /3, 7 be (as in 208, (1), &c.) the vectors of tlie corners of a

triangle abc on the unit-sphere, whereof the sides are a, b, c ; and let us write,

// =cosa = S7/3-^ = -S/37,

lY. . .

I
w = cos J = 807-^ = - 870,

\n = cos c = S/3a"^ = - Sa/3
;

where it is understood that

V. ..a=' = ^^ = 7' = -l, or VI. ..Ta = Ti3 = T7 = l;

it being also at first supposed, for the sake of fixing the conceptions, that

each of these three cosines, I, m, n, is greater than zero, or that each side of

the triangle abc is less than a quadrant.

(2.) Then, introducing three new vectors, S, e, Z,, defined by the equations,

/ S = Y/3a-'7 = ¥70-^/3 = m/3 + «7 - h,

VII. . .

I

6 = V7/3-'a= Vaj3-i7 ^ny +la -m(3,

( K = Va7-^j3 = V/37-^a = la + m/3 - ny,

we find that these three derived vectors have all one common length, say r,

because they have one common norm ; namely,

VIIL..N8 = NE = N^ = /' + m^ + «*-2/mw = r^;

so that IX. . . TS = Te = T^ = r = y{P + m' + n' - 2lmn).

(3.) This common length, r, is less than unity ; for if we write,

X. . . Sa/37 = S/3a~^7 = e,

we shall have the relation,

XL ..e^ + r^ = Nj3a-V = l;

and the scalar e is different from zero, because the vectors a, j3, 7 are diplauar.
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(4.) Dividing the three lines S, c, Z, by their lengthy r, we change them to

their versors (155, 156) ; and so obtain a netv triangle,

DEF, on the unit-sphere, of which the corners are deter- ^ /_ ^^ a

mined by the three new unit-vectors,

XII. . . CD = TJg = r-ig
; oe = Ue = r't

;

OF = U^ = r"^Z,.

(5.) The sides opposite to d, e, f, in this new or derived triangle, are

bisected, as in fig. 67, by tlie corners a, b, c of the old or given triangle

;

because we have the three equations,

XIII. . . £ + ^ = 2/a ; ? + g = 2w/3 ; 8 f e = 2ny.

(6.) Denoting the halves of the new sides by a\ b\ c' (so that the arc

ef = 2a', &c.), the equations XIII. show also, by lY. and IX., that

XIY. . . cos a = r cos a' , cos b-r cos b', cos c = r cos c'
;

the cosines of the half-sides of the «ei(> (or bisected) triangle, def, are therefore

proportional to the cosines of the sides of the old (or bisecting) triangle abc.

(7.) The equations (IV.) give, by 279, (1.),

XV. . . 2/ = - (jSy + 7/3) , 2m = - (ya + 07), 2w = - (aj3 + ^a)
;

we have therefore, by VII., the three following equations between quaternions,

XVL..a£ = ^a, /3^ = gi3, 78 = 67;

which may also be thus written,

XVr...£a = a^, ^i3
= i3S, 87 = 76,

and express in a new way the relations of bisection (5.).

(8.) We have therefore the equations between vectors,

XVII... £ = a^a-S ? = i38i3-S 8 = 7£7-^

or XVir... ^=a£a-S S = /3?i3-S £=787'^

(9.) Hence also, by V., or because a, j3, 7 are unit-vectors,

XVIII... £ = -a^a, ? = -i3Si3, 8 = -7£7,

or XVIir...^ = -«£«, 8 = -i3Ci3, £ = -787.

(10.) In general, whatever the length of the vector a may be, the first equa-

tion XVII. expresses that the line £ is (comp. 138) the reflexion of the line Z,,

tcith respect to that vector a; because it may be put (comp. 279) under the

form
XIX...V = a-^£ = X£a-S or XIX\..£a-^ = K^a-^
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(11.) Anotlier mode of arriving at the same interpretation of the equation

E = a^a'^, is to conceive ^ decomposed into two summand vectors, ^'' and Z^\

one parallel and the other perpendicular to a, in such a manner that

for then we shall have, by 281, (10.), the transformations,

XXI. . . E = aK'a-' + al"a' = I'aa' - I'^aa' = ^ - T'

;

the parallel part of Z, being thus preserved^ but the perpendicular part being

reversed, by the operation a
( ) ar^.

(12.) Or we may return from a = aZ,a-^ to the form ta = a^, that is, to the

first equation XYI'. ; and then this equation between quaternions will show,

as suggested in (7.), that whatever may be the length of a, we must have,

XXII. ..T£ = T^, Ax.* fa = Ax. a^, Lm = LaZ\

so that the two lines e, Z, are equally long, and the rotation from e to a is equal

to that from a to ^ ; these two rotations being similarly directed, and in one

common plane.

(13.) We may also "write the equations XVII. XYIF. under the forms,

XXIII. . . e = a-^ Ka, &c.
;

XXIIF. . . ^ = «"» ea, &C.

(14.) Substituting this last expression for ^ in the second equation XVII'.,

we derive this new equation,

XXIV. . . S = i3a-i
j„^-i

. or XXrV'. . . 6 = aj3-i gjSa-^

;

that is, more briefly,

XXV. . . S = qeq-\ and XXV. . . £ = q-'Bq, if XXVI. . . ? = jSa"'.

(15.) An expression of this/orw, namely one with such a symbol as

XXVIL..^( )q-'

for an operator, occurred before, in 179, (1.), and in 191 (5.) ; and was seen

to indicate a conical rotation of the axis of the operand quaternion (of which the

symbol is to be conceived as being written within the parentheses) round the axis

of q, through an angle = 2 Lq, without any change of the angle, or of the tensor,

of that operand ; so that a vector must remain a vector, after any operation of

* It was remarked in 291, that this characteristic Ax. can be dispensed with, because it admits of

being replaced by UV ; but there may still be a convenience in employing it occasionally.
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this sort, as being still a right-angled quaternion (290) ; or (comp. 223, (10.)

)

because
XXYIII. . . ^qpq-' = ^q-'qp = Sp = 0.

(16.) If then we conceive two opposite points, p' and p, to be determined

on the unit-sphere, by the conditions of being respectively the positive poles of

the two opposite arcs, ab and ba, so that

XXIX. . . op' = Ax. jSa"^ = Ax. q, and op = p'o = Ax. aj3"^ = Ax. q~^,

we can infer from XXIY. that the line od may he derivedfrom the line oe, by a

conical rotation round the line op' as an axis, through an angle equal to the double

of the angle aob (if o be still the centre of the sphere).

(17.) And in like manner we can infer from XXIY'., that the line oe

admits of being derived from od, by an equal but opposite conical rotation,

round the line op as a new positive axis, through an angle equal to twice the

angle boa.

(18.) To illustrate these and other connected results, the annexed figure 68

is drawn ; in which p represents, as above, the

positive pole of the arc ba, and arcs are drawn

from it to d, e, f, meeting the great circle

through A and b in the points u, s, t. (The

other letters in the figure are not, for the

moment, required, but their significations will

soon be explained.)

(19.) This being understood, we see, first,

that because the arcs ef and fd are bisected [5.)

at A and b, the three arcual perpendiculars, es,

FT, DR, let fall from e, f, d, on the great circle

through A and b, are equally long ; and that

therefore the point p is the interior pole of the small circle def', if f' be the

point diametrically opposite to f : so that a conical rotation round this pole p, or

round the axis op, would in fact bring the point d, or the line od, to the posi-

tion B, or OE, which is one part of the theorem (17.).

(20.) Again, the quantity of this conical rotation, is evidently measured by

the arc RS of the great circle with p for pole ; but the bisections above mentioned

give (oomp. 165) the two arcual equations,

XXX. . . ri RB = n BT, n TA = a AS ; whcnCC XXXI. . . a RS = 2 a BA,

and the other part of the same theorem (17.) is proved.

Fig. 68.

i
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(21.) The point f may be said to be the reflexio)), on the sphere, of th«

point D, ivith respect to the point b, -whic^ bisects the /w^erra/ between them ; and

thus we may say that tivo successive reflexions of an arbitrary point upon a

sphere (as here from d to f, and then from f to e), with respect to two given

points (b and a) of a given great circle, are jointly equivalent to one conical

rotation, round the pole (p) of that great circle ; or to the description of an arc

of a small circle, round that pole, or parallel to that great circle : and that the

angular quantity (dpe) of this rotation is double of that represented by the arc

(ba) connecting the two given points ; or is the double of the angle (bpa), which

that given arc subtends, at the same pole (p).

(22.) There is, as we see, no difficulty in geometrically proving this theorem

of rotation : but it is remarkable how simply quaternions express it : namely by

the formula,

XXXII. . . a . /3-Vi3 . a' = a^-\ p . ^a\

in which a, j3, p may denote any three rectors ; and which, as we see by the

points, involves essentially the associative principle of multiplication.

(23.) Instead of conceiving that the point d, or the line od, has been

reflected into the position f, or of,with respect to the ,. -.^

point B, or to the line ob, with a similar successive /''' /f\ \
reflexion from f to e, we may conceive that a point has i V^t— v^,.—f I

moved along a small semicircle, with b for pole, from d to \/.. -^(

f, as indicated in fig. 69, and then along another small Fig. 69.

semicircle, with a for pole, from f to e ; and we see that the result, or efect,

of these ttco successive and semicircular motions i^ equivalent to a motion along an

arc DE of a third small circle, which is parallel (as before) to the great circle

through b and a, and has a projection rs thereon, which (still as before) is

double of the given arc ba.

(24.) And instead of thus conceiving two successive arcual motions ofa point

D upon a sphere, or two successive conical rotations of a radius od, considered as

compounding themselves into one resultant motion of that point, or rotation of

that radius, we may conceive an analogous composition of two successive

rotations of a solid body (or rigid system), round axes passing through a point o,

which is fixed in space (and in the body) : and so obtain a theorem respecting

such rotation, which easily suggests itself from what precedes, and on which

we may perhaps return.

(25.) But to draw some additional consequences from the equations VII.,

&o., and from the recent fig. 68, especially as regards the Construction of the

Hamilton's Elements of Quaternions. 3 A
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Fourth Proportional to three diplanar vectors, let us first remark, generally,

that when we have (as in 62) a linear equation, of the form

aa + h^ + cy -^ d^ = 0,

connecting fotir co-initial vectors a . . d, whereof no three are complanar, then

this ^flfth vector^

£ = «a + 6j3 = - oy - rfS,

is evidently complanar (22) with a, /3, and also with y, S (comp. 294, (6.) )

;

it is therefore part of the indefinite line of intersection of the plane aob, cod, of

these ttco pairs of vectors.

(26.) And if we divide this fifth vector c by the two (generally unequal)

scalars,

a + b, and - c -df

the two (generally unequal) vectors,
.

(aa + b(i) : (a + h), and {cy + d^) : (c + d),

which are obtained as the quotients of these two divisions, are (comp. 25, 64)

the vectors of two (generally distinct) points of intersection, of lines with planes,

namely the two following

:

AB • ocD, and cd • gab.

(27.) When the two lines, ab and cd, happen to intersect each other, the two

last-mentioned points coincide ; and thus we recover, in a new way, the con-

dition (63), for the complanarity of the four points o, a, b, c, or for the termino-

complanarity of the/o?<r vectors a, /3, 7, S ; namely the equation

a + b + c + d = 0,

which may be compared with 294, XLY., and L.

(28.) Eesuming now the recent equations YII., and introducing the new

vector,

XXXIII. . . A = /a - »i/3 = i (a - S),

which gives,

XXXIY. . . S7X = 0, and XXXV. .. TX = y(r» - n'^) = r sin c'.

we see that the two arcs ba, de, prolonged, meet in a point l (comp. fig. 68),

for which ol = TJX, and which is distant by a quadrantfrom c : a result which

may be confirmed by elementary considerations, because (by a well-known

theorem respecting transversal arcs) the common bisector ba of the two sides,

DE and EF, must meet the third side in a point l, for which

sin DL = sin el.
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(29.) To prove by quaternions this last equality of sines, and to assign their

common value, we have only to observe that by XXXIII.,

XXXVI. ..YSX = Y£X = iYg£;

in which, T^X = TeX = r' sin c', and TVSe = r* sin 2c';

the sines in question are therefore (by 204, XIX.),

XXXYI'. . . TYUSX = TYUeX = ir^ sin 2c': r" sin c' = cos c.

(30.) On similar principles, we may interpret the two vector-equations^

XXXYIL..Yi3X = /Yi3a, YaX = mYi3a,

in which XXXYIII. . . TX : TY/Ba = r sin c': sin c = tan c': tan c,

an equivalent to the trigonometric equations,

tan CD cos bc cos ac
XXXIX.

tan AB sin bl sin al

(31.) Accordingly, if we let fall the perpendicular cq on ab (see again

fig. 68), so that Q bisects rs, and if we determine two new points m, n by the

arcual equations,

XL. . . n LM = A ab = n QR, n LN = n CD,

the arcs mr, nd will be quadrants ; and because the angle at r is right by

construction (18.), m is the pole of dr, and dm is a quadrant ; whence d is the

pole of MN and the angle lnm is riglit : conceiving then that the arcs ca and

CB are drawn, we have three triangles [bcq, acq, and lmn], right-angled at

Q and N, which show, by elementary principles, that the three trigonometric

quotients in XXXIX. liave in fact a common value, namely cos cq, or cos l.

(32.) To prove this last result by quaternions^ and without employing the

auxiliary points m, n, q, r, we have the transformations,

Y^a ^^^ Y/3a rn ^ a ^« rn XXLL . . cosL = SU 4^ = SU ^= T^^ . S^--^ T
YSe y\ Yjia y\ Y/3a

'

because

XLII. . . S = wy - X, 6 = «y + X, Y86 = 2«7X, UYSe = UyX,
and

XLIII. . . S^ = ?|^ = - S^a-7X- = - SSX- = 1

;

it being remembered that X -L 7, whence

V7X = 7X = - X7, {y\y = -y'X'= \\ S7X-' = 0.

3 A2
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(33.) At the same time we see that if p be (as before) the positive pole of

BA, and if k, k' be the negative and positive poles of de, while l' is the

negative (as l is the positive) pole of cq, whereby all the letters in fig. 68 have

their significations determined, wo may write,

XLIY. . . OP = UVjSa ; ok' = 7UA; 0K = -yV\', ot/ = -UA;

while OL = + TJX, as before.

(34.) Writing also,

XLV. ..K = -7X, or X = 7ic, and /i = /3a~^X,

so that XLV. . . OK = Uk, and cm = TJ/x,

we have XLVI. . . j3a"^ . y = /iX"^ . Xk~^ = fiK~^ ;

thisfourth proportional, to the three equally long but diplanar vectors, a, /3, 7, is

therefore a versor, of which the representative arc (162) is km, and the repre-

sentative angle (174) is kdm, or l'dr, or edp ; and we may write for this

versor, or quaternion, the expression :

XLYII. . . i3a~^7 = cos l'dr + od . sin l'db.*

(35.) The double of this representative angle is the sum of the two base-

angles of the isosceles triangle dpe ; and because the two other triangles, epf',

f'pd, are also isosceles (19.), the lune ff' shows that this sum is what remains,

when we subtract the vertical angle f, of the triangle def, from the sum of the

supplements of the two base-angles d and b of that triangle ; or when we

subtract the sum of the three angles of the same triangle /rom four right angles.

We have therefore this very simple expression for the Angle of the Fourth

Proportional :

XLVIII. . . L (ia-'y = l'dk = 7r-|(D + E+F).

(36.) Or, if we introduce the area, or the spherical excess, say S, of the

triangle def, writing thus

XLIX. .. S = D+E + r-7r,

we have these other expressions

:

L. . . 21 Pa-i 7 = ^TT - is ; LI. . . (5a-'y = sin ^S + r*8 cos ^S

;

because od = US = r~% lay XII.

* [Since fia-^y . y . {fia~^y)'^ = jBo"^ . y . (/Sa-^)-^ = y suppose, c is brought to'a point c' by a

conical rotation round OD or round op' where p' is the opposite of p (XXIX.). Hence c and c' are

the points of intersection of small circles whose poles are d and p', and c' is the reflexion of c to the

great circle vd. This shows that the angle of the quaternion fia'^y is cup.]
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(37.) Having thus expressed jSa'^y, we require no new appeal to the

figure, in order to express this other fourth proportional, 7a"'/3, which is the

negative of its conjugate, or has an opposite scalar, but an equal vector part

(comp. 204, (1.), and 295, (9.) ) : the geometrical difference being merely

this, that because the rotation round a from y8 to 7 has been supposed to be

negative, the rotation round a from y to j3 must be, on the contrary, positive.

(38.) We may thus write, at once,

LII. . . 7a-'/3 = - Kj3a-^7 = - sin ^2 + r'^ cos iS ;

and we have, for the angle of this new fourth proportional, to the same three

vectors a, /3, 7, of wliich the second and third have merely changed places with

each other, the formula

:

LIII. . . Z 7a''/3 = RDL = ^ (d + E + f) = ^TT + |S.

(39.) But the common vector part of these tivo fourth proportionals is 8, by

VII. ; we have therefore, by XI.,

LIV. . . r = cos 5S ; e = ± sin ^S
;

the upper sign being taken, when the rotation round o from |3 to 7 is nega-

tive, as above supposed.

(40.) It follows by (6.) that when the sides 2«', 2h', 2c\ of a spherical

triangle def, of which the area is S, are bisected by the corners a, b, c of

another spherical triangle, of which the sides* are a, b, c, then

LV. . . cos a : cos a' = coab: cos b' = cos c : oos c' = cos ^2.

(41.) It follows also, from what has been recently shown, that the angle

iiDK, or MDN, or the arc mn in fig. 68, represents the semi-area of the bisected

triangle def ; whence, by the right-angled triangle lmn, we can infer that

the sine of tliis semi-area is equal to the sine of a side of the bisecting triangle

ABC, multiplied into the sine of the perpendicular, let fall upon that side from

the opposite corner of the latter triangle ; because we have

LYI. . . sin ^2 = sin mn = sin lm . sin l = sin ab . sin cq.

(42.) The same conclusion can be drawn immediately, by quaternions,

from the expression,

LVII. . . sin is = e = Sa(5y = S (YjSa . 7-^ = TV/3a . SU (Vj3a : 7)

;

in which one factor is the sine of ab, and the other factor is the cosine of cp,

or the sine of cq.

* These aides abc, of the bisecting triangle abc, have been hitherto supposed for simplicity (1.) to

be each less than a quadrant, but it will be found that the formula LV. holds good, without any such

restriction.
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(43.) Under the same conditions, since

LYIII. . . a=U(£ + ^)=ir(e + ^,&c.,

we may write also,

LIX. . .8iniS = SU(£ + ^(^+8)(§ + 6) = 8S£^:4/mn;

in which, by IV. and XIII.,

LX. . . ^Imn = - S (8 + c) (e + ^) = r^ - S (e^ + ^8 + Se).

(44.) Hence also, by LIV.,

LXI. . . cos is = r = (r« - rS (e^ + ^8 + Se) ) : 4lmn
;

T XTT fnn I'S = - = _-__^l? =
SU8eg

. .
i^an 3i

^ ^3 _ ^ g ^^^ + ^g + ge) 1 _ SUa^ - SU^S - SU8e '

and under this lastform, we have a general expression for the tangent of half the

spherical opening at o, of any triangular pyramid odef, whatever the lengths T8,

Tc, T^ of the edges at o may he.

(45.) As a verification, we have

LXIII. .
.
{4.lmny = - i(e + ^)M^ + S)' (^ + 0' = ^ (''' - SeQ (r^ - S^8) (>•' - SSe)

;

but the elimination of ^S between LIX. LXI. gives

LXIV. . . {Umnf = (SSe?)^ + {r'-r (Se^ + S^8 + SSc) )'

;

we ought then to find that

LXV. . . (S8£?)^ = r«-rM(S£^f + (S^S)' + (S8£)'} -gSe^S^gSSe,

if g2 ^ £2 ^ ^2 = _ 1-2
J
and in fact this equality results immediately from the

general formula 294, LIII.

(46.) Under the same condition, respecting the equal lengths of 8, e, ^,

we have also the formula,

LXVL..-V(8 + £)(£ + ^)(^ + 8) = 28(r^-S£2:-S^8-S8£) =8/mMg;

whence other verifications may be derived.

(47.) If <j denote the area* of the bisecting triangle abc, the general prin-

ciple LXII. enables us to infer that

LXVIL..tan?= ^"^^
2 1 - fcSjSy - ^ya - Sa/3 1 + / + w + »

sine sinj9

1 + cos a + cos h + cos c'

* The reader will observe that the more usual symbol 2, for this area of abc, is here employed

6.1 to denote the area of the exscribed triangle dbf.
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if p denote the perpendicular cq from c on ab, so that

e = sin c Qinp = sin h sin c sin a = &c. (comp. 210, (21.) ).

(48.) But, by (IX.) and (XI.),

LXYIII. . . e^+{l + l+m + ny = 2{l + l) (l + m)(l+n)

( . a h c
= I 4 cos ^ cos - cos ^

hence the cosine and sine of the new semi-area are,

_ -c^T^ a 1 + cos a + cos h + cos c
LXIX. . . cos p: = r

i

2 . a h c
4 cos ^ cos ^ cos ^

<« /O <o

. a . b .

sin
Tj

sin ^ sin c

LXX. . . sin pr =
2 c

008
2

(49.) Returning to the bisected triangle^ def, the last formula gives,

^ -^^T . 1 sin «' sin J' sin f . , . ,LXXI. . . sin jS = T = sm tt smc sec c,
cose '

if jo' denote the perpendicular from f on the bisecting arc ab, or ft in fig. 68;

but cos ^2 = cos c secc', by LV. ; hence

LXXII. . . tan |S = sin p' tan c = sin ft . tan ab.

Accordingly, in fig. 68, we have, by spherical trigonometry,

sin FT = sin es = sin le sin l = cos ln sin mn coseo lm = tan mn cot ab.

(50.) The arc mn, which thus represents in quantity the semiarea of def,

has its pole at the point d, and may be considered as the representative arc

(162) of a certain neiv quaternion Q, or of its versor, of which the axis is the

radius od, or US ; and this new quaterniou may be thus expressed :

LXXIII. . . Q = Bya(5 = -^'+ SSajSy = r' + e^
;

its tensor and versor being, respectively,

LXXIV. . .TQ=r = cosJS; LXXV. . . UQ = cosi2 fOD. sin^S.

(51.) An important transformation of this last versor may be obtained as

follows

:

LXXVI. . . UQ =U(V •
«^"'

• ^i3-'j
= {Sr')i (s^-^)* (^S'^ji;

so that

LXXVII. . . is = Z Q = Z gya^ = A (gr^)i {aV)i (^^^i

;
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these powers of quaternions, with exponents each = ^, being interpreted as

square roots (199, (1.) ), or as equivalent to the symbols ^/{^e~^), &o.

(52.) The conjugate (or reciprocal) versor, TJQr^, which has nm for its repre-

sentative arc, may be deduced from UQ by simply interchanging /3 and y, or

6 and ^ ; the corresponding quaternion is,

LXXYIII... Q'=KQ = gj3a7 = r*-eS;
and we have

LXXIX. . . UQ' = cos is - OD . sin iS = (S^-i)J (^e-i)J (£8-i)i

;

the rotation round d, from e to f, being still supposed to be negative.

(53.) Let H be any other point upon the sphere, and let oh = rj ; also let

S' be the area of the new spherical triangle, dfh ; then the same reasoning

shows that

LXXX. . . cos is' + CD . sin iS' = (8^-^* {Kn-')^ iri^%

if the rotation round d from f to h be negative ; and therefore, by multipli-

cation of the two co-axal versors, LXXYI. and LXXX., we have by LXXY.,
the analogous formula

:

LXXXI. . . cos i (S + S') + CD . sin f (S + S') = (Sc'^)* (e^O* (^'?"0* (»jS-*)*

;

where S + S' denotes the area of the spherical quadrilateral, defh.

(54.) It is easy to extend this result to the area of any spherical polygon, or

to the spherical opening (44.) of any pyramid', and we may even conceive an

extension of it, as a limit, to the area of any closed curve upon the sphere, con-

sidered as decomposed into an indefinite number of indefinitely small triangles,

with some common vertex, such as the point d, on the spheric surface, and with

indefinitely small arcs ef, fh, . . of the curve, for their respective bases : or to the

spherical opening of any cone, expressed thus as the Angle of a Quaternion,

which is the limit* of the product of indefinitely many factors, each equal to the

square-root of a quaternion, which differs indefinitely littlefrom unity.

* This Limit is closely analogous to a definite integral, of the ordinary kind ; or rather, we may
say that it is a Definite Integral, hut one of a new kind, which could not easily have heen introduced

without Quaternions. In fact, if we did not employ the non-commutative property (168) of quaternion

multiplication, the Products here considered would evidently heeome each equal to unity : so that they

would furnish no expressions for spherical or other areas, and in short, it would he useless to speak

of them. On the contrary, when that property or principle of multiplication is introduced, these

expressions of product-form are found, as ahove, to have extremely useful significations in spherical

geometry ; and it will be seen that they suggest and embody a remarkable theorem, respecting the

resultant of rotations of a system, round any number of successive axes, all passing through one fixed

point, but in other respects succeeding each other with any gradual or sudden changes.
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(55.) To assist the recollection of this result, it may be stated as follows

(comp. 180, (3.) for the definition of an arcual sum) :

—

" The Arcual Sum of the Halves of the Successive Sides of any Spherical

Polygon, is equal to an arc of a Great Circle, trhich has the Initial [or Final)

Point of the Polygon for its Pole, and represents the Semi-area of the Figure";

it being understood that this resultant arc is reversed in direction, when the

half-sides are (arcually) added in an opposite order.

{56.) As regards the order thus referred to, it may be observed that in the

arcual addition, 'whiGh corresponds to the quaternion multiplication inLXXYI.,

we conceive a point to move, first, from b to f, through half the arc df ;
which

half-side of the triangle def answers to the right-hand factor, or square-root

(^^^)i. We then conceive the same point to move next from f to a, through

half the are fe, which answers to the factor placed immediately to the left of

the former ; having thus moved, on the whole, so far, through the resultant

arc BA (as a transvector, 180, (3.) ), or through any equal arc (163), such as ml

in fig. 68. And finally, we conceive a motion through half the arc ed, or

through any arc equal to that half, such as the arc ln in the same figure, to

correspond to the extreme left-hand factor in the formula ; the final resultant

(or total transvector arc), which answers to the product of the three square roots,

as arranged in the formula, being thus represented by the final arc mn, which

has the point d for its positive pole, and the half-area, ^S, for the angle (51.)

of the quaternion (or versor) product which it represents.

(57.) Now the direction of positive rotation on the sphere has been supposed

to be tliat round d, from f to e ; and therefore along the perimeter, in the order

DFE, as seen* from any point of the surface loithin the triangle : that is, in the

order in which the successive sides df, fe, ed have been taken, before adding

(or compoimding) their halves. And accordingly, in the conjugate (or reciprocal)

formula LXXIX., we took the opposite order, def, in proceeding as usual

from right-hand to left-hand factors, whereof the former are supposed to be

multiplied byf the latter; while the result was, as we saw in (52.), a neto

* In this and other cases of the sort, the spectator is imagined to stand on the point of the sphere,

round which the rotation on the surface is conceived to be performed ; his hody being outside the sphere.

And similarly when we say, for example, that the rotation round the line, or radius, OA, from the line

OB to the line oc, is negative (or left-handed), as in the recent figures, we mean that such would appear

to be the direction of that rotation, to a person standing thus with his feet on a, and M'ith his body in

the direction of oa prolonged : or else standing on the centre (or origin) o, with his head at the point A
Compare 174, II. ; 177 ; and the second note to page 152.

t Compare tlie Notes to pages 147, 159.

Hamilton's Elements of Quaturnions. 3 B
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versor, in the expression for which, the area S of the triangle was simply

changed to its own negative.

(58.) To give an example of the reduction of the area to zero, we have

only to conceive that the three points d, e, f are co-areual (165), or situated

on one great circle ; or that the three lines B, e, Z, are complanar. For this case,

by the laws* of complanar quaternions, we have the formula,

LXXXII. . . (8£-^)4 (e^-^i {l^'Y = 1, if SSe^ = ;

thus cos |S = 1, and S = 0.

(59.) Again, in (53.) let the point h be co-arcual with d and f, or let

SS^ij = ; then, because

LXXXir. . . (^r,-^)^ (r,g-i)4 = (^8-i)i, if SS^t, = 0,

the product of four factors LXXXI. reduces itself to the product of three

factors LXXYI. ; the geometrical reason being evidently that in this case the

added area S' vanishes ; so that the quadrilateral defh has only the same area

as the triangle def.

(60.) But this added area (53.) may even have a negative^ effect, as for

example when the new point h falls on the old side de. Accordingly, if we

write

LXXXIII. . . Qx = (6^-0^ {W)^ {m-%

and denote the product LXXXI. of four square-roots by Q2, we shall have

the transformation,

LXXXTV. . . Q2 = (ge-^i Qx (sS-^)*, if S8£„ = ;

which shows (comp. (15.) ) that in this case the angle of the quaternary product

Q2 is that of the ternary product Qi, or the half-area of the triangle efh

(= DEF - dhf), although the axis of Q2 is transferred from the position of the

axis of Qi, by a rotation round the pole of the arc ed, which brings it from

OE to OD.

(61.) From this example, it may be considered to be sufficiently evident,

how the formula LXXXI. may be applied and extended, so as to represent

(comp. (54.)) the area of any closed figure on the sphere, with any assumed point

* Compare the Second Chapter of the Second Book.

t In some investigations respecting areas on a sphere, it may be convenient to distinguish (comp.

(28.), (63.) between the two symbols def and dfe, and to consider them as denoting two opposite

triangles, of which the sum is zero. But for the present, we are content to express this distinction, by

means of the two conjugate quaternion proimts (61.) and (52.).
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D on the surface as a sort of spherical origin ; even when this auxiliary point is

not situated on the perimeter, but is either external or internal thereto.

(62.) A new quaternion Qo, with the same axis od as the quaternion Q, of

(50.), but with a double angle, and with a tensor equal to unity, may be formed

by simply squaring the versor UQ; and although this squaring cannot be

effected by removing the fractional exponents,* in the formula LXXYI., yet it

can easily be accomplished in other ways. For example we have, by LXXIII.

LXXIV., and by YII. IX. X., the transformationsf :

LXXXY. . . Q„ = UQ2 = r-' (Sya/B)^ = - S"^ . ya/BS . Sya/B

= - {ya^y = _ (e _ 8) 2 = r* - e' + 2^8 ;

and in fact, because 8 = r . od, by XII., the trigonometric values LIY. for r

and e enable us to write this last result under the form,

LXXXYI. . . Qo = - {ya^y = cos S + od . sin 2.

(63.) To show its geometrical signification, let us conceive that abc and

LMN have the same meanings in the new fig. 70, as in fig. 68 ; and that AiBiM,

are three new points, determined by the three aroual equations (163),

LXXXYII. /-> AC = '^ CAi, n BC = A CBi,

which easily conduct to this fourth equation of the

flame kind,

LXXXYir. . . n LMi = '^ BiAi.

This new arc lMi represents thus (comp. 167, and

fig. 43) the product 017 ^ yjSf^ = ya'^.(5y~^ ; while

the old arc ml, or its equal ba (31.), represents a^-^
;

whence the arc mMi, which has its pole at d, and is numerically equal to the

whole area S of def (because mn was seen to be equal (50.) to half that area),

represents the product ya'^/Sy'^ a/3'S or - {ya(5y, or Qo. The formula

LXXXYI. has therefore been interpreted, and may be said to have been

proved anetv, by these simple geometrical considerations.

(64.) We see, at the same time, how to interpret the symbol,

LXXXYIII. . . Qo = ^ ^ 5 ;

« 7 P
namely as denoting a versor, of which the axis is directed to, or from, the

* Compare the Note to (54.).

t The equation Sya^S = 7a/35 is not valid generally ; but we have here 5 = — Vyo/S ; and in general,

3 B 2

MN = A NMi
;

B A\/~^^w n1\.A ^_5^
A, B,

Fig. 70.



372 ELEMENTS OF QUATERNIONS. [III. i. § 7.

corner d of a certain auxiliary spherical triangle def, whereof the sides respec-

tively opposite to D, E, F, are bisected (5.) by the given points a, b, c, according

as the rotation round a from /3 to 7 is negative or positive ; and of which the

angle represents, or is numerically equal to, the area S of that auxiliary

triangle, at least if we still suppose, as we have hitherto for simplicity done

(1.), that the sides of the given triangle abc are each less than a quadrant.

298. The case when the sides of the given triangle are all greater^ instead

of being all less, than quadrants, may deserve next to be (although more

briefly) considered; the case when they are all equal to quadrants, being

reserved for a short subsequent Article : and other cases being easily referred

to these, by limits, or by passing from a given line to its opposite.

(1.) Supposing now that

I. . . / < 0, m < 0, n < 0,

or that II. . . a > ^, ^ > o' ^ ^ o'

we may still retain the recent equations lY. to XI. ; XIII. ; and XV. to

XXYI., of 297 ; but we must change the sign of the radical, r, in the equations

XII. and XIV., and also the signs of the versors, TJd, Ue, U^ in XII., if we

desire that the sides of the auxiliary triangle, def, may still be bisected (as in

figures 67, 68) by the corners of the given triangle, abc, of which the sides

a, b, c are now each greater than a quadrant. Thus, r being still the common

tensor of S, £, ?, and therefore being still supposed to be itself > 0, we must

write now, under these new conditions 1. or II., the new equations,

III. . . CD = - U8 = - r-ig
; oe = - Ue = - r-^e ; of = - U? = - r-^^

;

rV. . . cos a = - r cos a', cos b = - r cos b\ cos c = - r cos c\

(2.) The equations IV. and VIII. of 297 still holding good, we may now

write,

V. . . + 2r cos a' cos ft' cos c' = cos a'^ + cos b'^ + cos c'^ - 1,

according as we adopt positive values (297), or negative values (298), for the

cosines I, m, n of the sides of the bisecting triangle ; the value of r being still

supposed to be positive.

(a.) It is not difficult to prove (comp. 297, LIV., LXIX.), that

VI. . . r = + cos ^2, according as / > 0, &c., or / < 0, &c.

;

the recent formula V. may therefore be written unambiguously as follows

:

VII. . . 2 cos a' cos b' cos c' cos JS = cos a'^ + cos ft'* + cos c'* - I

;

and the formula 297, LV. continues to hold good.
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(4.) In like manner, we may write, without an ambiguous sign (comp.

297, LI.), the following expression for the fourth proportional jSa'^y to three

unit-vectors a, (5, y, the rotation round the first from the second to the third

being negative

:

YIII. . . j3a"^7 = sin is + CD . cos ^S

;

where the scalar part changes sign, when the rotation is reversed.

(5.) It is, however, to be observed, that although thiBformula YIII. holds

good, not only in the cases of the last article and of the present, but also in

that which has been reserved for the next, namely when / = 0, &c.
;
yet

because, in the present case (298) we have the area S > tt, the radius od is no

longer the (positive) axis TJS of the fourth proportional (iar^y ; nor is ^tt - ^S

any longer, as in 297, L., the (positive) angle of that versor. On the contrary

we have woir, for this axis and angle, the expressions

:

IX. . . Ax . (5a-'y = DO = - CD ; X. . . Z fta'y = i (S - tt).

(6.) To illustrate these results by a construction, we may remark that if,

in fig. 67, the bisecting arcs bc, ca, ab be supposed each greater than a

quadrant, and if we proceed to form from it a new figure, analogous to 68,

the perpendicular cq will also exceed a quadrant, and the poles p and k will

fall beticeen the points c and q ; also m and r will fall on the arcs lq and ql'

prolonged : and although the arc km, or the angle kdm, or l'dr, or edp, may
still be considered, as in 297, (34.), to represent the versor (ia'^y, yet the

corresponding rotation round the point d is now of a negative character.

(7.) And as regards the quantity of this rotation, or the magnitude of the

angle at d, it is again, as in fig. 68, a base-angle of p^ • ,

one of three isosceles triangles, with p for their ^\\/^i \X,^j/
common vertex; but we have now, as in fig. 71, vF-^JTUT^^
a new arrangement, in virtue of which this angle is

'" ^'

to be found by halving wliat remains, when the
^^'

sum of the supplements of the angles at d and e, in the triangle def, is

subtracted /rom the angle at f, instead of our subtracting (as in 297, (35.))

the latter angle from the former sum ; it is therefore now, in agreement with

the recent expression X.,

XI. . . L jSa'^y = |(d + E + f) - TT.

(8.) The negative of the conjugate of the formula YIII. gives,

XII. . . 7a"')3 = - siu ^S + on . cos jS ;
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and by taking the negative of the square of this equation, we are conducted

to the following

:

XIII. . . - - S = - {yaW = cos S + CD . sin S

;

a 7 p

a result which had only been proved before (comp. 297, (62.), (64.) ) for the

case S < TT ; and in which it is still supposed that the rotation round o from

/3 to 7 is negative.

(9.) With the same direction of rotation, we have also the conjugate or

reciprocal formula,

XIV. . • ^ ^ - = - i(5a'yY = cos S - CD . sin S.

(10.) If it happened that only one side, as ab, of the given triangle abc,

was greater, while each of the two others was less than a quadrant, or that

we had / > 0, m > 0, but n < ; and if we wished to represent the fourth

proportional to a, /3, 7 by means of the foregoing constructions: we should

only have to introduce the point c' opposite to c, or to change 7 to 7' = - 7

;

for thus the new triangle abc' would have each side greater than a quadrant,

and so would fall under the case of the present Article ; after employing the

construction for which, we should only have to change the resulting versor to

its negative.

(11.) And in like manner, if we had / and m negative, but n positive, we

might again substitute for c its opposite point c', and so fall back on the

construction of Art. 297 : and similarly in other cases.

(12.) In general, if we begin with the equations 297, XII., attributing

any arbitrary (but positive) value to the common tensor, r, of the three co-

initial vectors S, e, ^, of which the versors, or the nnit-vectors US, &c., termi-

nate at the corners of a given or assumed triangle def, with sides = 2a\ 2b', 2c'

,

we may then suppose (comp. fig. 67) that another triangle abc, with sides

denoted by a, b, c, and with their cosines denoted by I, m, n, is derived from

this one, by the condition of bisecting its sides \ and therefore by the equations

(comp. 297, LVIII.),

XY. . .0A = a = U(6 + ^), 0B=:j3 = U(^+g), 0C = 7 = U(S + £),

with the relations 297, lY. Y. YI., as before ; or by these other equations

(comp. 297, XIII. XIY.),

XYI. . . £ + ^ = 2ra cos a\ ^ + S = 2r/3 cos V, 8 + e = 2/7 cos c'

,
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(13.) When this simple construction is adopted, we have at once (comp.

297, LX.), by merely taking scalars of products of vectors, and unthout any

reference to areas (compare however 297, LXIX., and 298, YII.), the

equations,

XVII. . • 4 cos a cos h' qo»c' - 4 cos h cos c' cos a' = 4 cos c cos a' cos h'

= - r-'B {Z, + g) (S + 6) = &c. = 1 + cos 2a' + cos2J' + cos 2c'

;

or cos a cos h cos c cos a'' + cos i'^ + cos c"^ - 1
XVlii. • •

—
cos a cos h' cos c' 2 cos a' cos h' cos c'

which can indeed be otherwise deduced, by the known formulae of spherical

trigonometry.

(14.) We see, then, that according as the sum of the squares of the cosines of

the half-sides, of a given or assumed spherical triangle, def, is greater than unity

^

or equal to unity, or less than unity^ the sides of the inscribed and bisecting tri~

angle, abc, are together less than quadrants, or together equal to quadrants, or

together greater than quadrants.

(15.) Conversely, if the sides of a given spherical triangle abc be thus all

less, or all greater than quadrants, a triangle def, but only one* such triangle,

can be exscrihed to it, so as to have its sides bisected, as above : the simplest

process being to let fall a perpendicular, such as cq in fig. 68, from c on ab,

&c. ; and then to draw new arcs, through c, &c., perpendicular to these

perpendiculars, and therefore coinciding in position with the sought sides

DE, &C., of DEF.

(16.) The trigonometrical results of recent sub-articles, especially as regards

the area-\ of a spherical triangle, are probably all well known, as certainly

some of them are ; but they are here brought forward only in connexion with

quaternion formulae ; and as one of tliat class, which is not irrelevant to the

present subject, and includes the formula 294, LIU., the following may be

mentioned, wherein a, /3, y denote any three vectors, hnt the order of the factors

is important

;

XIX. . . {a(iyY = 2a^/3y + a'ifSyY + (^'iayf + y'{a(if - 4aySa(iS(5y.t

* In the next Article, we shall consider a case of indeterminateness, or of the existence of indefi-

nitely many exscribed triangles def : namely, when the sides of abc are all equal to quadrants.

t This opportunity may be taken of refemng to an interesting Note, to pages 96, 97 of Luby^s

Trigonometry (Dublin, 1852) ; in which an elegant construction, connected with the area of a spherical

triangle, is acknowledged as having been mentioned to Dr. Luby, by a since deceased and lamented

friend, the Eev. William Digby Sadleir, F.T.C.D. A construction nearly the same, described in the

sub-articles to 297, was suggested to the present writer by quaternions, several years ago.

+ [Using the relation Vo;37So|37 = a-YPyS^y + y-Ya$Sa& + V70 (- fi-Sya + 2Sa0S$y), this

easily follows on squaring (V + S) afiy ; or multiply XIX. by fi^ and put o)3 = r, fiy =p, and fi'^ay = »-jo.]
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(17.) And if, as in 297, (1.), &c., we suppose that a, /3, y are three unit-

vectors, OA, OB, oc, and denote, as in 297, (47.), by a the area of the triangle

ABC, the principle expressed by the recent formula XIII. may be stated under

this apparently different, but essentially equivalent form

:

•^-^ a + Qy + afS+yAA. . . 75

—

- .
-—

j: .
'- = cos o- + a sin (T

;

p+ y a+(5 y + a

which admits of several verifications.

(18.) We may, for instance, transform it as follows (comp. 297, LXYII.)

:

XXI. (g + j3) (j3 + y){y + a) - 2e + 2a{l + I + m + n)

K(a + /3)(i3 +7)(7 + a) + 2e + 2a{l + I + m + n)

, , 1 + a tan ^ cos pr + a sm ^r

1 + l + m + H + ea 2 2 2

1 + l+m + n-ea -, , <t tr .a
1 - a tan ^ cos ^ - a sm -

= f cos ^ + a sin ^ j
= cos or + a sin o-, as above.*

(19.) This seems to be a natural place for observing (comp. (16.) ), that if

a, /3, y, S be anp four vectors, the lately cited equation 294, LIII., and the

square of the equation 294, XY., with 8 written in it instead of p, conduct

easily to the following very general and symmetric formula :

XXII. . . a^jSyg'- + (S/SySag)^ + (SyaS/SS)' + (Sa/BSyS)^

+ 2a2Sj37Sj3SS7g + 2(i'^ya^ySSad + 2/Sa/3SagSi38 + 2d'SaftS(iySya

= 2S7a8ai3S/38S7§ f 2Sa/3S/37S7gSag + 2Sj37S7aSa8Si38

+ (iy (SaS)^ + y'a' (S/38)^ + a^j3^ [Sy^f

+ a'S' {Sjiyy + (5'^' {SyaY + y'S' (Saj3)lt

TJiy + a)

U()3 + 7)

t

* [Since U {)3 4- 7) bisects the angle between fi and 7,

g U (/3 + 7) 7 ^ / g+jB y+ g ^j+jyU
~TJ(g + j8)* 7 U(7 + g) \/3 + 7 " « + /3

* 7 + «/

This is a direct transformation from 297, LXXVI. to XX.]

t [This may perhaps be more rapidly derived by operating on aa + bfi + cy + dS = by

Sg., S)3., S7., and S5., and eliminating a, b, c, and d in the form of a determinant from the four

results of operation.]
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(20.) If then we take any spherical quadrilateral abcd, and write

XXIII. . . r = cos AD = - SUaS, m' = cos bd = - SU^8, n' = cos cd = - SU-yg,

treating a, /3, 7 as the unit-vectors of the points a, b, c, and /, m, n as the

cosines of the arcs bc, ca, ab, as in 297, (1.), we have the equation,

XXIV. . .1+PP + mW^ + n^n'^ 4 2lmV + 2fm/l'+ 2nrm' + 2/mn

= 2mnm'n' + 2nln'V + 2lml'm' + P + //»* + rP

which can be confirmed by elementary considerations,* but is here given

merely as an interpretation of the quaternion formula XXII.

(21.) In squaring the lately cited equation 294, XV., we have used the

two following formulae of transformation (comp. 204, XXII., and 210,

XVIII.), in which a, j3, 7 may be any three vectors^ and which are often found

to be useful

:

XXV. . . (VajS)^ = (Sa/3)' - a'jS'- ; XXVI. . . S (VjSy . V7a) = 7'Sa/3 - 8)37870.

299. The two cases, for which the three sides a, 6, c, of the given triangle

ABC, are all less, or all greater, than quadrants, having been considered in the

two foregoing Articles, with a reduction, in 298, (10.) and (11.), of certain

other cases to these, it only remains to consider that third principal case, for

which the sides of that given triangle are all equal to quadrants : or to inquire

what is, on our general principles, the Fourth Proportional to Three Rectangular

Vectors. And we shall find, not only that this fourth proportional is not itself

a Vector, but that it does not even contain any vector part (292) different from

zero : although, as being found to be equal to a Scalar, it is still included

(131, 276) in the general conception of a Quaternion.

(1.) In fact, if we suppose, in 297, (1.), that

I. . . / = 0, w = 0, w = 0, or that II. . . a = 5 = c = -,

or III... 8/37 = 870 = 80/3 = 0, while IV. ..Ta = Tj3 = T7 = l,

the formulee 297, VII. give,

V...S = 0, £ = 0, ^ = 0;

but these are the vector parts of the three pairs of fourth proportionals to the

* A formula equivalent to this last equation of seventeen terms, connecting the six cosines of the

arcs which join, two by two, the corners of a spherical quadrilateral abcd, is given at page 407 of

Camot's Geomelrie de Position (Paris, 1803).

Hamilton's Elkmknts of Quaternions. 3 C
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three rectangular unit'lines, a, j3, 7, taken in all possible orders ; and the same

evanescence of vector parts must evidently take place, if the three given lines be

only at right angles to each other, without being equally long.

(2.) Continuing, however, for simplicity, to suppose that they are unit

lines, and that the rotation round o from /3 to 7 is negative, as before, we

see that we have now r = Q, and e = 1, in 297, (3.) ; and that thus the six

fourth proportionals reduce themselves to their scalar parts, namely (here) to

positive or negative unity. In this manner we find, under the supposed con-

ditions, the values

:

VI. . . jSa-^ = 7^-^a = ar'^ = + 1

;

VI'. . . yar'^ = ajS'^ = ^y'^a = - 1.

(3.) For example (comp. 295) we have, by the laws (182) of ^, j, k, the

values,

VII. . . ij-^k =jk-H = ki~^j = + 1 ; VIF. . . kJ-H= ik~^j=ji-^k = - 1.

In fact, the two fourth proportionals, ij-^k and kj-H, are respectively equal to

the two ternary products, - ijk and - kjiy and therefore to + 1 and - 1, by the

laws included in the Fundamental Formula A (183).

(4.) To connect this important result with the constructions of the two last

Articles, we may observe that when we seek, on the general plan of 298, (15.),

to exscrihe a spherical triangle, def, to a given tri-quadrantal (or iri-rectangular)

triangle, abc, as for instance to the triangle ijk (or jik) of 181, in such a

manner that the sides of the new triangle shall be bisected by the corners of the

old, the problem is found to admit of indefinitely many solutions. Any point p

may be assumed, in the interior of the given triangle abc ; and then, if its

reflexions d, e, f be taken, with respect to the three sides, a, h, c, so that

(comp. fig. 72) the arcs pd, pe, pf are perpendicularly

bisected by those three sides, the three other arcs ef,

FD, DE will be bisected by the points a, b, c, as re-

quired : because the arcs ae, af have each the same

length as ap, and the angles subtended at a by pe and

PF are together equal to two right angles, &c.

(5.) The positions of the auxiliary points, d, e, f,

are therefore, in the present ease, indeterminate, or variable ; but the sum of

the angles at those three points is constant, and equal to four right angles
;

because, by the six isosceles triangles on pd, pe, pf as bases, that sum of the

three angles d, e, f is equal to the sum of the angles subtended by the sides

of the given triangle abc, at the assumed interior point p. The spherical
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exeess of the triangle def is therefore equal to two right angles, and its area

S = TT ; as may be otherwise seen from the same figure 72, and might have

been inferred from the formula 297, LY., or LYI.

(6.) The radius od, in the formula 297, XLYII., for the fourth propor-

tional /3a-^y, becomes therefore, in the present case, indeterminate ; but because

the angle l'dr, or 5(77 - S), in the same equation, vanishes, the formula

becomes simply /3a'^7 = 1, as in the recent equations YI. ; and similarly in

other examples, of the class here considered.

(7.) The conclusion, that the Fourth Proportional to Three Rectangular

Lines is a Scalar, may in several other ways be deduced, from the principles

of the present Book. For example, with the recent suppositions, we may
write,

YIII. . .
j3a-i = -

Y,
7j3-i = - a, ay' = -(5;

Ylir. . . ya-' = + /3, a/3-» = + 7, (5y-' = + a

;

the three fourth proportionals YI. are therefore equal, respectively, to - y%
- a% - 13^ and consequently to + 1 ; while the corresponding expressions YI'.

are equal to + )3^ + y^, + a% and therefore to - 1.

(8.) Or (comp. (3.) ) we may write generally the transformation (comp.

282, XXI.),
IX. . . /3a-^7 = a\ /Bay, if a' = 1 : a\

in which the factor a^ is always a scalar, whatever vector a may be ; while

the vector part of the ternary product (5ay vanishes, by 294, III., when the

recent conditions of rectangularity III. are satisfied.

(9.) Conversely, this ternary product fiay, and this fourth proportional

j3a"*7, can tiever reduce themselves to scalars, unless the three vectors a, (5, y
(supposed to be all actual (Art. 1) ) are perpendicular each to each.

I

SECTION 8,

On an equivalent Interpretation of the Fourth Proportional to

Three Diplanar ITectors, deduced from the Principles of the
Second Book.

300. In the foregoing section, we naturally employed the results of pre-

ceding sections of the present Book, to assist ourselves in attachiug a definite

signification to the Fourth Proportional (297) to Three Diplanar Yectors

;

and thus, in order to interpret the symbol (5a''y, we availed ourselves of the

interpretations previously obtained, in this Third Book, of a' as a line, and of

3 c 2
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aj3, ajSy as quaternions. But it may be interesting, and not uninstructive, to

inquire hoiv the equivalent symbol,

Q
I. . . (/3 : a) . 7, or - y, with y not

|||
a, /3,

might have been interpreted, on the principles of the Second Book, without at first

assuming as known, or even seeking to discover, any interpretation of the three

lately mentioned symbols,

II. . . a"^ aj3, a/By.

It will be found that the inquiry conducts to an expression of the form,

III. . . (jS : a) . 7 = g + ew

;

where 8 is the same vector, and e is the same scalar, as in the recent sub-articles

to 297 ; while u is employed as a temporary symbol, to denote a certain Fourth

Proportional to Three Rectangular Unit Lines, namely, to the three lines oq,

ol', and op in fig. 68 ;
* so that, with reference to the construction represented

by that figure, we should be led, by the principles of the Second Book, to

write the equation

:

IV. . . (oB : oa) . 00 = CD . cos is + (ol" : oq) . op . sin |^S.

And when we proceed to consider lohat signification should be attached, on

the principles of the same Second Book, to that particular fourth proportional,

which is here the coefficient of sin ^S, and has been provisionally denoted by u,

we find that although it may be regarded as being in one sense a Line, or at

least homogeneous with a line, yet it must not be equated to any Vector : being

rather analogous, in Geometry, to the Scalar Unit of Algebra, so that it may be

naturally and conveniently denoted by the usual symbol 1, or + 1, or be equated

to Positive Unity. But when we thus write u = 1, the last term of the formula

III. or IV., of the present Article, becomes simply e, or sin ^S ; and while

this term (or part) of the result comes to be considered as a species of Geotne-

trical Scalar, the complete Expression for the General Fourth Proportional to

Three Diplanar Vectors takes the Forin of a Geometrical Quaternion : and thus

the formula 297, XLVII., or 298, VIII., is reproduced, at least if we substitute

in it, for the present, (j3 : a) . 7 for (5a ^y, to avoid the necessity of interpreting

here the recent symbols II.

* ["In the abstract published in the Proceedings (Eoyal Irish Academy, November 11th, 1844),

Ihe words ' South, West, Up ' were used at first, instead of the symbols i, J, k ; and the sought fourth

proportional to jik, which is here denoted by u, was called provisionally, ' Forward.' "—Preface to

Lectures, p. (o4).]
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(1.) The construction of fig. 68 being retained, but no principles peculiar

to the Third Book being employed, we may write, with the same significa-

tions of c, p, &c., as before,

V. . . OB : OA = OR : OQ = COS c + (ol' : oq) sin c
;

YI. . . OC = OQ . cos jO + OP . Buip.

(2.) Admitting then, as is natural, for the purposes of the sought inter-

pretation, that distributive property which has been proved (212) to hold good

for the multiplication of quaterniom (as it does for multiplication in algebra)

;

and writing for abridgment,

VII. . . w = (ol' : oq) . OP

;

we have the quadrinomial expression :

VIII. . . (oB : oa) . oc = ol'. sin c oosjw + oq . cos c ooap

+ OP . cos c sin JO + u. sine sin p;

in which it may be observed that the sum of the squares of thefour coefficients

of the three rectangular unit-vectors, oq, ol', op, and of theirfourth proportional,

u, is equal to unity.

(3.) But the coeflScient of this fourth proportional, which may be regarded

as a species oifourth unit, is

IX. . . sin c sin j9 = sin mn = sin ^S = e

;

we must therefore expect to find that the three other coefficients in YIII.,

when divided by cos JS, or by r, give quotients which are the cosines of the

arcual distances of some point x upon the unit-sphere, from the three points

l', q, p ; or that a point x can be assigned, for which

X. . . sin c cos jE) = r cos l'x ; cos c cosjo = f oos qx ; coscsinjo = rcospx.

(4.) Accordingly it is found that these three last equations are satisfied,

when we substitute d for x ; and therefore that we have the transformation,

XI. . . ol'. sin c Qosp + OQ . cos c cosja + op . cos c sin ;? = ou . cos ^S = 8,

whence follow the equations IV. and III. ; and it only remains to study and

interpret i]ie fourth unit, u, which enters as a factor iuto the remaining part

of the quadrinomial expression VIII., without employiug any principles except

those of the Second Book : and therefore without nsiny the Interpretations 278,

284, of jSa, &c.
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301. In general, when two sets of three vectors, o, |3, y, and o', /3', 7', are

connected by the relation,

I &X^=i or II ^ 1 = ^
a y p o y a

it is natural to write this other equation,

III...-y = ^7;

and to say that these two fourth proportionals (297), to a, j3, 7, and to a', |3', y\

are f^wa/ to each other : whatever the full signification of each of these two last

symbols III., supposed for the moment to be not yet fully known, may be after-

wards found to be. In short, we may propose to make it a condition of the

sought Interpretation, on the principles of the Second Book, of the phrase,

" Fourth Proportional to three Vectors,"

and of either of the two equivalent Symbols 300, I., that the recent Equation

III. shall /o//oif from I. or II.
;
just as, at the commencement of that Second

Book, and before concluding (112) that the general Geometric Quotient /3 : a

of any ttvo lines in space is a Quaternion, we made it a condition (103) of the

interpretation of such a quotient, that the equation (j3 : a) . a = j3 should be

satisfied.

302. There are however two tests (comp. 287), to which the recent equa-

tion III. must be submitted, before its final adoption ; in order that we may

be sure of its consistency, 1st, with the previous interpretation (226) of a Fourth

Proportional to Three Complanar Vectors, as a Line in their common plane

;

and Ilnd, with the general principle of all mathematical language (105), that

things equal to the same thing, are to be considered as equal to each other.

And it is found, on trial, that both these tests are borne : so that they form no

objection to our adopting the equation 301, III., as true by definition, whenever

the preceding equation II., or I., is satisfied.

(1.) It may happen that the first member of that equation III. is equal to

a line d, as in 226 ; namely, when a, j3, 7 are complanar. In this case, we

have by II. the equation,

IV.. .1=^ X.^', or IV'...^/=^ = ^7;777a a a

so that a, j3', 7' are also complanar (among themselves), and the line 8 is

their fourth proportional likewise : and the equation III. is satisfied, both
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members being symbols for one common line, S, which is in general situated in

the intersection of the two planes, ajSy and ai^y 5 although those planes may

happen to coincide, without disturbing the truth of the equation.

(2.) Again, for the more general case of diplanarity of a, |3, 7, we may

conceive that the equation* II. co-exists with this other of the same form,

Y...@^ = ff; whichgives Yl..,^y=Ky\
a y a a a

if the definition 301 be adopted. If then that definition be consistent with

general principles of equality, we ought to find, by III. and VI., that this

third equation between two fourth proportionals holds good

:

VIL..4'/=C7"; orthat YIH. . .

2.' TL = ^,
a a a y a

when the equations II. and V. are satisfied. And accordingly, those two

equations give, by the general principles of the Second Book, respecting

quaternions considered as quotients of vectors, the transformation,

^ -^ = - -, .-77 = - -77 = ^, as required.ay a y y 07 a

303. It is then permitted to interpret the equation 301, III., on the prin-

ciples of the Second Book, as being simply a transformation (as it is in

algebra) of the immediately preceding equation II., or I. ; and therefore to

write, generally,

l...qy = qy, if II. . . ^(7 : /) = /

;

where 7, 7' are any two vectors, and q,
q' are any two quaternions, which satisfy

this last condition. Now, if v and f' be any two right quaternions, we have

(by 193, comp. 283) the equation,

III. . .Id :lv' = V :v' = vv'~^

;

or

IV. . .
«?"' {Iv : Iv') = v'~^ ; whence V. . .v~^.\x> = v'-^. \v',

by the principle which has just been enunciated. It follows, then, that " if

a right Line (It?) he multiplied by the Reciprocal [v'^) of the Right Quaternion [v),

of tvhich it is the Index, the Product {v~^ Iv) is independent of the Length, and of

* In this and other cases of reference, the numeral cited is always supposed to he the one which

(with the same number) has last occurred before, although perhaps it may have been in connexion

with a shortly preceding Article. Compare 217, (1.).
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the Direction, of the Line thus operated on " ; or, in other words, that this Pro-

duct has one common Value, for all possible Lines (a) in Space: which common

or constant value may he regarded as a kind of new Geometrical Unit, and

is equal to what we have lately denoted, in 300, III., and YII., by the

temporary symbol u ; because, in the last cited formula, the line op is the

index of the right quotient oq : 0L^ Retaining, then, for the moment, this

symbol, u, we have, for every line a in space, considered as the index of a right

quaternion, v, the/owr equations'.

VI. . . v'^a = u ; VII. . .a = vu', VIII. . .v = a:u',

IX. . .v~^ = u: a',

in which it is understood that o = It', and the three last are here regarded as

being merely transformations of the first, which is deduced and interpreted as

above. And hence it is easy to infer, that for any given system of three rect-

angular lines a, j3, 7, we have the general expression :

X. . . (j3 : a) . 7 = xtt, if a ± /3, j3 ± 7, 7 J. a
;

where the scalar co-efficient, x, of the neic unit, u, is determined by the equation,

XI. . . ;» = ± (T/3 : Ta) . T7, according as XII. . . U7 = ± Ax . (a : |3).

This coefficient x is therefore always equal, in magnitude (or absolute quantity),

to {h-Q fourth proportional to the lengths of the three given lines a/3y ; but it is

positively or negatively taken, according as the rotation round the third line 7,

from the second line j3, to the first line a, is itself positive or negative : or in

other words, according as the rotation round the first line, from the second to

the third, is on the contrary negative or positive (compare 294, (3) ).

(1.) In illustration of the constancy of that fourth proportional which has

been, for the present, denoted by u, while the system of the three rectangular

unit-lines from which it is conceived to be derived is in any manner turned

about, we may observe that the three equations, or proportions,

XIII. ..w:7 = /3:a; 7:a = a:-7; (5 :- j = y : (5,

conduct immediately to this fourth equation of the same kind,

XlY...u:a = y:(5, or* « = (7 : /3) . a ;

if we admit that this new quantity, or symbol, u, is to be operated on at ally

* In equations of this form, the parentheses may be omitted, though for greater clearness they

are here retained.
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or combined with other symbols, according to the general rules of vectors and

quaternions.

(2.) It is, then, permitted to change the three letters a, j3, y, by a cyclical

permutation, to the three other letters, )3, 7, a (considered again as represent-

ing ?<»?7-/mfs), without altering the value of the fourth proportional, m; or in

other words, it is allowed to make the system of the three rectangular lines

revolve, through the third part offour right angles, round the interior and co-

initial diagonal of the unit-cube, of which they are three co-initial edges.

(3.) And it is still more evident, that no such change of value will take

place, if we merely cause the system of the two first lines to revolve, through

any angle, in its own plane, round the third line as an axis ; since thus we shall

merely substitute, for the factor /3 : a, another factor equal thereto. But by

combining these two last modes of rotation, we can represent any rotation what-

ever, round an origin supposed to be fixed.

(4.) And as regards the scalar ratio of any one fourth proportional, such

as j3' : a. y', to any other, of the kind here considered, such as |3 : a
.
7, or u, it

is sufficient to suggest that, without any real change in the former, we are

allowed to suppose it to be so prepared, that we shall have

XY...a'=a; /3'=/3; y' = xy )

X being some scalar coefficient, and representing the ratio required.

304. In the more general case, when the three given lines are not rect-

angular, nor unit-lines, we may on similar principles determine their fourth

proportional, without referring to fig. 68 [p. 360], as follows. Without any

real loss of generality, we may suppose that the planes of a, j3 and a, y are

perpendicular to each other ; since this comes merely to substituting, if neces-

sary, for the quotient j3 : a, another quotient equal thereto. Having thus

L..Ax.(/3:a) ±Ax.(7:«), let II. . . jS = jS' + jS", 7 = /+ 7^

where j3' and y are parallel to a, but j3" and 7" are perpendicular to it, and

to each other ; so that, by 203, I. and II., we shall liave the expressions,

III. ..i3'=s2.a, /=S^.«,
a a

and IV. ..i3" = Y&.a, 7^' = Y^.a.
a a

Hamilton's Elements of Quateunions. 3 D



386 ELEMENTS OF QUATEHNIONS. [III. i. § 8.

We may then deduce, by the distributive principle (300, (2.) ), the tranfor-

mations,

T...§.,=(e:.q(/..")

where

i3' i3' r r ,,'— y \ y -\ y + y = b + XW,
a a a a

YL..8 = i3S^ + y'S& = 7S^ + i3"S^, and YIL. .jcu = ^y\
a a a a a

The latter part, xu, is what we have called (300) the (geometrically) scalar

part, of the sought fourth proportional ; while the former part 8 may (still)

be called its vector part : and we see that this part is represented by a line,

which is at once in the two jilanes, of j3, y^\ and of y, /3''; or in two planes

which may be generally constructed as follows, trithout noio assuming that the

planes aj3 and ay are rectangular, as in I. Let y' be the projection of the

line y on the plane of a, (5, and operate on this projection by the quotient

/3 : a as a multiplier; the plane which is drawn through the line /3 : a . y' so

obtained, at right angles to the plane aj3, is one locus for the sought li)ie 8

:

and the plane through y, which is perpendicular to the plane yy', is another

locus for that line. And as regards the length of this line, or vector part 8,

and the magnitude (or quantity) of the scalar part xu, it is easy to prove that

VIII. . . TS = i^ cos s, and IX. . . x = ± t sin s,

where

X. . . ^ = T/3 : Ta . T7, and XI. . . sin s = sin c sinjo,

if c denote the angle between the two given lines a, /3, and j? the inclination

of the third given line y to their plane : the sign of the scalar coefficient, x,

being positive or Jiegative, according as the rotation round a from j3 to 7 is

negative or positive.

(1.) Comparing the recent construction with fig. 68, we see that when the

condition I. is satisfied, the four unit-lines U7, Ua, Uj3, US take the direc-

tions of the four radii oc, oq, or, od, which terminate at the four corners of

what may be called a tri-rectangular quadrilateral cqrd on the sphere.

(2.) It may be remarked that the area of this quadrilateral is, exactly equal

to half the area S of the triangle def ; which may be inferred, either from

the circumstance that its spherical excess (oxev/our right angles) is constructed

by the angle mun ; or from the triangles ubh and eas being together equal
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to the triangle abf, so that the area of desk is 2, and therefore that of cqrd

is |S, as before.

(3.) The two sides cq, qr of this quadrilateral, which are remote from the

obtuse angle at d, being still called p and c, and the side cd which is opposite

to G being still denoted by c', let the side dr which is opposite to p be now

called p'
; also let the diagonals or, qd be denoted hy d and d' ; and let s

denote the spherical excess (cdr - ^tt), or the area of the quadrilateral. We
shall then have the relations,

/'cos d = cosp cos c ; cos d' = cos p cos c'

;

XII. . . -| tan c'= oosp tan c ; tan//= cos c ianp
;

Uqs s = Gosp seop^ = cos c sec c' = cos d see c?'

;

of which some have virtually occurred before, and all are easily proved by

right-angled triangles, arcs being when necessary prolonged.

(4.) If we take now two points, a and b, on the side qr, which satisfy the

arcual equation (comp. 297, XL., and fig. 68),

XIII. . . n AB = A QR
;

and if we then join ac, and let fall on this new arc the perpendiculars bb',

dd' ; it is easy to prove that the projection b'd' of the side bd on the arc ac is

equal to that arc, and that the angle dbb' is right : so that we have the two

new equations,

XIV. . . A BV = A AC ; XY. . . dbb' = Itt ;

and the new quadrilateral bb'd'd is also tri-rectangular.

(5.) Hence the point d tna// be derivedfrom the three points abc, bi/ any two

of the four following conditions : 1st, the equality XIII. of the arcs ab, qr
;

Ilnd, the corresponding equality XIV. of the arcs ac, b'd'; Ilird, the

tri-rectangular character of the quadrilateral cqrd ; IVth, the corresponding

character of bb'd'd.

(6.) In other words, this derived point d is the common intersection of the

four perpendiculars^ to the four arcs ab, ac, cq, bb', erected at the four points

R, d', c, b ; CQ, bb' being still the perpendiculars from c and b, on ab and ac
;

and R and d' being deduced from q and b', by equal arcs, as above.

305. These consequences of the construction employed in 297, &c., are

here mentioned merely in connexion with that theory oi fourth proportionals

to vectors, which they have thus served to illustrate ; but they are perhaps

8D2
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numerous and interesting enough, to justify us in suggesting the Mame,

" Spherical Farallelogvam,^^* for the quadrilateral cabd, or bacd, in fig. 68

(or 67), p. 360; and in proposing to say that d is the Fourth Point, which

completes such a 2)arallelogram, when the three jjoints c, a, b, or b, a, c, are

given upon the sphere, aajirst, second, and third. It must however be care-

fully observed, that the analogy to the plane is here thus far imperfect, that in

the general case, when the three given points are not co-arcual, but on the con-

trary are corners of a spherical triangle abc, then if we take c, d, b, or b, d, c,

for the three first points of a neiv spherical parallelogram, of the kind here con-

sidered, the neiD fourth point, say Ai, will not coincide with the old second point

a; although it will very nearly do so, if the sides of the triangle abc be small:

the deviation aAi being in fact found to be small of the third order, if those

sides of the given triangle be supposed to be small of the first order ; and

being always directed towards the foot of the perpendicular, let fall from a

on Bc.

(].) To investigate the /«?<?of this deviation, let j3, y be still any two given

unit-vectors, ob, oc, making with each other an angle equal to a, of which

the cosine is I ; and let p or op be any third vector. Tlien, if we write,

I. . . /Oi = 0(/o) = ^N/O. (- 7 + ^j3), OQ = Up, OQi = U/Oi,

\P P J

the new or derived vector, <j>p or pi, or oPj, will be the common vector part of

the two fourth 2)roportionals, to p, (3, y, and to p, y, (5, multiplied by the square

of the length of p; and bqcqi will be what we have lately called a spherical

parallelogram. We shall also have the transformation (compare 297, (2.) ),

II. .
. pi = 0p = /3S - + 7S -J - |oS H-

;

7 P P

and the distributive symbol of operation will be such that

III. . . 0p 111 i3, 7, and 0V = P, if /o|ll/3,T;t
but

IY...0P = -/p, if pl|Ax.(7:i3).

(2.) This being understood, let

Y...p = p'^p"; <pp'=p\; p'\\\(5,y; p"
|l
Ax. (7 : /3)

;

• By the same analogy, the quadrilateral cqud, in fig. 68, may be called a Spherical Rectangle.

t [In fact <pfi-y and <;>> = /3. So ^ (yj8 + zy) = zfi + i/y.]
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80 that p\ or op', is the projection of p on the plane of jSy ; and p\ or 0?'', is

the part (or component) of p, which is perpendicular to that plane. Then

we shall have an indefinite series of derived vectors, pi, pi, pi, . . . or rather

two such series, succeeding each other alternately, as follows

:

ipi ^ i'P = P I
- ip

; p2 = (t>p = p+ip
,

(jos = <p^p = pi - Pp"
; Pi = (p^p = p + l^p" ; &o.

;

the trm aeries of derived points, Pj, P2, P3, P4, . . . being thus ranged, aItemateIt/,

on the two perpendiculars, pp' and Pip'i, which are let fall from the points p

and Pi, on the given plane boc ; and the intervals, PP2, PiPs, P2P4, . . . forming a

geometrical progression, in which each is equal to the one before it, multiplied

by the co)istant factor -I, or by the negative of the cosine of the given angle boc.

(3.) If then this angle be still supposed to be distinct from and ir, and

also in general from the intermediate value ^v, we shall have the tivo limiting

values,

YII. . . p2n = p, p2n+\ = p\, if w = 00
;

or in words, the derived points Pj, P4, . . . of even orders, tend to the point p', and

the other derived points, Pi, P3, . . . of odd orders, tend to the other point p'l, as

limiting positions', these two limit points being ihQ feet q/^/<e ^;ro (rectilinear)

perpendiculars, let fall (as above) from p and p' on the plane boc.

(4.) But even i\\Q first deviation PP2 is small of the third order, if the length

Tjo of the line op be considered as neither large nor small, and if the sides of

the spherical triangle bqc be small of i\\Q first order. For we have by VI. the

following expressions for that deviation,

VIII. ..VY, = p2-p={P-l)p'' = - sin^« . sin i>a . 1> • Up"

;

where pa denotes the inclination of the line p to the plane j3y ; or the arcual

perpendicular from the point q on the side bc, or a, of the triangle. The

statements lately made (305) are therefore proved to have been correct.

(5.) And if we now resume and extend the spherical construction, and con-

ceive that Di is deduced from bAiC, as Ai was from bdc, or d from bag ; while

A2 may be supposed to be deduced by the same rule from bDiC, and D2 from

BA2C, &c., through an indefinite series of spherical parallelograms, in which the

fourth point of any one is treated as the second point of the next, while the ^rs^

and tJiird points remain constant: we see that the points Ai, A2, . . • are all

situated on the arcual jjcrpendicular let fall from a on bc ; and that in like

manner the points Di, Dj, . . . are all situated on that other arcual perpendicular,
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which is let fall from d on bc. We see also that the ultimate positions^ a, and

D„, coincide precisely with the feet of those tuo perpendiculars : a remarkable

theorem, which it would perhaps be difficult to prove, by any other method

than that of the Quaternions, at least with calculations so simple as those

which have been employed above.

(6.) It may be remarked that the construction of fig. 68 might have been

otherwise suggested (comp. 223, lY.), by the principles of the Second Book,

if we had sought to assign the fourth proportional [2^7] to three rigid quater-

nions ', for example, to three right versors, v, v\ v", whereof the unit lines a, /3,

7 should be supposed to be the axes. For the result would be in general a

quaternion v^v'W\ with e for its scalar part, and with 8 for the index of its right

part : e and S denoting the same scalar, and the same vector, as in the sub-

articles to 297.

306. Quaternions may also be employed to furnish a new construction,

which shall complete (comp. 305, (5.) ) the graphical determination of the two

series of derived points,

I. . . D, Ai, Di, A2, D2, &C.,

when the three points a, b, c are given upon the unit-sphere ; and thus shall

render visible (so to speak), with the help of a new figure, the tendencies of

those derived points to approach, alternately and indefinitely, to the/ee^, say

d' and a', of the two arcual peipendiculars let fall from the two opposite corners,

D and a, of the first spherical parallelogram, bacd, on its given diagonal bo ;

which diagonal (as we have seen) is common to all the successive paral-

lelograms.

(1.) The given triangle abc being supposed for simplicity to have its sides

abc less than quadrants, as in 297, so that their cosines Imn are positive, let

a', b', c' be the feet of the perpendiculars let fall on these three sides from the

points A, B, c ; also let m and n be two auxiliary points, determined by the

equations,

II. . . A BM = n MC, n AM = A MN
;

so that the arcs an and bc bisect each other in m. Let fall from n a perpen-

dicular nd' on BC, so that

III. . . n bd' = a a'c
;

and let b'', c" be two other auxiliary points, on the sides b and c, or on those

sides prolonged, which satisfy these two other equations,

IV. . . A b'b" = n AC, n cV = n AB.
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(2.) Then the perpendiculars to these last sides, ca and ab, erected at these

last points, b'' and c/', will intersect each other in the point d, which completes

(305) the spherical parallelogram bacd; and the/oo^ of the perpendicular from

this point d, on the third side bc of the given triangle, will coincide (comp.

305, (2.) ) with the foot d" of the perpendicular on the same sidefrom n; so that

this last perpendicular nd' is one locus of the point d.

(3,) To obtain another locus for that point, adapted to our present pur-

pose, let E denote now* that new point in which the two diagonals, ad and bc,

intersect each other ; then because (comp. 297, (2.) ) we have the expression,

Y. . . CD = U (w?/3 + ny - la),

we may write (comp. 297, (25.), and (30.) ),

YI. . . OE = u (w/3 + ny), whence YII. . . sin be : sin eg = n : m = cos ba' : cos a'c
;

the diagonal ad thus dividing the arc bc into segments, of which the sines are

proportional to the cosines of the adjacent sides of the given triangle, or to the

cosines of tlieir projections ba' and a'c on bc ; so that the greater segment is

adjacent to the lesser side, and the middle point m of bc (1.) lies between the

points a! and e.

(4.) The intersection e is therefore a known point, and the great circle

through A and e is a second known locus for

D ; which point may therefore be found, as

the intersection of the arc ae prolonged,

with the perpendicular nd' from n (1,). And
because e lies (3.) heyond the middle point

M of BC, with respect to the foot a' of the

perpendicular on bc from a, but (as it is

easy to prove) not so far heyond m as the

point d', or in other words falls between m
and d' (when the arc bc is, as above sup-

posed, less than a quadrant), the prolonged

arc AE cuts nd' between n and d'; or in

other words, the perpendicular distance of

the sought fourth point d, from the given

diagonal bc of the parallelogram, is less than the distance of the given second point

A, from the same given diagonal. (Compare the annexed fig. 73.)

Fig. 73.

* It -will be observed tliat m, n, e have not here the same significations as in fig. 68 ; and that the

present letters c' and c" correspond to Q and b in that figure.
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(5.) Proceeding next (305) to derive a new point Ai from b, d, c, as d has

been derived from b, a, c, we see that we have only to determine a new^

auxiliary point f, by the equation,

VIII. . . A EM = n MF
;

and then to draw df, and prolong it till it meets aa' in the required point Ai,

which will thus complete the second parallelogram, bdcAi, with bc (as before) for

a given diagonal.

(6.) In like manner, to complete (comp. 305, (5.) ), the third parallelogram,

BAiCDi, with the same given diagonal bc, we have only to draw the arc AiE,

and prolong it till it cuts kd' in Di ; after which we should find the point A2

of Q. fourth successive parallelogram bDiCAz, by drawing DiF, and so on for ever.

(7.) The constant and indefinite tendency^ of the derived points d, Di . . . to

the limit-point d', and of the other (or alternate) derived points Ai, A2, . . . to the

other limit-point k\ becomes therefore evident from this new construction ; the

final (or limiting) results of which, we may express by these two equations

(comp. again 305, (5.)),

IX. . . D» = d' ; Aoo = a'.

(8.) But the smallness (305) of iliQ first deviation aAi, when the sides of the

given triangle abc are small, becomes at the same time evident, by means of

the same construction, with tlie help of the formula VII. ; which shows that

the interval'^ em, or the equal interval mf (5), is synall of the third order, when

the sides of the given triangle are supposed to be small of the first order

:

agreeing thus with the equation 305, VIII.

(9.) The theory of such spherical parallelograms admits of some interesting

applications, especially in connexion with spherical conies ; on which however

we cannot enter here, beyond the mere enunciation of a Theorem,% of which

(comp. 271) the proof by quaternions is easy :

—

* This new point, and the intersection of the perpendiculars of the given triangle, are evidently

not the same in the new figure 73, as the points denoted by the same letters, f and p, in the former

figure 68 ; although the four points a, b, c, n are conceived to bear to each other the same relations

in the two figures, and indeed in fig. 67 also ; bacd being, in that figure also, what we have proposed

to call a spherical parallelogram. Compare the Note to (3.).

t The formula VII. gives easily the relation,

VII . . . tan EM = tan ma I tan - 1 ;

hence the interval em is small of the third order, in the case (8.) here supposed; and generally, if

a < -, as in (1.), while b and c are unequal, the formula shows that this interval em is less than ma',

or than d'm, so that e falls between m and d', as in (4.).

I This Theorem was communicated to the Royal Irish Academy in June, 1845, as a consequence

of the principles of Quaternions. See the Proceedings of that date (Vol. III., page 109).
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" If KLMN he any spherical quadrilateral, and i any point on the sphere ; if

also we complete the spherical parallelograms,

X. . . KILA, LIMB, MINC, NIKD,

and determine the poles e and r of the diagonals km and ln of the quadrilateral

:

then these two poles are the foci* of a spherical conic, inscribed in the derived

quadrilateral abcd, or touching its four sides.'' f

(10.) Hence, in a notation:}: elsewhere proposed, we shall have, under

these conditions of construction, the formula

:

XI. . . EF (. .) abcd; or Xr. . . ef (. .) bcda; &o.

(11.) Before closing this article and section, it seems not irrelevant to

remark, that the projection y' of the unit-vector y, on the plane of a and j3,

is given by the formula,

—T^ , a sin a 008 B + sin 6 cos a
All. . . 7 = ;

;

Bine

and that therefore the point p, in which (see again fig. 73) the three arcual

perpendiculars of the triangle abc intersect, is on the vector,

XIII. . . p = a tan a + j3 tan b + y tan c.

(12.) It may be added, as regards the construction in 305, (2.), that the

right lines,

xrv. . . ppi, P1P2, P2P3, P3P4, . .

.

however far tlieir series may be continued, intersect the given plane bog, alter-

nately, in two points s and t, of which the vectors are,

and whicli thus become two fixed points in the plane, when the position of the

point p in sjMce is given, or assumed.

* In the language of modern geometry, the eonic in question may he said to touch eight given arcs
;

four real, namely the sides ab, hc, CD, da ; and four imaginary, namely two from each of the focal

points, E and f.

t [Take q = \r^K, r = fir^\, s = vr^ix, and t^Ki'^y ; then srq = — vi-^K = Xt, rq = fiK, sr = v\,

ts=KiJ., and qt-\p. On reference to fig. 60, p. 304, there is no difficulty in seeing that a conic

having the given foci may be drawn to touch the four sides, produced when necessary.]

X Compare the second Note to page 310.

Hamilton's Elements of Quaternions. 3E
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SECTION 9.

On a Third Method of interpretinj; a Product or Fanctlon of
ITectors as a Ctnaternion ; and on the Consistency of the
Results of the Interpretation so obtained, ifvith those ^rhich
have been deduced from the tn'o preceding Methods of the
present Book.

307. The Conception of the Fourth Proportional to three Rectangular Unit-

Lines, as being itself a species of Fourth Unit in Geometry^ is eminently

characteristic of the present Calculus ; and offers a Third Method of interpreting

a Product of two Vectors as a Quaternion : which, is however found to be

consistent, in all its results, with the two former methods (278, 284) of the

present Book; and admits of being easily extended to products of three or

more lines in space, and generally to Functions of Vectors (289). In fact we

have only to conceive* that each proposed vector, a, is divided by the new or

fourth unit, u, above alluded to ; and that the quotient so obtained, which is

always (by 303, YIII.) the right quaternion I"^a, whereof the vector a is the

index, is substituted for that vector : the resulting quaternion being finally, if

we think it convenient, multiplied into the same fourth unit. For in this way
we shall merely reproduce the process of 284, or 289, although now as a con-

sequence of a different train of thought, or of a distinct but Consistent Interpre-

tation : which thus conducts, by a new Method, to the same Rules of Calculation

as before.

(1.) The equation of the unit-sphere, /o^+ 1 = (282, XIV.), may thus be

conceived to be an abridgment of the following fuller equation :

* It was in a somewhat analogous way that JDes Cartes showed, in his Geometria (Schooten's

Edition, Amsterdam, 1659), that all products and powers of lines, considered relatively to their lengths

alone, and without any reference to their directions, could he interpreted as lines, by the suitable

introduction of a line taken for unity, however high the dimension of the product or power might be.

Thus (at page 3 of the cited work) the following remark occui-s :
—

"Ubi notandum est, quod per «* vel P, similesve, communiter, non nisi lineas oninino simplices

concipiam, licet illas, ut nominibus in Algebra usitatis utar, Quadrata aut Cubos, &c. appellem."

But it was much more difficult to accomplish the con'esponding multiplication of directed lines in

space ; on account of the non-existence of any such line, which is symmetrically related to all other lines,

or common to all possible planes (comp. the Note to page 258). The Unit of Vector-Multiplication

cannot properly be itself a, Vector, if the conception of the Symmetry of Space is to be retained, and

duly combined with the other elements of the question. This difficulty however disappears, at least

in theory, when we come to consider that new Unit, of a scalar kind (300), which has been above

denoted by the temporary symbol u, and has been obtained, in the foregoing section, as a certain

Fourth Proportional to Three Rectangular Unit-Lines, such as the three co-initial edges, ab, ac, ad of
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the quotient p : u being considered as equal (by 303) to the right quaternion^

l~^p, which must here be a right versor (154), because its square is negative

unity.

(2.) The equation of the ellipsoid^

T(/|0 + pk)=k^-(M282,XIX.),

may be supposed, in like manner, to be abridged from this other equation

:

\u u u uj \uj \u

and similarly in other cases.

(3.) "We might also write these equations, of the sphere and ellipsoid,

under these other, but connected forms:

P ... TV T^.^^„^^!i._iIII. ..^o = -m; IV...T -p + ^ic =-ic--t
u \u'^ U J U U '

with interpretations which easily offer themselves, on the principles of the

foregoing section.

(4.) It is, however, to be distinctly understood, that we do not propose to

adopt this Form of Notation, in the 2)ractice of the present Calculus: and that

we merely suggest it, in passing, as one which may serve to throw some addi-

tional light on the Conceptiony introduced in this Third Book, of a Product of

two Vectors as a Quaternion.

(5.) In general, the Notation of Products, which has been employed

throughout the greater part of the present Book and Chapter, appears to be

what we have called an Unit-Cube: for this fourth proportional, by the proposed conception of it,

undergoes no change, when the cube abcu is in any manner moved, or turned; and therefore may be

considered to be symmetrically related to all directions of lines in space, or to all possible vections (or

translations) of a point, or body. lu fact, we conceive ils determination, and the diitinction of it (as + u)

from the opposite unit of the same kind (- m), to depend only ou the usual assumption of an unit of

length, combined with the selection of a hand (as, for example, the right hand), rotation towards which

hand shall be considered to h^ positive, and contrasted (as such) with rotation towards the other hand,

round the same arbitrary axis. Now in whatever manner the supposed cube may be thrown about in

space, the conceived rotation round the edge ab, from AC to ad, will have the same character, as right-

handed or left-handed, at the end as at the beginning of the motion. If then \k& fourth proportional

to these three edges, taken in this order, be denoted by + m, or simply by + 1, at one stage of that

arbitrary motion, it may (on the plan here considered) be denoted by the same symbol, at every other

stage
:
while the opposite character of the (conceived) rotation, round the same edge K^,from ad to ac,

leads us to regard the fourth pioportional to ab, ad, ac as being ou the contrary equal to - m, or to — 1.

It is true that this conception of a new unit for space, symmetrically related (as above) to all linear

directions therein, may appear somewhat abstract and metaphysical ; but readers who think it such
can of course confine their attention to the rules ofcalculation, which liave been above derived from it,

and from other connected consideiaiions : and which have (it is hoped) been stated and exemplified,

in this and in a former volume, with sufficient clearness and fulness.

3 E2
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much more convenient, for actual use in calculation, than any Notation of

Quotients : either such as has been just now suggested for the sake of illus-

tration, or such as was employed in the Second Book, in connexion with that

First Conception of a Quaternion (112), to which that Book mainly related, as

the Quotient of two Vectors (or of two directed lines in space). The notations

of the two Books are, however, intimately connected, and the former was

judged to be an useful preparation for the latter, even as regarded the

quotient-forms of many of the expressions used : while the Characteristics of

Operation, such as

S, Y, T, U, K, N,

are employed according to exactly the same laics in both. In short, a reader

of the Second Book has nothing to unlearn in the Third; although he may be

supposed to have become prepared for the use of somewhat shorter and more

convenient processes, than those before employed.

SECTION 10.

On tbe Interpretation of a Power of a Vector as a

Ctuaternion.

308. The only symbols, of the kinds mentioned in 277, which we have

not yet interpreted, are the cube a^, and the general power a*, of an arbitrary

vector base, a, with an arbitrary scalar exponent, t ; for we have already assigned

interpretations (282, (1,), (14.), and 299, (8.)) for the particular symbols a^, a"',

a~^, which are included in this last/orm. And we shall preserve those parti-

cular interpretations if we now define, in full consistency with the principles

of the present and preceding Books, that this Power a* is generally a Quater-

nion, which may be decomposed into ttoo factors, of the tensor and versor kinds,

as follows

:

I. ..a*=TaMJa^

Ta* denoting the arithmetical value of the t^'^ power of the positive number To,

which represents (as usual) the letigth of the base-line a ; and TJa* denoting a

versor, which causes any line p, perpendicular to that line a, to revolve round it as

an axis, through t right angles, or quadrants, and in a positive or negative direc-

tion, according as the scalar exponent, t, is itself d, positive or negative number

(comp. 234, (5.)).
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(1.) As regards the omission of pareutheses in the formula I., we may
observe that the recent definition^ or interpretation^ of the symbol a', enables

us to write (comp. 237, II. III.),

II. . . T (a') = (Ta)' = Ta' ; III. . . U (aO = (Uoi* = Ua*.

(2.) The axis and angle of the power a', considered as a quaternion, are

generally determined by the two following formulae

:

IV. . . Ax. a^ = ±Ua ; V. . . Z . a'=2mr ± ^tir ;

the signs accompanying each other, and the (positive or negative or null)

integer, w, being so chosen as to bring the angle within the usual limits,

and TT.

(3.) In general (comp. 235), we may speak of the (positive or negative)

product, 5 /rr, as being the amplitude of the same power, with reference to the

line a as an axis of rotation', and may write accordingly,

VI. . . am. o* = 5 tir.

(4.) "We may write also (comp. 234, VII. VIII.),

VII. . . TJa' = cos —- 4- Ua . sin — ; . or briefly, VIII. . . Ua* = cos -^ •

(5.) In particular,

IX. . . Ua'« = cas WTT = ± 1 ; IX'. . . Ua^«+^ = ± Ua
;

upper or lower signs being taken, according as the number n (supposed to be

whole) is even or odd. For example, we have thus the cubes,

X...Ua^ = -Ua; X'. . . a^ = - aNa.

(6.) The conjugate and norm of the power a' may be thus expressed (it

being remembered that to turn a line -L a through - j^tt round + a, is equi-

valent to turning that line through + ^tir round - a) :

XI. . . Ka'= TaMJ«-^= (- ay-, XII. . . Na'= Ta^*

;

parentheses being unnecessary, because (by 295, VIII.) Ka = - a.

(7.) The scalar, vector, and reciprocal of the same power are given by the

formulae :

XIII. . . S . a*=: Ta^ cos % ; XIV. . . V. a'= TaMJa . sin ^

;

XV. . . 1 : a* = Ta-^ Ua-^ = a' = Ka* : Na* (comp. 190, (3.)).
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(8.) If we decompose any vector p into parts p' and p'\ which are respec-

tively parallel and perpendicular to a, we have the general transformation:*

XVI. . . a'pa' = a* {p' + p'') a' = p' + Va'K p'\

= the new vector obtained by causing p to revolve conicaUy through an angular

quantity expressed by tiTy round the line a as an axis (comp. 297, (15.) ).

(9.) More generally (comp. 191, (5.)), if q be any quaternion, and if

XVIL..aV'=/,

the new quaternion ^ is formed from q by such a conical rotation of its own

axis Ax . q, through tir, round a, without any change of its angle L q, or of its

tensor 1^.

(10.) Treating ijk as three rectangular unit-lines (295), the symbol, or

expression,

XYIU... p = rk'fkj-'>k-', or XIX. . . p = rk*f'k'-\

in which
XX. ..r^O, s^O, s^l, t^O, t^2,

may represent any vector ; the length or tensor of this line p being r ; its incli-

nation f to k being sir; and the angle through which the variable plane kp

may be conceived to have revolved, from the initial position ki, with an

initial direction towards the position kj, being t-rr.

(11.) In accomplishing the transformation XYI., and in passing from the

expression XVIII. to the less symmetric but equivalent expression XIX., we

employ the principle that

XXI. . . kJ-' = S-i = - K {kj-') =fk ;

which easily admits of extension, and may be confirmed by such transforma-

tions as VII. or VIII.

(12.) It is scarcely necessary to remark, that the definition or interpreta-

tion I., of the power a* of any vector a, gives (as in algebra) the exponential

property,

XXII... aV=a*+^

whatever scalars may be denoted by s and t ; and similarly when there are

more than two factors of this form.

* Compare the shortly following sub-article (11.).

t If we conceive (compare the first Note to page 345) that the two lines i and j are directed

respectively towards the south and west points of the horizon, while the third line k is directed

towards the zenith, then sv is the zenith-distance of p ; and tir is the azimuth of the same line,

measured/row south to west, and thence (if necessary) through north and east, to south again.
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(13.) As verifications of the expression XYIII., considered as represent-

ing a vector, we may observe that it gives,

XXIIL..|o = -K|o; and XXIY. . . p« = - r'.

(14.) More generally, it will be found that if u* be any scalar^ we have

the eminently simple transformation

:

XXY. ..p''= {rk*j'kpk-*Y = r''k*j'k*'J-'k-K

In fact, the two last expressions denote generally two equal quaternions, because

they have, 1st, equal tensors, each = r" ; Ilnd, equal angles, each = z (A") ; and

Ilird, equal (or coincident) axes, each formed from ± k by one common system

of two successive rotations, one through sir round y, and the other through tn

round k.

309. Any quaternion, q, which is not simply a scalar, may be brought to

theform a*, by a suitable choice of the base, a, and of the exponent, t; which

latter may moreover be supposed to fall between the limits and 2 ; since

for this purpose we have only to write,

I...t = ^', II. . . Ta = t/; III. . . Ua = Ax . ^

;

TT

and thus the general dependence of a Quaternion, on a Scalar and a Vector

Element, presents itself in a new way (comp. 17, 207, 292). When the pro-

posed quaternion is a versor, Tq = 1, we have thus Ta = 1 ; or in other words,

the base a, of the equivalent poicer a*, is an unit-line. Conversely, every versor

may be considered as a power of an unit-line, witli a scalar exponent, t, which

may be supposed to be in general positive, and less than two; so that we may
write generally,

lY...'Uq = a', with Y. . . a = Ax . y = T'^,
and

YI. . . if > 0, t<2;

although if this versor degenerate into 1 or - 1, the exponent t becomes or 2,

and the base a has an indeterminate or arbitrary direction. And from such

transformations of versors new methods may be deduced, for treating questions

of spherical trigonometry and generally of spherical geometry.

* The employment of this letter u, to denote what we called, in the two preceding sections, a

fourth unit, &c., was stated to he a merely temporary one. In general, M-e shall henceforth simply

equate that scalar unit to the number one; and denote it (when necessary to be denoted at all) by the

usual symbol, 1, for that number.
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(1.) Conceive that p, q, r, in fig. 46 [p. 153] are replaced by a, b, c, with

unit-vectors, a, /3, 7 as usual ; and let x, y, s be three scalars between and 2,

determined by the three equations,

YII. . . xn = 2a, i/tt = 2 b, stt = 2c
;

where a, b, c denote the angles of the spherical triangle. The three versors,

indicated by the three arrows in the upper part of the figure, come then to be

thus denoted

:

,2-Z

so that we have the equation,

IX. . . i3V = 7^-^
; or X. ..7^j3V=-l;

from which last, by easy divisions and multiplications, these two others imme-

diately follow :

X^ . . a=^7^/32' = - 1 ; X^'. . . (d^aY = - 1

;

the rotation round a from j3 to 7 being again supposed to be negative.

(2.) In X. we may write (by 308, VIII.),

XI. . . a^= casA
; j3^ = cj3sB

;
y^ = C7SC

;

and then the formula becomes, for ani/ spherical triangky in which the order of

rotation is as above :

XII. . . C7SC . cj3sB . caSA = - 1

;

or (comp. IX.),

XIII. . . - cos c + 7 sin c = (cos b + /3 sin b) (cos a + a sin a) .

(3.) Taking the scalars on both sides of this last equation, and remember-

ing that Sj3a = - cose, we thus immediately derive oneform of the fundamental

equation of spherical trigonometry ; namely, the equation,

XIV. . . cos c + cos A cos B = cos c sin a sin b.

(4.) Taking the vectors, we have this other formula

:

XV. . . 7 sin c = a sin A cos B + j3 sin b cos a + Vj3a sin a sin b ;

which is easily seen to agree with 306, XII., and may also be usefully com-

pared with the equation 210, XXXVII.

(5.) The result XV. may be enunciated in the form of a Theorem, as

follows:

—

" Jf there be any spherical triangle abc, and three lines be draivn from the

centre o of the sphere, one towards the point a, tvith a length = sin a cos b ; another
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towards the point b, with a length = sin b cos a ; and the third perpendicular to the

plane aob, and towards the same side of it as the point c, with a length - sin c sin a

sin B ; and if, tvith these three lines as edges, ice construct a parallelepiped : the

intermediate diagonal from o will he directed towards c, and will have a length

= sin c."

(6.) Dividing both members of the same equation XY. by p, and taking

scalars, we find tliat if p be any fourth point on the sphere, and q ihe foot of

the perpendicular let fall from this point on the arc ab, this perpendicular pq

being considered as positive when c and p are situated at one common side of

that arc (or in one common hemisphere, of the two into which the great circle

through A and b divides the spheric surface), we have then,

XVI. . . sin c cos PC = sin a cos b cos pa + sin b cos a cos pb + sin A sin b sin c sin pq
;

a formula which might have been derived from the equation 210, XXXVIII.,

by first cyclically changing abcABC to bcaBCA, and then passing from the former

triangle to its polar or supplementary : and from which many less general equa-

tions may be deduced, by assigning particular positions to p.

(7.) For example, if we conceive the point p to be the centre of the circum-

scribed small circle abc, and denote by M the arcual radius of that circle, and

by s the semisum of the three angles, so that 2s = A + B + c = 7r + (r, if a again

denote, as in 297, (47.), the area* of the triangle abc, whence

XVII. . . PA = PB = PC = iJ, and sin pq = sin E sin (s - c),

the formula XVI. gives easily,

XVIII. . . 2 cot i2 sin j^
= sin a sin b sin c

;

a relation between radius and area, which agrees with known results, and

from which we may, by 297, LXX., &c., deduce the known equation :

XIX. . . e tan ^ = 4 sin - sin - sin -

;

^ /i li

in which we have still, as in 297, (47.), &c.,

XX. . . e = (SajSy =) sin a sin J sin c = &c.

(8.) In like manner we might have supposed, in the corresponding general

equation 210, XXXVIII., that p was placed at the centre of the inscribed

* Compare the Note to the cited sub -article.

Hamilton's Elements of Quaternions, 3F
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small circle, and that the arcual radius of that circle was r, the semisum of

the sides being s ; and thus should have with ease deduced this other known

relation, which is a sort of polar reciprocal of XYIII.,

XXI. . . 2 tan r . sin s = e.

But these results are mentioned here, only to exemplify the fertility of the

formulse, to which the present calculus conducts, and from which the theorem

in (5.) was early seen to be a consequence.

(9.) "We might develop the ternary product in the equation XII., as we

developed the hinarij product XIII. ; compare scalar and vector parts ; and

operate on tlie latter, by the symbol S . p'^. New general theorems^ or at least

new general forms, would thus arise, of which it may be sufficient in this

place to have merely suggested the investigation.

(10.) As regards the order of rotation (1.) (2.), it is clear, from a mere

inspection of the formula XV., that the rotation round y from /3 to o, or that

round c from b to a, must he positive, ichen that equation XV. holds good ; at

least if the angles a, b, c, of the triangle abc, be (as usual) treated 0.8 positive:

because the rotation round the line Vj3a from )3 to a is always positive (by

281,(3.)).

(11.) If, then, for any given spherical triangle, abc, with angles still sup-

posed to be positive, the rotation round c from b to a should happen to be (on

the contrary) negative, we should be obliged to modify the formula XV. ; which

could be done, for example, so as to restore its correctness, by interchanging a

with j3, and at the same time a with b.

(12.) There is, however, a sense in which the formula might be considered

as still remaining true, without any change in the mode of writing it ; namely,

if we were to interpret the symbols, a, b, c as denoting negative angles, for the

case last supposed (11.). Accordingly, if we take the reciprocal of the equa-

tion X., we get this other equation,

XXII. ..a-^i3-2'7-^ = -l;

where x, y, z qxq positive, as before, and therefore the neiD exponents, -x,-y,-z,

are negative, if the rotation round a from j3 to 7 be ^Vs^//" negative, as in (1.).

(13.) On the whole, then, if a, j3, 7 be any given system of three co-initial

and diplanar unit-lines, oa, ob, oc, we can always assign a system of three scalars,

X, y, z, which shall satisfy the exponential equation X., and shall have relations

of theform VII. to the spherical angles a, b, c ; but these three scalars, if deter-

mined so as to fall between the limits ± 2, will be all positive, or all negative.
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according as the rotation round a from /3 to 7 is negative, as in (1.), or positive,

as in (11.)-

(14.) As regards the limits just mentioned, or the inequalities,

XXIIL..a;<2, y<2, 2<2; x>-2, y>-2, s>-2,

they are introduced with a view to render the problem of finding the expo-

nents xyz in the formula X. determinate ; for since we have, by 308,

XXIV. ..a* =
i3*

= 7* = + l, if Ta = Tj3 = T7 = l,

we might otherwise add any multiple (positive or negative) of the number four,

to the value of the exponent of any unit-line, and the value of the resulting

power would not be altered.

(15.) If we admitted exponents = ± 2, we might render the problem of

satisfying the equation X. indeterminate in another way ; for it would then

be sufficient to suppose that any one of the three exponents was thus equal to

+ 2, or - 2, and that the two others were each = ; or else that all three were

of the form ± 2.

(16.) When it was lately said (13.), that the exponents, x, y, z, in the

formula X., if limited as above, would have one common sign, the case was

tacitly excluded, for which those exponents, or some of them, when multiplied

each by a quadrant, give angles not equal to those of the spherical triangle

ABC, whether positively or negatively taken ; but equal to the supplements of

those angles, or to the negatives of those supplements.

(17.) In fact, it is evident (because a^ = /3^ = y'' = - 1), that the equation X.,

or the reciprocal equation XXII., if it be satisfied by any one system of values

of xyz, will still be satisfied, when we divide or multiply any two of the three

exponential /actors, by the squares of the two unit-vectors, of which those factors

are supposed to be powers : or in other words, if we subtract or add the number

tico, in each of two exponents.

(18.) "We may, for example, derive from XXII. this other equation

:

XXY. .. a^-^ 13^-2' y-'' = - 1 ; or XXYI. . . a'-^jS'-^' = y'"^

;

which, when the rotation is as supposed in (1.), so that xyz are positive, may

be interpreted as follows.

(19.) Conceive a lune cc', with points a and b on its two bounding semi-

circles, and with a negative rotation round a from b to c ; or, what comes to

the same thing, with a positive rotation round a from b to c'. Then, on the

plan illustrated by figures 45 and 46, the supplements vr - a, tt - b, of the

3F2
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angles a and b in the triangle abc, or the angles at the same points a and b in

the co-lunar triangle abc', will represent two versors, a multiplier, and a multi-

plicand, which are precisely those denoted, in XXVI., by the two factors, a^"^

andj3*"2/; and the product of these two factors, taken in this order, is that third

versor, which has its axis directed to c', and is represented, on the same general

plan (177), by tlie external angle of the lune, at that point, c' ; which, in quantity,

is equal to the external angle of the same lune at c, or to the angle tt - c.

lilhis, product is therefore equal to ihoi poicer of the unit-line oc', or -y, which

2
has its exponent = - (tt - c) = 2 - z ; we have therefore, by this construction, the

IT

equation,

XXYII. . . a'-^j3'-2' = (- yf-'

;

which (by 308, (6.) ) agrees with the recent formula XXVI.

310. The equation,

2 2b 2a

I... 7 (5^d^=-l,

which results from 309, (1.), and in which a, (5, y are the unit-vectors oa, ob,

oc of any three points on the unit-sphere ; while the three scalars a, b, c, in

the exponents of the three factors, represent generally the angular quantities

of rotation, round those three unit-lines, or radii, a, /3, y, from the plane aoc

to the plane aob, from boa to boc, and from cob to coa, and are positive or

negative according as these rotations of planes are themselves positive or

negative : must be regarded as an important formula, in the applications of

the present Calculus. It includes, for example, the whole doctrine of Spherical

Triangles ; not merely because it conducts, as we have seen (309, (3.) ), to one

form of thefundamental scalar equation of spherical trigonometry, namely to the

equation,

•II. . . cos c + cos A cos b = cos c sin a sin b
;

but also because it gives a vector equation (309, (4.) ), which serves to connect

the angles, or the rotations, a, b, c, with the directions * of the radii, a, j3, y, or

oa, ob, oc, for any system of three diverging right lines from one origin. It

* This may be considered to be another instance of that habitual reference to direction, as distin-

guished irova mere quantity (or magnitude), although combined therewith, which pervades the present

Calculus, and is eminently characteristic of it; whereas Des Cartes, on the contrary, had aimed to

reduce all problems of geometry to the determination of the lengths of right lines; altliough (as all

who use his co-ordinates are of course well aware) a certain reference to direction is even in his theory

inevitable, in connexion with the interpretation of negative roots (by him called inverse ov false roots)
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may, therefore, be uot improper to make here a few additional remarks,

respecting the nature, evidence, and extension of the recent formula I.

(1.) Multiplying both members of the equation I., by the inverse expo-

se

nential y "", we have the transformation (comp. 309, (1.) ) :

2b 2a 2c 2(ir— o)

III. . . /3'^ a'^ = - 7' " = 7
A

(2.) Again, multiplying both members of I. into* a ", we obtain this other

formula

:

20 2b 2a 2{n-— a)

IV. . .
7"^^*^= - a "^ = a '

.

2a 2o

(3.) Multiplying this last equation lY. by a", and the equation III. into 7"-,

we derive these other forms

:

2a 2c 2b 2b 2a 2c

Y. . . o^ 7- i3^ = - 1 ; YI. . . i3" a" 7^ = - 1

;

so that cyclical permutation of the letters, a, j3, 7, and a, b, c, in alloiced in the

equation I. ; as indeed was to be expected, from the nature of the theorem

which that equation expresses.

(4.) From either Y. or YI. we can deduce the formula :

2a 2c 2b 2(ir-B)

YII. . . cc^-f^ -(i " =
i3

- ;

by comparing which with III. and lY., we see that cyclical permutation of

letters is permitted, in these equations also.

(5.) Taking the reciprocal (or conjugate) of the equation I., we obtain (com-

pare 309, XXII.) this other equation :

2A 2b 2c

YIIL ..a '^i3~7"^ = -l;

2(n--A) 2(n--B) 2(7r-C)

or IX. ..a'^jS'" 7'^ =+1;

of equations. Thus in the first sentence of Schooten's recently cited translation (1659) of the Geometry

of Des Cartes, we find it said: "Omnia Geometrias Problemata facile ad hujusmodi terminos reduci

possunt, ut deinde ad illorum constructionem, opus tantum sit rectarum quarundani longitudinem

cognoscere."

The very different view of geometry, to which tlie present writer has been led, makes it the more
proper to I'xpress here the profound admiration with which he regards the cited Treatise of Des Cartes

:

containing as it does the germs of so large a portion of all that has since been done in mathematical

science, even as concerns imayinary roots of equations, considered as marks oi geometrical impossibility

.

* For the distinction between multiplying a quaternion into and by a factor, see the Notes to pages

147, 159.
,
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in which cyclical permutation of letters is again allowed, and from which (or

from III.) we can at once derive the formula,

2a 2b 2o

(6.) The equation X. may also be thus written (comp. 309, XXVII.)

:

2(n— A) 2(7r-B) 2(7r-C) 2(7r-o)

XI. . . o '^ /3 '^ =7 '^ = (- t)
"

•

(7.) And all the foregoing equations may be interpreted (comp. 309, (19.) ),

and at the same time proved, by a reference to that general construction (177)

for the multiplication of versors, which the figures 45 and 46 were designed to

illustrate ; if we bear in mind that a power a, of an unit-line a, with a scalar

exponent, t, is (by 308, 309) a versor, which has the efect of turning a line ± a,

through t right angles, round a as an axis of rotation.

(8.) The principle expressed by the equation I., from which all the sub-

sequent equations have been deduced, may be stated in the following manner,

if we adopt the definition proposed in an earlier part of this work (180, (4.) ),

for the spherical sum of two angles on a spheric surface :

^^ For any spherical triangle, the Spherical Sum of the three angles, if taken in

a suitable Order, is equal to Two Right Angles,''

(9.) In fact, when the rotation round a from b to c is negative, if we

spherically add the angle b to the angle a, the spherical sum so obtained is (by

the definition referred to) equal to the external angle at c ; if then we add to

this sum, or supplement of c, the angle c itself, we get a final or total sum,

which is exactly equal to tt ; addition of spherical angles at one vertex, and

therefore in one plane, being accomplished in the iisual manner; but the

spherical summation of angles with different vertices being performed according

to those new rules, which were deduced in the Ninth Section of Book II.,

Chapter I. ; and were connected (180, (5.) ) with the conception of angular

transvection, or of the composition of angtilar motions, in different and successive

planes.

(10.) Without pretending to attach importance to the following notation,

we may just propose it in passing, as one which may serve to recall and

represent the conception here referred to. Using a plus in parentheses, as a

symbol or characteristic of such spherical addition of angles, the formula I. may

be abridged as follows

:

XlI...c(+)B(+)A = 7r;
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the symbol of an added angle being written to the left of the symbol of the

angle to which it is added (comp. 264, (4.) ) ; because such addition corresponds

(as above) to a multiplication of versors, and we have agreed to write the symbol

of the multiplier to the left* of the symbol of the multiplicand^ in every multi-

plication of quaternions.

311. There is, however, another view of the important equation 310, I.,

according to which it is connected rather with addition of arcs (180, (3.) ), than

with addition of angles (180, (4.) j
; and may be interpreted, and proved aneio,

with tlie help of the supplementary or polar triangle, a'b'c', as follows.

(1.) The rotation round a from b to c being still supposed to be negative,

let a', b', g' be (as in 175) the positive poles of the sides bc, ca, ab ; and let

a, /3', y ^e their unit-vectors. Then, because the rotation round a from 7'

to /3' is positive (by 180, (2.)), and is in quantity the supplement of the

spherical angle A, the product y(i' will be (by 281, (2.), (3.) ) a versor, of

which a is tlie axis, and a the angle ; with similar results for the two other

products, uy\ /3V.

(2.) If then we write (comp. 291),

I...a'=UV^7, i3'=UV7a, / = UVa|3,
supposing that

II. ..Ta = Tj3 = T7 = l, and III. . . SajSy >

we shall have (comp. again 180, (2.) ),

lY. . . a = UV/iS', i3
= UVaY, 7 = UVi3V,t

and

V. . . A = Z7'i3', b = z«Y, c = z/3V;

whence (by 308 or 309) we have the following exponential expressions for these

three last products of unit-lines.

2a. 2b 20

YI. ..7'i3'=a-; ay=(f', (5V = y'^

.

(3.) Multiplying these three expressions, in an inverted order, we have,

therefore, the new product

:

2o 2b 2a

YII. . . 7- /3^ a- = 15V. aY. Yi^' = y'(5'V' = - 1

;

and the equation 310, I. is in this waj proved anew.

* Compare the Note to page 147.

t [Here UViS'y' = UYYyaYap = U (- oSa^y) = - aUSajSy.]
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(4.) And because, instead of YI., we might have written,

P 7 «

we see that the equation to be proved may be reduced to the form of the

identiti/

TY ^ " T' -4. 1 .

and may be interpreted as expressing, what is evident, that if a point be

supposed to move first along the side b'c', of the polar triangle a'b'c', from b'

to c' ; then along the successive side c'a', from c' to a' ; and finally along the

remaining side a'b', from a' to b', it will thus have returned to the position

from which it set out, or will on the whole have not changed place at all.

(5.) In this view, then, we perform what we have elsewhere called an

addition of arcs (instead of angles as in 310); and in a notation already used

(264, (4.) ), we may express the result by the formula,

X. . . n a'b' + n c'a' + o b'c' = ;

each of the two left-handed symbols denoting an arc, which is conceived to be

added (as a successive vector-arc, 180, (3.)), to the arc whose symbol immediately

follows it, or is written next it, but towards the right-hand.

(6.) The expressions YI. or YIII., for the exponential factors in 310, I.,

show in a new way the necessity of attending to the order of those factors, in

that formula : for if we should invert that order, without altering (as in 310,

YIII.) the exponents, we may now see that we should obtain this new product:

2a 2b 2c / f p.'

XI. ...a^^^Y = -h ^^ = ^ W^'<^J ;

P 7 "

which, on account of the diplanurity of the lines a, /3', 7', is not equal to

negative unity, but to a certain other versor; the properties of which may be

inferred from what was shown in 297, (64.), and in 298, (8.), but upon which

we cannot here delay.

312. In general (comp. 221), an equation, such as

l...q'=q,

between two quaternions, includes a system offour* scalar equations, such as the

following

:

lL..Sq'=Sq; Sa?'=Say; 8(5q = S^dq ; Syq'=Syq',

* The propriety, which such results as this establish, for the use of the name, Quaternions, as

applied to this whole Calculus, on account of its essential connexion with the number Fouii, does not

req^uire to be again insisted on.
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where a, /3, 7 may be any three actual and diplanar vectors : and conversely,

if a, /3, 7 be any three such vectors, then the four scalar equations II. repro-

duce, and are sufficiently replaced by, the one quaternion equation I. But

an equation between two vectors is equivalent only to a system of three scalar

equations, such as tlie three last equations II. ; for example, in 294, (12.), the

one vector equation XXII. is equivalent to the three scalar equations XXI.,

under the immediately preceding condition of diplanarity XX. In like manner,

an equation between two versors of quaternions,* such as the equation

III. ..U^=U?,

includes generally a system of three, but of not more than three, scalar equa-

tions; because the versor JJq depends generally (comp. 157) on a system of three

scalars, namely the two which determine its axis Ax . q, and the one which

determines its angle Lq; or because the versor equation III. requires to be

combined with the tensor equation,

IV. . . T/ = Tq, compare 187 (13.),

in order to reproduce the quaternion equation I. Now the recent equation,

310, I., is evidently of this versor-form III., if o, j3, 7 be still supposed to be

unit-lines. If then we met that equation, or if one of its/orm had occurred to

us, witliout any knowledge of its geometrical signification, we might propose to

resolve it, with respect to the three scalars a, b, c, treated as three unknown

quantities. The few following remarks, on the problem thus proposed, may
be not out of place, nor uninstructive, here.

(1.) Writing for abridgment,

V. . . cot A = t, cot B = «, cot c = V,

and
VI. . . s = - cosec A cosec b cosec c,

the equation to be resolved becomes (by 308, VII., or 309, XII.),

Yll...{v + y){H + (i){t + a)=S',

in which the tensors on both sides are already equal, because

VIII. ..s'={v' + 1) («^ + 1) {f + 1).

* An equation, I7p'=TJp, or U\Y = 'DV^, between two versors of vectors {lb6), or between the

axes of two quaternions (291), is equivalent only to a system of two scalar equations; because the

direction of an axis, or of a vector, depends on a system of two a7igular elements (111).

Hamilton's Elements of Quaternions. 3 G
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(2.) Multiplying the equation YII. bt/ t + a, and into t - a, and dividing

the result by f + 1, we have this new equation of the same/orm, but differing

by cyclicalpermutation (comp. 310, (3.) )

:

IX. . . (i5 + a) (t? + 7) (w + ^) = s
;

and in like manner,

X. . . (t* + /3) [t + a){v + y)= S.

(3.) Taking the half difference of the two last equations, and observing

that (by 279, lY., and 294, II.)

, J fjSay - ayjS) = Y . jSYay = 780/3 - aS^y,

lM3a -
«i3)

= Vi3a, i O7 -
7i3) = Vi37,

we arrive at this new equation, of vectorform :

XII. . . = vY(5a + tYfiy + 7Sa/3 - aS(5y
;

which is equivalent only to a system of two scalar equations, because it gives

= 0, when operated on by S . /3 (comp. 294, (9.) ).

(4.) It enables us, however, to determine the tioo scalars, t and v ; for if we

operate on it by S . a, we get (comp. 298, XXYI.),

XIII. . . t^a^y = a'^^y - SjSa 807 = S (YjSa .Yay)
;

and if we operate on the same equation XII. by S . 7, we get in like manner,

XIY. . . v^a^y = 7^Sai3 - 80787)8 = 8 (Ya7 .Y7i3).

(5.) Processes quite similar give the analogous result,

XY. . . wSaj37 = 13^870 - 8y/3 Si3a = 8 (Y7i3 .Yj3a)

:

and thus the problem is resolved, in the sense that expressions have been found

for the three sought scalars, t, u, v, or for the cotangents Y. of the three sought

angles a, b, c : whence the fourth scalar, s, in the quaternion equation YII.,

can easily be deduced, as follows.

(6.) Since (by 294, (6.), changing 8 to a, and afterwards cyclically per-

muting) we have, for any three vectors a, /3, 7, the general transformations,

^«8aj37 =Y(Y/3a.Ya7),

^Sa|37=Y(Y7/3.Yi3«),

780)87 =Y (Yay .Y7/3),

XYI. . . ^80)87 = Y (Y7)8 .Y)3«)

\ tSo
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the expressions XIII. XY. XIY. give,

XVII. . . {u + j3) SajSy = Y7i3 .YjSa ;

((t;+7)Saj37 = Ya7.Y7j3;

whence, by Yll.,

XYIII. . . s {Sa(5yf = {Yy^Y{Y(^af{YayY ;

and thus the remaining scalar, s, is also entirely determined.

(7.) And the equation YIII. may be verified, by observing that the

expressions XYII. give,

/(f + l)(Sa/37r=(Yi3a)'(Y«7)-

XIX. ..hu^+l) {Sai3yf = (Y7/3)^(Y/3a)»

;

( {v' + 1) (Sa/37)^ = C^«7)' (yyf^Y-

(8.) The equations XIII. XIY. XY. XYI. give, by elimination of Sa/37,

these new expressions

:

XX. . . at-' = (Y : S) (YjSa . Ya7) ;
(dir' = (Y : S) (Y7i3 . Y/3a)

;

7t;-^=(Y:S)(Ya7.Y73);

by comparing which with the formula 281, XXYIII., after suppressing (291)

the characteristic I., we find that the three scalars, t, u, v, are either 1st, the

cotangents of the angles opposite to the sides a, b, c, of the spherical triangle in

which the three given unit-lines a, j3, 7 terminate, or Ilnd, the negatives of those

cotangents, the angles themselves of that triangle being as usual supposed to be

positive (309, (10.) ), according as the rotation round a from /3 to 7 is negative

OT positive: that is (294, (3.)), according as Sa|37 > or < ; or finally, by

XYIII., according as the fourth scalar, s, is negative or positive, because the

second member of that equation XYIII. is always negative, as being the

product of three squares of vectors (282, 292).

(9.) In the 1st case, which is that of 309, (1.), we see then anew, by Y.

and YI., that we qxq permitted to interpret the scalars a, b, c, in the exponential

formula 310, I., as equal to the angles of the spherical triangle (8.), which are

usually denoted by the same letters. But we see also, that we may add any

even multiples of ir to those three angles, without disturbing the exponential

equation ; or any one even, and two odd multiples of tt, in any order, so as to

preserve a positive product of cosecants, because s is, for this case, negative in

YI.,by(8.).

3 G 2
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(10.) In the Ilnd case, which is that of 309, (11.)) we may, for similar

reasons, interpret the scalars a, b, c, iu the formula 310, I., as equal to the

negatives of the angles of the triangle; and as thus having, what YI. now

requires, because s is now positive (8.), a negative product of cosecants, while

their cotangents have the values required. But we may also add, as in (9.),

an^ multiples of ir, to the scalars thus found for tlie formula, provided that

the number of the odd multiples, so added, is itself even (0 or 2).

(11.) The conclusions of 309, or 310, respecting the interpretation of the

exponentialformula, are therefore confirmed, and might have been anticipated,

by the present new analysis : in conducting which it is evident that we have

been dealing with real scalars, and with real vectors, only.

(12.) If this last restriction were removed, and imaginary values admitted, in

the solution of the quaternion equation YII., we might have begun by operating,

as in II., on that equation, by the/owr characteristics,

XXI. . . S, S . a, S . j3, and S . 7 ;

which would have given, with the significations 297, (1.), (3.), of I, m, n, and e,

and therefore with the following relation between those /owr scalar data,

XXII. . . e2 = 1 - /2 - ;«2 - n"" + 2lmn,

a system of four scalar equations, involving the four sought scalars, s, t, u, v ;

from which it might have been required to deduce the (real or imaginary)

values of those four scalars, by the ordinary processes of algebra.

(13.) The four scalar equations, so obtained, are the following

:

' = e + It + mu + nv - tuv + s;

- ef + mtu + ntv + uv - I;

- - eu ^- Itu + tv + nuv + m - 2ln

;

= ev + tu + Itv + muv - n
;

eliminating uv and u between the three last of which, we find, with the help

of XXII., the determinant,

1, mt, ntv + et - I

m, f, Itv + ev - n

n, It - e, tv + In - 2ln

and analogous eliminations give,

XXY. ..0 = e{t' + l){eu-m + nl),

and XXYI. . . = {f +\) [e'uv- [m - nl) [n - Im) + (1 - P) {et-l+ mn)

}

.

XXIII.

XXIY. . . = = e{f + 1) {ev - w + Im) ;
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(14.) llejecting then the factor ^" + 1 we fiud, as the only real solution of

the problem (12.), the following system of values;

XXVII. . . et = l- mn ; eu = m - nl ; eD = n- lin
;

and XXYIII. . e^s = - (1 - /^) (1 - tif) (1 - n^)
;

which correspond precisely to those otherwise found before, in (4.) (5.) (6.),

and might therefore serve to reproduce the interpretation of the exponential

formula (310).

(15.) But on the purely algebraic side, it is found, by a similar analysis,

that the four equations XXIII. are satisfied also by a system oifour imaginary

solutions, represented by the following formulae :

(^*+l = 0; t'2+l = 0;
XXIX. .

.

\s = tuv -It- mil -nv-e = 0'y

which it may be sufficient to have mentioned in passing, since they do not

appear to have any such geometrical interest, as to deserve to be dwelt on here

:

though, as regards the consistency of the different processes employed, it may

be remembered that in passing (2.) from the equation VII. to IX., after

certain preliminary multiplications, we divided by f + 1, aa we were entitled

to do, when seeking only for real solutions, because t was supposed to be a

scalar.

(16.) This seems to be a natural occasion for remarking that the following

general transformation exists, whatever three vectors may be denoted by a, /3, 7 :

XXX. . . S (VjSy .Yya . VajS) = - (SajSy)^
;

which proves in a new way (com,p. 180), that the rotation round the line VjSy,

from Yya to Va/3, is ahcays positive ; or is directed in the same sense (281, (3.)),

as the rotation round Va/3 from a to j3, &o.

(17.) In like manner we have generally,

XXXI. . . S (Vaj3 . Vya . VjSy) = + (80/37)%

and XXXII. . . S (V7/3 .Va7 . V/3a) = + (Sa/37)^

;

so that the rotation roundYjl^ from Vay toYfta is negative, whatever arrange-

ment the three diplanar vectors a, (5, 7 may have among themselves.

(18.) If then a'', b"', c^' be the negative poles of the three successive sides,

BC, CA, AB, of any spherical triangle^ the rotation round a!' from b'^ to c" is

I
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negative: which is entirely consistent with the opposite result (180), respecting

the system of the three podtive poles a', b', c\

(19.) A quantitative interpretation of the equation XXX. may also be easily

assigned : for we may infer from it (by 281, (4.), and 294, (3.) ) that if oabc

he any pyramid, and if normals oa', ob', oc' to the three faces boc, coa, aob have

their lengths numerically equal to the areas of those faces (as bearing the same

ratios to units, &c.), then (with a similar reference to units) the volume of the

new pyramid, oa'b'c', will he three quarters of the square of the volume of the old

pyramid, oabc.

313. But an allusion was made, in 310, to an extension of the exponential

formula which lias lately been under discussion ; and in fact, that formula

admits of being easily extended, from triangles to polygons upon the sphere :

for we may write, generally,

L.^an" a„_i - . . . a2 - ai '^ = (- l)**,

if AiAj . . . A„-i An be any spherical polygon, and if the scalars Ai, a^, ... in the

exponents denote the positive or negative angles of that polygon, considered as

the rotations a^AiAs, A1A2A3, . . . namely those from AiA„ to AiAz, &c. ; while w

is any positive whole number* > 2.

(1.) One mode of proving this extended formula is the following. Let

oc = 7 be the unit-vector of an arbitrary point c on the spheric surface ; and

conceive that arcs of great circles are drawn from this point c to the n suc-

cessive corners of the polygon. We shall thus have a system of n spherical

triangles, and each angle of the polygon will (generally) be decomposed into

two (positive or negative) partial angles, which may be thus denoted

:

JLX. . . CAxAg = A 1, CA2A3 = A 2) • • •
5

III. . . A„AiC = a'\, A1A2C = a"2, . . .

;

so that, with attention to signs of angles in the additions,

IV. . . Ai = a'i + a"i, A2 = A'2 + a"2, &o.

Also let

V. . . A2CA1 = Ci, A3CA2 = C2, &o.

;

and therefore

VI. . . Ci + C2 + . . + c„ = an even multiple of tt,

which reduces itself to 27r in the simple case of a polygon with no re-entrant

angles, and with the point c in its interior.

* The formula admits of interpretation, even for the case « = 2.
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(2.) Then, for the triangle cAjAz, of which the angles are Cj, a'i, a!\, we

have, by 310, III., the equation,

2a"2 2a'i 2c
1

YII. . . a.~ ai~^ = - 7 ^
;

and in like manner, for the triangle CA2A3, we have

2a"3 2a'2 2C2

YIII. . .
03"^ 02^= - 7'

'^
, &c.

But, when we multiply YII. by YIII., we obtain, by lY., the product,

2a"3 2a2 2a'i 2(Oi + c2)

IX. . . 03 " 02 " oi " = + 7 ""
;

and so proceeding, we have at last, by YI., a product of the form,

2a" 1 2a„ 2A2 2a'i

X. . . ai~^ a^ ... a^ a^ = (- 1)"

;

2a"i 2a",

which reduces itself to I., when it is multiplied hy a " ^ and into a "" (comp.

310, (3.) ). The theorem is therefore proved.

(3.) In words (comp. 310, (8.) ),
" the spherical sum of the successive angles

of ant/ sphericalpolygon, if taken in a suitable order, is equal to a multiple of two

right angles, nhich is odd or even, according as the number of the sides (or corners)

of the polygon is itself odd or even": the definition formerly given (180, (4.) ),

of a Spherical Sum of Angles, being of course retained. And the reasoning

may be briefly stated thus. When an arbitrary point c is taken on the

spherical surface, as in (1.), the sjjherical sum of the two partial angles, at the

ends of any one side, is the supplement of the angle which that side subtends, at

the point c ; but the sum of all such subtended angles is either four right angles,

or some whole multiple thereof : therefore the sum of their supplements can

differ only by some such multiple from n-rr, if n be the number of the

sides.

(4.) Whatever that number may be, if we denote by pn the exponential

product in the formula I,, we have for every vector p, and for every quaternion q,

the equations

:

XI. . . pnpPn^ = p ; XII. . . i^nqp^i'^ = ?

;

whereof the former may (by 308, (8.) ) be thus interpreted

:

^^ If any line op, drawn from the centre o of a sphere, be made to revolve

conically round any n radii, gai, . . oAn, as n successive axes of rotation, through
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angles equal respectively to the doubles of the angles of the sphericalpolygon Ai . . An,

the line will be brought back to its initial position, by the composition of these

n rotations

P

(5.) Another way of proving the extended formula I., for any spherical

polygon, is analogous to that which was employed in 311 for the case of a

triangle on a sphere, and may be stated as follows. Let a'i, a'z, . . . h!n be the

positive poles of the arcs A1A2, AjAs, . . . a„Ai ; and let a'l, a'l, ...an be the

unit-vectors of those n poles. Then the point Ai is the positive pole of the

new arc a'ia'„, and the angle Ai of the polygon at that point is measured by

the supplement of that arc ; with similar results for other corners of the

polygon. Thus we have the system of expressions (comp. 311, VI.) :

2a, 2a„

XIII. . . oi = a 1 a M ; . . . a^ '^ = a „ a n-1

)

so that the product ofpowers in I. is equal to the following product of n squares

of unit-lines, and therefore to the n*^ power of negative unity.

Xiy. . . a'nnn-i . a'n-ia'n.z • • • a'att'i • a'ia'„ = (- If ;

and thus the extended theorem is proved anew.

(6.) This latter process may be translated into another theorem of rotation,

on wliich it is possible that we may briefly return,* in the Second and last

Chapter of this Third Book, but upon which we cannot here delay.

(7.) It may be remarked however here (comp. 309, XII.), that the extended

exponentialformula I. may be thus written :

XV. . . Ca»S An . Cart-iS A„_i . . . COzS A2 . COiS Ai = (- 1)**.

(8.) For example, if abcd be any spherical quadrilateral, of which the

angles (suitably measured) are denoted by a, . . d, so that a represents the

positive or negative rotation from ad to ab, &c., while a, (3, j, S are the

unit vectors of its corners, then

XVI. . . cSsD . CySC . Cj3sB . CaSA = + 1.

(9.) Hence (comp. 309, XIII.), we may write also,

XVII. . . (cos c - 7 sin c) (cos d - S sin d) = (cos b + j3 sin b) (cos a + a sin a)
;

and therefore, by taking scalars on both sides, and changing signs,

XVIII. . . - cos c cos D + sin c sin d cos cd = - cos b cos a + sin b sin a cos ba
;

Compare 297, (24.).
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in fact, each member of this last formula is equal (by 309, XIV.) to the

cosine of the angle aeb, or ced, if the opposite sides ad, bc of the quadri-

lateral intersect in e.

(10.) Let p = OF be the unit vector of an
i/
Ji/th point, p, upon the spheric

surface ; then operating by S . p on XYII., we obtain this other general

formula,

fO = sin A cos B cos ap + sin b cos a cos bp + sin a sin b sin ab sin pq
XIX..

+ sm c cos D cos cp + sin d cos c cos dp + sin c sm d sin cd sin pr
;

in which the sines of the sides ab, cd are treated as always positive ; but the

sines of the perpendiculars pq and PR, on those two sides, are regarded as

positive or negative, according as the rotations round p, from a to b and from

c to d, are negative or positive : and hence, by assigning particular positions

to p, several other but less general equations of spherical tetragonometry can

be derived.

(11.) For example, if we place p at the intersection, say f, of the opposite

sides ab, cd, the two last perpendiculars will vanish, and two of the six terms

will disappear, from the general formula XIX. ; and a similar reduction to

four terms will occur, if we make the arbitrary point p the pole of a side, or

of a diagonal.

314. The definition oi the power a', which was assigned in 308, enables us

to form some useful expressions, by quaternions, for circular, elliptic, and spiral

loci, in a given plane, or in space, a few of which may be mentioned here.

(1.) Let a be any given unit-vector oa, and j3 any other given line ob,

perpendicular to it; then, by the definition (308), if we write,

I. . . op = p = u'id, Ta = 1, Sa/3 = 0,

the locus of the point p will be the circumference of a circle, with o for centre,

and OB for radius, and in a plane perpendicular to oa.

(2.) If we retain the condition Ta = 1, but not the condition Saj3 = 0, then

the product a'/3 will be in general a quaternion, and not nierely a vector ; but

if we take its vector-part (292), we can form this new vector-expression,

II. .. OP = |t) = Y. a'j3 = )3 cos a? + Y sin x,

where
III. ..2x= tn, and lY. . . 7 = oc = Yaj3

;

and now the locus of p is a plane ellipse, with its centre at o, and with ob and

oc for its major and minor semiaxes : while the angular quantity, x, is what is

often called the excentric anomaly,

Hamilton's Elements of Quaternions. 3 H
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(3.) If we write, under the same conditions (2.),

V. . . Ob'=
i3'

= VjSa : a = a'y, and YI. . . op' = / = V,oa : a = aNpa,

SO that b'' and p' are the projections (203) of b and p on a plane drawn through o,

at right angles to the unit-line oa, we have then, by II., the equation,

VII. . . jo' = /3' cos ;» + 7 sin X = a'/3'

;

so that the locus of this projected point p' is a circle, with ob' and oc for two

rectangular radii.

(4.) Under the same conditions, the elliptic locus (2.), of the point p itself,

is the section of the right cylinder (compare 203, (5.) ),

YIII. . . TYap = TYaj3 = Ty,
made by the plane,

IX. . . = Sy/B/), or IX^ . . jS'Saio = Saj3S/3/> (comp. 298, XXYI.)

;

as a confirmation of which last form we have, by II. and lY.,

X. . . Sop = Saj3 cos X, S/3p = /3^ cos x.

(5.) If we retain the condition Saj3 = (1.), but not now the condition

Ta = 1, we may again write the equation I. for p ; but the locus of p will

now be a logarithmic spiral, with o for its pole, in tlie plane perpendicular

to OA ; because equal angular motions, of the turning line op, correspond now
to equal multiplications of the length of that line p.

(6.) For example, when the scalar exponent t is increased by 4, so that

the revolving unit line,

XL ..Up = Ua'.Ui3

returns (comp. 309, XXIY.) to the direction which it had before the increase

of t was made, the length Tp of the turning line p itself, or of the radius vector

of the locus, is multiplied bg Ta* ; which constant and positive scalar is not now

equal to unitg.

(7.) If we reject both the conditions (1.),

Ta = l, and SajS = 0,

80 that the line a, or the base of the power a*, is now neither an unit-line, nor

perpendicular to (5, namely to the line on which that power operates, as sl factor,

we muBt. again take vector parts, but we have now this new expression :

XII. . . OP = jo = Y. a'/3 = a' (j3 cos ic + 7 sin x)

;

in which we have written, for abridgment,

XIII.. .a = Ta, 7 = Y(Ua.i3).
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(8.) In this more complex case, the locus of p is dill a plane curve, and

may be said to be now an elliptic* logarithmic spiral; for if we suppress tbe

scalar factor, a*, we fall back on the/onw II., and have again an ellipse as the

locus : but when we take account of that factor, we find (corap. (2.) ) that equal

increments of excentric anomaly (x), in the auxiliary ellipse so determined, cor-

respond to equal multiplications of the length (Tp), of the vector of the new

spiral.

(9.) "We may also project b and p, as in (3.), into points b' and p", on the

plane through o perpendicular to oa, which plane still contains the extremity c

of the auxiliary vector y ; and then, since it is easily proved that y = Ua . (5\

the equation of the projected spiral becomes (with Ta > or < 1),

Xiy. ,.p'=a' (/3' Qoax + y sin x) = a'jS'

;

so that we are brought back to the ease (5.), and the projected curve is seen to

be a logarithmic spiral, of the known and ordinary kind.

(10.) Several spirals of double curvature are easily represented, on the same

general plan, by merely introducing a vector-term proportiotial to t, combined

or not with a constant vector-term, in each of the expressions above given, for

the variable vector p. For example, the equation,

XY. .,p = cta + a% with Ta = 1, and Sa/3 = 0,

while c is any constant scalar different from zero, represents a helix, on the right

circular cylinder VIII.

(11.) And if we introduce a new and variable scalar, u, as o. factor in the

right-hand term, and so write,

XVI. . . p = cta + na%

we shall have an expression for a variable vector p, considered as depending on

two variable scalars {t and u), which thus becomes (99) the expression for a

rector of a surface : namely of that important Screw Surface, which is the locus

of the perpendiculars, let fall from the various points of a given helix, on the

axis of the cylinder of revolution, on which that helix, or spiral curve, is

traced.

* The usual logaiithmic spiral might perhaps be called, by contrast to this one, a circular loga-

rithmic spiral. Compare the following sub-article (9.), respecting the projection of what is here called

an elliptic logarithmic spiral.

3H2
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315. Without at present pursuing farther the study of these loci by quater-

nions, it may be remarked that the definition (308) of the power a', especially

for the case when Ta = 1, combined with the laws (182) of i, j, k, and with

the identification (295) of those three important right versors with their own

indices, enables us to establish the following among other transformations,

which will be found useful on several occasions.

(1.) Let a be any unit-vector, and let t be ani/ scalar; then,

I. . .S.a-* = S.a*; 11. . . S . a"*'^ = S . a*+^ = - S. a*-^

III. . . a'= S . a'+ aS . a''' ; lY. . . a"^ = S . a' - aS . a'"'
;

Y. . .(S.a')^+(S.a'-0' = aV*=l.

(2.) Let a and i be any tico unit-vectors, and let t be still any scalar ; then

YI. . . S . a' = S . t' ; YII. . . Y. a' = aS . a'-' ',

YIIL . .«Y.a'=a^S.a*-' = S.a'+^

(3.) Hence, by the laws of i, j, k,

IX. . . eY. i' =jY.f =kY.k'=S. a^'K

(4.) We have also, by the same principles and laws,

X. . . iY.f = Y.k*; yY. k' = Y. i' ; kY. i' = Y.J' ;

XL . . jY. i' = -Y.k'; kY.j' = - Y. i' ; iY. k' = - Y.f.

(5.) The expression 308, (10.), for an arbitrary vector p, may be put under

the following form

:

XII. . . p = rY. k"^^' + rk-^'Y. i^'.*

(6.) And it may be expanded as follows

:

XIII. , . p-=r[{i cos tir +J sin tw) sin sir + k cos sir\.

(7.) We shall return, briefly, in the Second Chapter of this Book [337],

on some of,these last expressions, in connexion with differentials and derivatives

of powers of vectors ; but, for the purposes of the present section, they may

sufl&ce.

* [Since f = y^i^'-i + Sk'^' this follows at once from p = rk' j-' k^--, remembering that

jk^-t = kt-^j = kH.}
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SECTION 11.

On Powers and I^ogarithms of Diplanar Q,uaternions ; with some
Additional Formulee.

316. We shall conclude the present Chapter with a short Supplementary

Section, in which the recent definition (308) of a power of a vector^ with a

scalar exponent, shall be extended so as to include the general case, of a Power

of a Quaternion, witli a Quaternion Exponent, even when the two quaternions

so combined are diplanar : and a connected definition shall be given (consistent

with the less general one of the same kind, which was assigned in the Second

Chapter of the Second Book), for the Logarithm ofa Quaternion in an arbitrary

Plane :
* together with a few additional Formulee, which could not be so con-

veniently introduced before.

(1.) We propose, then, to write, generally,

I.. .„.l,|,j^, _£__,&„.;

q being any quaternion, and e being the real and known base of the natural

(or Napierian) system of logarithms, of real and positive scalars : so that (as

usual),

II. . . £ = e^ = 1 + i + -il + &c. = 2-71828. . .

J. 1 •

«

(Compare 240, (1.) and (2.).)

(2.) We shall also write, for any quaternion q, the following expression

for what we shall call its principal logarithm, or simply its Logarithm

:

III.. Aq = lTq + Lq.VYq;

and thus shall have (comp. 243) the equation,

lY. . .
£i« = q.

(3.) When q is any actual quaternion (144), which does not degenerate (131)

into a negative scalar, the formula III. assigns a definite value for the logarithm,

\q ; which is such (comp. again 243) that

V. . . SI? = ITg; YI. . . Yl? = zg.UY?;

YIl. . . UYl? = UY? ; YIII. . . TYl? = z ?

;

* The quaternions considered, in the Chapter referred to, were all supposed to he in the plane of
the right versor i. But see the Second J^ote to page 277.
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the scalar part of the logarithm being thus the (natural) logarithm of the tensor)

and the vector part of the same logarithm \q being constructed by a line in the

direction of the axis Ax . q, of which the length bears, to the assumed tinit of

length, the same ratio as that which the angle L q bears, to the usual unit of

angle (comp. 241, (2.), (4.)).

(4.) If it were merely required to satisfy the equation,

IX. ..s^'=?,

in which q is supposed to be a given and actual quaternion, which is not equal

to any negative scalar (3.), we might do this by writing (compare again 243),

X. . . / = (log ?)n = 1? + 2mrVNq,

where n is any whole number, positive or negative or null ; and in this view,

what we liave called the logarithm, \q, of the quaternion q, is only what may

be considered as the simplest solution of the exponential equation IX., and may,

as such, be thus denoted :

XL..lg=(logg)o.

(5.) The excepted case (3.), where g' is a negative scalar, becomes on this

plan a case of indetermination, but not of impossibility : since we have, for

example, by the definition III., the following expression for the logarithm of

negative unity,

XII. ..l(-l) = 7rv/-l;

which in itsform agrees with old and well-known results, but is here inter-

preted as signifying any unit-vector, of which the length bears to the unit of

length the ratio of tt to 1 (comp. 243, YII.).

(6.) We propose also to write, generally, for any two quaternions, q and g',

even if diplanar, the following expression (comp. 243, (4.) ) for what may be

called the principal value of the power, or simply the Power, in which the

former quaternion q is the base, while the latter quaternion q' is the exponent :

XIII. .
.??'=£9'i3;

and thus this quaternion power receives, in general, with the help of the defini-

tions I. and III., a perfectly definite signification.

(7.) When the base, q, becomes a vector, p, its angle becomes a right angle',

the definition III. gives therefore, for this case,

XIY. . Ap = \Tp^%Vp',

and this is the quaternion which is to be multiplied by q', in the expression,

XV. ..p^'= e*'^".
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(8.) When, for the same vector-base, the exponent q becomes a scalar, t, the

last formula becomes

:

XVI. ../>'= 6'^" = V.£*up^ if 2x = tiT',

and because, by I., the relation (J^pY = - 1 gives,

XVII. . . c*^'' = cos a; + Up sin x, or briefly, XYII'. . . f^f" = cpsx,

we see that the former definition, 308, I., of the power a\ is in this way

reproduced, as one which is included in the more general definition XIII., of the

power q^'
; for we may write, by the last mentioned definition,

XYIII. . . (Up)' = E*up = ops y (comp. 234, VIII.)

with the recent values XVI. and XVII., of x and c^^p.

(9.) In the present theory of diplanar quaternions, we cannot expect to find

that the sum of the logarithms of any two proposed factors, shall be generally

equal to the logarithm of the product ; but for the simpler and earlier case of

complanar quaternions, that algebraic property may be considered to exist, with

due modifications for multiplicity of value*

(10.) The definition III. enables us, however, to establish generally the

very simple formula (comp. 243, II. III.)

:

XIX. . . 1? = 1 (T? .Vq) = IT? + lU?

;

in which (comp. (3.) ),

XX...lU? = z?.UV? = Vl?; XXI. ..TlU? = z?; XXII. . . UlU? = UV?.

(11.) We have also generally, by XIII., for any scalar exponent, t, and

any quaternion base, q, the power,

XXIII. . . ?' = £«« = (T?)'. (cos t Lq^ UV? . sin if Z ?)

;

or briefly,

XXIir. . . J*
= Tj'. cus t Lq, if u = UV?

;

in which the parentheses abput Tg- may be omitted, because

XXIV. . . T (?') = (T?)' = T?' (comp. 237, II.).

* In 243, (3), it might have been observed, that every value of each metnber of the formula IX.,

there given, is one of the values of the other member ; and a similar remark applies to the formulae I.

and II. of 236.
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(12.) When the base and exponent of a power are two rectangular vectors,

p and p', then, whatever their lengths may be, the product p'lp is, by XIV., a

vector ; but c" is always a versor,

XXV. . . e" = cos Ta + Ua sin To, if a be any vector

;

we have therefore,

XXVI.. .T.p'>'= 1, if 8,pp'=0',

or in words, the power p^' is a versor, under this condition of rectangularity.

(13.) For example (comp. 242, (7.),* and the shortly following formula

XXVIII.),
XXVII. . . i^ = e-^'i^ =-k', f= £*i-^' = + ^

;

and generally if the base be an unit-line^ and the exponent a line of any length,

but perpendicular to the base, the axis of the power is a line perpendicular to both
;

unless the direction of that axis becomes indeterminate, by the potcer reducing

itself to a scalar, which in certain cases may happen.

(14.) Thus whatever scalar c may be, we may write,

XXVIII. . . i'J = ^'^'' - f^""- = cos ^ - ^ sin ^

;

this power, then, is a versor (12.), and its axis is generally the line + h ; but in

the case when c is any ivhole and even number, this versor degenerates into posi-

tive or negative unity (153), and the axis becomes indeterminate (131).

(15.) If, for any real quaternion q, we write again,

XXIX. ..UV? = «?, and therefore XXX. . . «;g = <?i', and XXXI. ..«?' = - 1,

the process of 239 will hold good, when we change iio v, the series, denoted

in I. by £*, is therefore always at last convergent,'^ however great (but finite) the

tensor Tg- may be ; and in like manner the two following other series, derived

from it, which represent (comp. 242, (3.) ) what we shall call, generally, by

analogy to known expressions, the cosine and sine of the quaternion q, are

always ultimately convergent:

XXXII. . . COS} = i {,«• + a-«) = 1 - j^ + 173^ - &"•

;

XXXIII. .
.
sins = i- (.- - .-) -{-rh^ T:d:-5 " *«•

* In the theory of complanar quaternionn, it was found convenient to admit a certain mnlliplidty

of value for a power, when the exponent -fi as not a whole number ; and therefore a notation for the

principal value of a power was employed, with which the conventions of the present section enable iis

now to dispense.

t In fact, it can be proved that this final convergence exists, even when the quaternion is imagi-

nary, or when it is replaced by a biquaternion (214, (8.) )
; but we have no occasion here to consider

any but real quaternions.

I

i
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(16.) We shall also define that ihe secant, cosecant, tangent^ and cotangent

of a quaternion, supposed still to be real, are the functions

:

2 2v
XXXIY. . . sec g =

^^i^^j-:;;^
; cosec ? = - _ ^_„^

,

XXXV. . . tan q = —\ ; GOtq= — —
;

and thus shall have the usual relations, sec g = 1 : cos q, &o.

(17.) We shall also have,

XXXVI. . . 6"* = cos g' + V sin q,
£-^« = cos g^ - u sin q ;

and therefore, as in trigonometry (oomp. 315, (1.) ),

XXXYII. . . (cos qY + (sin qf = £««. e-^« = e" = 1,

whatever quaternion q may be.

(18.) And all theformulce of trigonometry, for cosines and sines of sums of

two or more arcs, &c., will thus hold good /or quaternions also, provided that the

quaternions to be combined are in any common plane ; for example,

XXXVIII. . . cos (/ + g) = cos g' cos q - sin ^ sin q, if / ||| q.

(19.) This condition of complanarity is here a necessary one ; because (comp.

(9.) ) it is necessary for the establishment of the exjjonential relation between

sums and powers.

(20.) Thus, we may indeed write,

XXXIX... 6«'^? =£«'.£?, if q'lWq;

but, in general, the developments of these two expressions give the difPerenoo,

XL. . .
£''+* - £^'£5 = + terms of third and higher dimensions

;

and XLI. . .
i [qq' - q'q) = V (Vg . V/),

an expression which does not vanish, when the quaternions q and q' are

diplanar.

(21.) A few supplementary formulae, connected with the present Chapter,

may be appended here, as was mentioned at the commencement of this Article

(J316). And first it may be remarked, as connected with the theory oi jjowers

of vectors, that if a, )3, 7 be any three unit-lines, oa, ob, oc, and if o- denote the

Hamilton's Elements of Quaternions. 3 I
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area of the spherical triangle abc, then the formula 298, XX. may be thus

written :

XLn...|±^.x±|.&±i = „V;
p + 7 a + p 7 + a

the exponent being here a scalar.

(22.) The immediately preceding formula, 298, XIX., gives for any three

vectors, the relation

:

XLIII. . . (UajSy)^ + (UjSy)* + {TJayf + (Ua/3)^ + 4Uay . SUaj3 . SUjSy = - 2
;

for example, if a, j3, 7 be made equal to i,j\ Jc, the first member of this equa-

tion becomes, 1-1-1-1 + = - 2.

(23.) The following is a much more complex identity, involving as it does

not only three arbitrary vectors a, (5, 7, but also four arbitrary scaktrs, a, b, c,

and r ; but it has some geometrical applications, and a student would find it a

good exercise in transformations, to investigate a proof of it for himself. To

abridge flotation, the three vectors a, j3, 7, and the three scalars Oy b, c, are

considered as each composing a cycle, with respect to which are formed sums S,

and products H, on a plan which may be thus exemplified :

XLIV. . . ^aY(3y = aY^y + bYya + cYa/3 ; Ua' = a'b'e\

This being understood, the formula to be proved is the following

:

XLY. . . (Saj37)^ + (2ayi37)'' + r^i^^YfiyY - /-(Sfl - 7) Y

+ 2n {r' + Sfty + be) = 2n (r^ + a') + 2Ua'

+ S(r^ + a' + a') {{YfdyY + 2bc{r' + S[5y) - r' (j3 - 7)'} ;

the sign of summation in the last line governing all that follows it.

(24.) For example, by making the four scalars a, b, e, r each = 0, this

formula gives, for any three vectors a, )3, 7, the relation,

XLYI. . . {8al5yf + 2nSyS7 = 2Ua' + 2 . «^(Yj37)^

;

which agrees with the very useful equation 294, LIII., because

,
XLVII. . . a^(Vi37)^ = a'{{S(5yY - jSyj = (aSjSy)^ - na\

(25.) Let a, j^, 7 be the vectors of three points a, b, c, which are exterior to

a given sphere, of which the radius is r, and the equation is,

XLVIII. ..p' + r' = (comp. 282, XIII.)

;
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and let a, h, c denote the lengths of the tangents to that sphere, whicli are

drawn from those three points respectively. We shall then have the rela-

tions :

XLIX. . . a^ + a^ = i3' + 5' = 7' + c^ = - r'
;

thus r^ + a^ = -a^y &o., and the second member of the formula XLY. vanishes;

the first member of that formula is therefore also equal to zero, for these

significations of the letters : and thus a theorem is obtained, which is found

to be extremely useful, in the investigation by quaternions of the system of

the eight (real or imaginary) small circles^ which touch a given set of three small

circles on a sphere.

(26.) We cannot enter upon that investigation here ; but may remark that

because the vector p of the foot p, of the perpendicular op let fall the origin o

on the right line ab, is given by the expression,

as may be proved in various ways, the condition of contact of that right line ab

with the sphere XLVIII. is expressed by the equation,

LI. . . TY/Sa = rT (a - /3) ; or LII. . . (Vj3a)^ = r^ (« - /3f

;

or by another easy transformation, with the help of XLIX.,

LIIL . . (r^ + Saj3)^ = {r' + a') {r^ + ^) = a''b\

(27.) This last equation evidently admits of decomposition into twofactors,

representing two alternative conditions, namely,

LIY. . . r^ + Sa/3 - fiJ = ; LY. . . r' + Sa/3 + a5 = ;

and if we still consider the tangents a and h (25.) q,q positive, it is easy to prove,

in several different ways, that the first or the second factor is to be selected,

according as the point p, at which the line ab touches the sphere, does or does

not fall between the points a and b ; or in other words, according as the length

of that line is equal to the sum, or to the difference, of those two tangents.

(28.) In fact we have, for the first case,

LYI. .
. T(/3 - a) = 6 + a, or = (jS - a)^ + (6 + «)^ = - 2 (r^ + Saj3 - ah),

in virtue of the relations XLIX. ; but, for the second case,

LYIL..T(/3-a) = +(6-a), or = (/3 -a)^+ (6 -a)^ = -2(r^ + Sa/3 + rt6)
;

312

k



428 ELEMENTS OP QUATERNIONS. [III.i.§ll.

and it may be remarked, that we might in this way have been led to find the

system of the two conditions (27.) and thence the equation LIII., or its trans-

formations, LII. and LI.

(29.) We may conceive a cone of tangents from a, circumscribing the sphere

XLYIII., and touching it along a small circle^ of which the plane, or the polar

plane of the point a, is easily found to have for its equation,

LVIII. ..Sap + r' = (comp. 294, (28.), and 215* (10.) )

;

and in like manner the equation,

LIX. . . Sj3/o + r' = 0,

represents the polar plane of the point b,. which plane cuts the sphere in a

second small circle : and these two circles touch each other, when either of the two

conditions (27.) is satisfied ; such contact being external for the case LIV., but

internal for the case LV.

(30.) The condition of contact (26.), of the line and sphere, might have been

otherwise found, as the condition of equality of roots in the quadratic equation

(comp. 216, (2.)),

LX. . . = (a;a + y^f + (a? + yYr\
or

LXI. . . = i»^(r^ + a') + 2xy{r^ + Sa3) + f{r' + /3')

;

the contact being thus considered here as a case of coincidence of inter-

sections.

(31.) The equation of conjugation (comp. 215, (13.)), which expresses that

each of the two points a and b is in the polar plane of the other, is (with the

present notations),

LXII. . . r' + Saj3 = ;

the equal but opjwsite roots of LXI., which then exist if the line cuts the

sphere, answering here to the well-known harmonic division of the secant line

ab (comp. 215, (16.)), which thus connects two conjugate points.

(32.) In like manner, from the quadratic equation 216, III., we get this

analogous equation.

LXIIL..S-Si^-S V^.VS =1,

connecting the vectors X, fi of any two points l, m, which are conjugate rela-

tively to the ellipsoid 216, II. ; and if we place the point l, on the surface, the
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equation LXIII. will represent the tangent plane at that point l, considered as

the locus of the conjugate point m ; whence it is easy to deduce the normal, at

any point of the ellipsoid. But all researches respecting normals to surfaces

can be better conducted, in connexion with the Differential Calculus of Qua-

ternions, to which we shall next proceed.

(33.) It may however be added here, as regards Poicers of Quaternions

with scalar exponents (11.), that the symbol q'rq~* represents a quaternion

formed from r, by a conical rotation of its axis round that of q, through an

angle = 2t Aq; and that both members of the equation,

LXIY. . . {qrq-J = qr^q-\

are symbols of one common quaternion.

[Some care must be taken in the interpretation of the expressions g-''*" and

{q^y\ By the definition XIII.,

This is quite consistent with the rule that in an operating product the

factor to the right operates first on the operand. If the expression lj«' had

been interpreted as equal to \q . q' instead of g'' . 1 g, then indeed the equality

(g?')2" = j2V' = £i?.8V' would have held good, but the general rule would

have been disobeyed.]
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CHAPTER II.

ON DIFFERENTIALS AND DEVELOPMENTS OF FUNCTIONS OF

QUATERNIONS; AND ON SOME APPLICATIONS OF QUATER-

NIONS, TO GEOMETRICAL AND PHYSICAL QUESTIONS.

SECTION L

On the Definition of Simultaneous Difibrentials.

317. In the foregoing Chapter of the present Book, and in several parts of

the Book preceding it, we have taken occasion to exhibit, as we went along,

a considerable variety of Examples, of the Geometrical Application of Quater-

nions : but tliese have been given, chiefly as assisting to impress on the reader

the meanings of new notations, or of neic combinations of symbols, when such

presented themselves in turn to our notice. In this concluding Chapter, we

desire to offer a few additional examples, of the same geometrical kind, but

dealing, more freely than before, with tangents and normals to curves and

surfaces ; and to give at least some specimens, of the application of quaternions

to Physical Inquiries. But it seems necessary that we should first estabKsh

here some Principles, and some Notations, respecting Differentials of Quater-

nions, and of their Functions, generally.

318. The usual definitions, of differential coefficients, and of derivedfunctions,

are found to be inapplicable generally to the present Calculus, on account of

the (generally) non-commutative character of quaternion-multiplication (168,

191). It becomes, therefore, necessary to have recourse to a neic Definition of

Differentials, which yet ought to be so framed, as tc be consistent with, and to

nclude, the usual Mules of Differentiation : because scalars (131), as well as

vectors (292), have been seen, to be included, under the general Conception

of Quaternions.
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319. In seeking for such a new definition, it is natural to go back to the

first principles of the whole subject of Differentials : and to consider how the

great Inventor of Fluxions might be supposed to have dealt with the question,

if he had been deprived of that powerful resource of common calculafion, which

is supplied by the commutative property of algebraic multiplication ; or by the

familiar equation,

xy = yxy

considered as a general one, or as subsisting for every pair offactors, x and y ;

while limits should still be allowed, but infinitesimaU be still excluded: and

indeed {\\e fluxions themselves should be regarded as generally finite,* according

to what seems to have been the ultimate view of Newton.

320. The answer to this question, which a study of the Principia appears

to suggest, is contained in the following Definition, which we believe to be a

perfectly general one, as regards the older Calculus, and which we propose to

adopt for Quaternions :

—

^^Simultaneous Differentials (or Corresponding Fluxions) are Limits of Equi-

miiltiplesf of Simultaneous and Decreasing Differences."

And conversely, whenever any simultaneous differences, of any system of

variables, all tend to vanish together, according to any law, or system of laws
;

then, if any equimultiples of those decreasing differences all tend together to

any system of finite limits, those Limits are said to be Simultaneous Differentials

of the related Variables of the System ; and are denoted, as such, by prefixing

the letter d, as a characteristic of differentiation, to the Symbol of each such

variable.

* Compare the remarks annexed to the Second Lemma of the Second Book of the Principia (Third

Edition, London, 1726) ; and especially the following passage (page 244)

:

" Neque enim spectatur in hoc Leramate magnitudo momentorum, sed prima nascentium proportio.

Eodem recidit si loco momentorum usurpentur vel velocitates inerementorum ac decrementorum (quas

etiam motiis, mutationes et fluxiones quantitatum nominare licet) vel finitas quievis quantitates velo-

citatihus hisce proportionales."

t As regards the notion of multiplying such differences, or generally any quantities which all

diminish together, in order to render their ultimate relations more evident, it may he suggested by

various parts of the Principia of Sir Isaac Newton ; but especially by the First Section of the First

Book. See for example the Seventh Lemma (p. 31), under which such expressions as the following

occur :
" intelligantur semper AB et AB ad puneta longinqua b et d prodnci," .... " ideoque rectae

semper finitae Ab, Ad, . . ." The direction, "ad puneta longinqua proJuci," is repeated in connexion

with the Eighth and Ninth Lemmas of the same Book and Section ; while under the former of those

two Lemmas we meet the expression, "triangula semper ftnita," applied to the magnijied representa-

tions of three triangles, which all diminish indefinitely together : and under the latter Lemma the words

occur, "manente longitudina3 Ae,^^ where Ae is a finite and cotistant line, obtained by a constantly

increasing multiplication of a constantly diminishing line AE (page 33 of the edition cited).
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321. More fully and symbolically, let

1. . . q, r, s, . . .

denote ant/ system of connected variables (quaternions or others) ; and let

II. . . Aq, Ar, As, . . .

denote, as usual, a system of their connected (or simultaneous) differences ; in

such a manner that the sums,

III. . . «7 + Aq, r + Ar, s + As, . .

.

shall be a new system of variables, satisfying the same laws of connexion, what-

ever they may be, as those which are satisfied by the old system I. Then, in

returning gradually from the new system to the old one, or in proceeding

gradually from the old to the new, the simultaneous differences II. can all be

made (in general) to approach together to zero, since it is evident that they may

all vanish together. But if, while the differences themselves are thus supposed to

decrease* indefinitely together, we multiply them all by some one common but

increasing number, n, the system of their equimultiples,

lY. . . nAq, nAr, «As, . . .

may tend to become equal to some determined system of finite limits. And

when this happens, as in all ordinary cases it may be made to do, by a suitable

adjustment of the increase of n to the decrease of Aq, &c., the limits thus obtained

are said to be simultaneous differentials of the related variables, q, r, s ; and are

denoted, as such, by the symbols,

Y. . . Aq, dr, ds, . . .

SECTION 2.

JEleinentary Illustrations of the Definition, from Algebra and
Creometry.

822. To leave no possible doubt, or obscurity, on the import of the

foregoing Definition, we shall here apply it to determine the differential of

a square, in algebra, and that of a rectangle, in geometry ; in doing which we

shall show, that while for such cases the old rules are reproduced, the differen-

tials treated of need not be small; and that it would be a vitiation, and not a

* A quaternion may be said to decrease, when its tensor decreases ; and to decrease indejimtely,

when that tensor tends lo zero.
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correction, of the results, if any additional terms were introduced into their

expressions, for the purpose of rendering all the differentials equal to the cor-

responding differences : though some of them may be assumed to be so, namely,

in the first Example, one, and in the second Example, two.

(1.) In Algebra, then, let us consider the equation,

l...y = a^,

which gives,

II. . . y + Ay = (j7 + Air)',

and therefore, as usual,*

III. . . Ay = 2x^x + Aaj'

;

or what comes to the same thing,

ly. . . wAy = 2xn^x + M~^ {n^xYy

where n is an arbitrary multiplier, which may be supposed, for simplicity, to

be a positive whole number.

(2.) Conceive now that while the differences A« and Ay, remaining always

connected with each other and with x by the equation III., decrease, and

tend together to zero, the number n increases, in the transformed equation lY.,

and tends to infinity, in such a manner that i\iQ product, or multiple, nAx, tends

to some finite limit a ; which may happen, for example, by our obliging Ai» to

satisfy always the condition,

V. . . Aa; = n~^a, or n^x = a,

after a previous selection of some given and finite value for a.

(3.) We shall then have, with this last condition V., the following ex-

pression by IV., for the equimultiple nAy, of the other difference, Ay :

VI. . . nAy = 2xa + n~^ a"^ = b + n~^ a^, if b = 2xa.

But because a, and therefore rt% is given and finite, (2.), while the number n

increases indefinitely, the term w~^ a^, in this expression VI. for nAy, indefi-

nitely tends to zero, and its limit is rigorously null. Hence the two finite

quantities, a and b (since x is supposed to be finite), are two simultaneous limits,

to which, under the supposed conditions, the ttvo equimultiples, nAx and nAy,

* We write here, as is common, Aa;^ to denote (A.r)2 ; while A . x^ would he written, on the same

known plan, for A (x^), or Ay. In like manner we shall write ix^, as usual, for (it;)* ; and shall

denote d(a:2) by d . x^. Compare the notations ^q^, S . q^, and \q^, V . q^, in 199 and 204.

Hamilton's Elements of Quaternions. 3 K
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tend'* they are, therefore, by the definition (320), simultaneous differentials of

X and y : and we may tcrite accordingly (321),

YII. . . da; = a, dy = 5 = 2xa
;

or, as usual, after elimination of «,

YIII. .. diy = di . x" = 2x^x.

(4.) And it would not improve, hut vitiate, according to the adopted defi-

nition (320), this usual expression for the differential of the square of a variable x

in algebra, if we were to add to it the tenn dx"^, in imitation of the formula III.

for the difference A . a;^ For this would come to supposing that, for a given

and finite value, a, of dx, or of nAx, the term n'"^a^, or n~^da;'^, in the expres-

sion YI. for «Ay, could fail to tend to zero, while the number, n, by which the

square of dx is divided, increases without limit, or tends (as above) to infinity.

(5.) As an arithmetical example, let there be the given values,

TS....x = 2, y = x-' = 4:, dK = 1000;

and let it be required to compute, as a consequence of the definition (320), the

arithmetical value of the simultaneous differential, dy. We have now the

following equimultiples of simultaneous differences,

X. . . nAx = dx= 1000 ; nAy = 4000 + 1000000;ri

;

but the limit of the »'^ part of a million (or of any greater, but given and finite

number) is exactly zero, if n increase ivithout limit ; the required value of dy is,

therefore, rigorously, in this example,

XL . . dy = 4000.

(6.) And we see that these two simultaneous diferentials,

XII. . .dx = 1000, dy = 4000,

are not, in this example, even approximately equal to the two simultaneous

differences,

XIIL . . A;^; = d^ = 1000, Ay = 1002^ - 2^ = 1004000,

which answer to the value w = 1 ; although, no doubt, from the very conception

* In this case, indeed, the multiple nAx has hy V. a constant value, namely a ; but it is found

convenient to extend the use of the word, Imit, so as to include the case of constants : or to say,

generally, that a constant is its own limit.
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of simultaneous differentials, as embodied in the definition (320), they must

admit of having such equisubmultiples of themselves taken,

XIY. . . n~'^diX and n'^d^,

as to be nearly equal, for large values of the number n, to some system of simul-

taneous and decreasing differences,

XY. . . Ax and Ay;

and more and more nearly equal to such a system, even in the way of raiiOf as

they all become smaller and smaller together, and fend together to vanish.

(7.) For example, while the differentials themselves retain the* constant

values XII., their millionth parts are, respectively,

XYI. . . n-' dx = 0-001, and n'^ dy - 0-004, if n = 1000000

;

and the same value of the number n gives, by X., the equally rigorous values

of two simultaneous differences, as follows,

XYII. . . Ax = 0-001, and Ay = 0-004001

;

80 that these values of the decreasing differences XY. may already be considered

to be nearly equal to the two equisubmultiples, XIY. or XYI., of the two

simultaneous differentials, XII. And it is evident that this approximation would

be improved, by taking higher values of the number, n, without the rigorous and

constant values XII., of dx and dy, being at all affected thereby.

(8.) It is, however, evident also, that after assuming y = x^, and a; = 2, as

in IX., we might have assumed any other finite value for the differential dx,

instead of the value 1000 ; and should then have deduced a different (but still

finite) value for the other differential, dy, and not the formerly deduced value,

4000 : but there would always exist, in this example, or for this form of the

function, y, and for this value of the variable, x, the rigorous relation between

the two simultaneous differentials, dx and dy,

XYIII. . .dy = 4d.r,

which is obviously a case of the equation YIII., and can be proved by similar

reasonings.

323. Proceeding to the promised Example from Geometry (322), we shall

again see that differences and differentials are not in general to be confounded

with each other, and that the latter (like the former) need not he small. But
we shall also see that the differentials {like the differences), which enter into a

3K2
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statement of relation, or into the enunciation of a proposition, respecting

quantities which vary together, according to any law or laics, need not even he

homogeneous among themselves : it being sufficient that each separately should be

homogeneous icith the variable to which it correspo)ids, and of wliich it is the

differential, as line of line, or area of area. It will also be seen that the

definition (320) enables us to construct the differential of a rectangle, as the sum

of two other {finite) rectangles, without any reference to units of length, or of

area, and without even the thought of employing any numerical calculation

whatever.

(1.) Let, then, as in the annexed figure 74, abcd be any given rectangle,

and let be and dg be any arbitrary but given and

finite increments of its sides, ab and ab. Complete

the increased rectangle gaef, or briefly af, which

will thus exceed the given rectangle ac, or ca, by

the sum of the three partial rectangles, ce, cf, cg
;

or by what we may call the gnomon,* cbefgdc. On the

diagonal cf take a point i, so that the line ci may be j,. ^.

any arbitrarily selected submultiple of that diagonal
;

and draw through i, as in the figure, lines hm, kl, parallel to the sides

ad, ab ; and therefore intercepting, on the sides ab, ad prolonged, equisub-

multiples bh, dk of the two given increments, be, dg, of those two given

sides.

(2.) Conceive now that, in this construction, the point i approaches to c,

or that we take a series of new points i, on the given diagonal cf, nearer and

nearer to the given point c, by taking the line ci successively a smaller and

smaller part of that diagonal. Then the two new linear intervals, bh, dk, and

the new gnomon, cbhikdc, or the sum of the three new partial rectangles, ch, ci,

CK, will all indefinitely decrease, and will tend to vanish together : remaining,

however, always a system of three simultaneous differences (or increments), of the

two given sides, ab, ad, and of the given area, or rectangle, ac.

(3.) But the given increments, be and dg, of the two given sides, are always

(by the construction) equimultiples of the two first of the three new and decreasing

differences ; they m,ay, therefore, by the definition (320), be arbitrarily taken as

two simultaneous differentials of the two sides, ab and ad, provided that we then

treat, as the corresponding or simultaneous differential of the rectangle ac, the

* The word, gnomon, is here used with a slightly more extended signification, than in the Second

Book of Euclid.
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limit of the equimultiple of the new gnonion (2.), or of the decreasing difference

between the two rectangles^ ac and ai, whereof the first is given.

(4.) We are then,_^rs^, to increase this new gnomon^ or the difference of ac,

AI, or the sum (2.) of the three partial rectangles, ch, ci, ck, in the ratio of

BE to BH, or of DG to DK ; and secondly, to seek the limit of the area so increased.

For this last limit will, by the definition (320), be exactly and rigorously equal

to the sought differential of the rectangle ac ; if the given and finite increments,

BE and DG, be assumed (as by (3.) they may) to be the differentials of the sides,

ab, ad.

(5.) Now when we thus increase the two new^axiidX rectangles, ch and ck,

we get precisely the two old partial rectangles, ce and cg ; which, as being

given and constant, must be considered to be their own limits* But when we

increase, in the same ratio, the other new partial rectangle ci, we do not recover

the old partial rectangle cf, corresponding to it ; but obtain the new rectangle

CL, or the equal rectangle cm, which is not constant, but diminishes indefinitely

as the point i approaches to c ; in such a manner that the limit of the area, of

this new rectangle cl or cm, is rigorously null.

(6.) //, then, the given increments, be, dg, be still assumed to be the differ'

tials of the given sides, ab, ad (an assumption which has been seen to be

permitted), the differential of the given area, or rectangle, ac, is proved {not

assumed) to be, as a necessary consequence of the definition (320), exactly and

rigorously equal to the sum of the two jmrtial rectangles ce and cg ; because such

is the limit (5.) of the multiple of the new gnomon (2.), in the construction.

(7.) And if any one w^ero to suppose that he could improve this known

value for the differential of a rectangle, by adding to it the rectangle cf, as a new

term, ot part, so as to make it equal to the old or given gnomon {!.), he would

(the definition being granted) commit a geometrical error, equivalent to that of

supposing that the tico similar rectangles ci and cf, bear to each other the

simple ratio, instead of bearing (as they do) the duplicate ratio, of their

homologous sides.

* Compare the note to page 434.
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SECTION 3.

On some general Consequences of tbe Definition.

324. Let there be any proposed equation of the form,

l...Q = F{q,r,...)',

and let dg", dr, . . \ be any assumed (but generally finite) and simultaneous

differentials of the variables, q, r, . . . whether scalars, or vectors, or quaternions,

on which Q is supposed to depend, by the equation I. Then the corresponding

(or simultaneous) differential of their function, Q, is equal (by the defini-

tion 320, compare 321) to the following limit :

II. .. dQ=lim. n {F{q + n~^ dq, r + n~^dr, . . .) - F{q, r, . . .));

where n is any whole number (or other positive* scalar) which, as the formula

expresses, is conceived to become indefinitely greater and greater, and so to

tend to infinity. And if, in particular, we consider the function Q as in-

volving only one variable q, so that

111... Q=f{q)=fq,

then IV. . . dQ = d/g = lim. n [f{q + n'' dq) -fq];
Ji = oo

a formula for the differential of a single explicit function of a single variable, which

agrees perfectly with those given, near the end of the First Book, for the

differentials of a vector, and of a scalar, considered each as a function (100) of

a single scalar variable, t : but whicli is now extended, as a consequence of the

general definition (320), to the case when the connected variables, q, Q, and their

differentials, dq, dQ, are quaternions: with an analogous application, of the

still more general Formula of Differentiation II., to Functions of several Quater-

nions.

(1.) As an example of the use of the formula IV., let the function of q be

its square, so that

Y...Q = fq = q\
Then, by the formula,

VI. . . dQ == dfq = lim. n [{q + n'^ dqf - q"^} = lim. {q .dq + dq . q+n~^dq^),

* Except in some rare cases of discontinuity, not at present under our consideration, tliis scalar n

may as well be conceived to tend to negative infinity.
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where dg-^ signifies* the square of dq ; that is,

YII. . . d.q^ = q.dq + dq .q;

or without the pointsf between q and dg-,

VII^ . . d .q^= qdq + dqq]

an expression for the differential of the square of a quaternion, which does not

in general admit of any further reduction : hecause q and dq are not generally

commutative, an factors in multiplication. When, however, it happens, as in

algebra, that q . dq = dq . q, hy the two quaternions q and dq being complanar,

the expression YII. then evidently reproduces the usual form, 322, VIII., or

becomes,

YIII...d.g^=2?dg, if d^ 111^(123).

(2.) As another example, let the function be the reciprocal,

IK...Q=fq^q-\
Then, because

X...f{q + n-' dq) -fq = (^ + n'^ dq)'' -C
= (g' + n'^ dq)~^ {? - (? + n''^dq)

\

j"^

= - n"^ [q + «"' dq)~^ . dq . q'^,

of which, when multiplied by n, the limit is - q~^ dq . q'^, we have the following

expression for the differential of the reciprocal of a quaternion,

XI... d.q-' = -q-'.dq.q-'',

or without the points^ in the second member, dq being treated (as in VIF.)

as a whole symbol,

Xr. . .d.q-'=-q-' dq q-'
;

an expression which does not generally admit of being any farther reduced, but

becomes, as in the ordinary calculus,

Xll...d.q-' = -q-'dq, if dq\\\q,

that is, for the case of complanarity, of the quaternion and its differential.§

* Compare the note to page 433.

t The point between d and ^*, in the first member of VII., is indispensable, to distinguish the

differential of the square from the square of the differential. But just as this latter square is denoted

briefly by d^^^ go the products, q . dy and iq . q, may be written as qiq and dq q ; the symbol, dq,

being thus treated as a tvhole one, or as if it were a single letter. Yet, for greater clearness of expres-

sion, we shall retain the point between q and dq, in several (though not in all) of the subsequent

formulae, leaving it to the student to omit it, at his pleasure.

X Compare the note immediately preceding.

$ [See 329 (4.) for a result including XI.]

b



440 ELEMENTS OE QUATEItmONS. [III. n. § 3.

325. Other Examples of Quaternion Differentiation will be given in the

following section ; but the two foregoing may serve sufficiently to exhibit the

nature of the operation, and to show the analogy of its results to those of the"

older calculus, while exemplifying also the distinction which generally exists

between them. And we shall here proceed to explain a notation, which (at

least in the statement of the present theory of differentials) appears to possess

some advantages ; and will enable us to offer a still more brief symbolical defi-

nition, of the differential of a function fq, than before.

(1.) We have defined (320, 324), that if ^q be called the differential of a

(quaternion or other) variable, q, then the limit of the multiple,

I. . . n\f{q + n^^q) -fq],

of an indefinitely decreasing difference of the function, fq, of that (single)

variable q, when taken relatively to an indefinite increase of the multiplying

number, n, is the corresponding or simultaneous differential of that function, and

is denoted, as such, by the symbol d/g'.

(2.) But before we thus pass to the limit, relatively to n, and while that

multiplier, n, is still considered and treated as finite, the multiple I. is evidently

a function of that number, n, as toe/l as of the two independent variables, qnnd dq.

And we propose to denote (at least for the present) this new function of the

three variables,

II. . . n, q, and dq,

of which the form depends, according to the law expressed by the formula I.,

on the form of the given function,f by the new symbol,

lll...fn{q,dq)',

in such a manner as to write, for any two variables, q and q', and any number, n,

the equation,

TV'-'fn{q,q')-n[f{q + n-^q')-fq};

which may obviously be also written thus,

V. . .f{g + n'q') =fq + n-'fn{q, q'),

and is here regarded as rigorouslij exact, in virtue of the definitions, and without

anything whatever being neglected, as small.
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(3.) For example, it appears from the little calculation in 324, (1.), that,

VI. . . Mq, g;) = qq' + q'q + n'^f, if fq = t \

and from 324, (2.), that,

YII. . . /„(?, g^) = - (? + n-^qVq'r\ if fq = T'-

(4.) And the definition of d/g* may now be briefly thus expressed :

YIIL ..d/y = /. (?,d^);

or, if the sub-index ^ be understood, we may write, still more simply,

IX...d/g=/(^,d?);

this last expression, /(g-, d^), or/(g', q')y denoting thus o. function of two inde-

pendent variables q and q\ of which the form is derived* or deduced (comp. (2.)),

from the given or proposedform of the function /g-, of a single variable, q, accord-

ing to a law which it is one of the main objects of the Differential Calculus (at

least as regards Quaternions) to study.

326. One of the most important general properties, of the functions of this

class f{q, q'), is that tliey are all distributive with respect to the second indepen-

dent variable, q', which is introduced in the foregoing process of what we have

called derivation,f from some given function fq, of a single variable, q : a theorem

which may be proved as follows, whether the two independent variables be, or

be not, quaternions.

(1.) Let /' be any third independent variable, and let n be ani/ number;

then the formula 325, Y. gives the three following equations, resulting from

the law of derivation of fn{q, q') from fq :

l...f{q + n-Y)=fq + n'%{q,f)',

II. ..f{q + n-Y + n-Y =f{q + n'Y) + n-%{q + ""Y', q')
;

III. ..f{q + n-^q' + n'Y) =fq + n-%{q, (f + 4') \

* It was remarked, or hinted, in 318, that the usual definition of a derivedfunction, namely, that

given by Lagrange in the Calcul des Fonctions, cannot be taken as a, foundation for a differential cal-

culus of quaternions: although such derivedfunctions of scalars present themselves occasionally in the

applications of that calculus, as in 100, (3.) and (4.), and in some analogous but more general cases,

which will be noticed soon. The present Law of Derivation is of an entirely different kind, since it

conducts, as we see, from a given fuction of one variable, to a derived function of two variables, which

are in general independent of each other. The function /(((g-, q'), of the ihi-ee variables, «, q, q', may
also be called a derivedfunction, since it is deduced, by ilne fixed law IV., from the same given function

fq, although it has in general a less simpleform than its own limit, f^ {q, q'), or f{q, q').

t Compai'e the note immediately preceding.

Hamilton's Elements of Quaternions. 3 L
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bj comparing which we see at once that

lY. . ./n(?, / + f) =Mq + n-r. q') +fn[q, f\

the/orm of the originalfunetioriy fq, and the values of the/owr variables, q, q\

q\ and «, remaining altogetlier arbitrary : except that n is supposed to be a

number, or at least a scalar, while q, q ,
q" may (or may not^ be quaternions.

(2.) For example, if we take the particular function /g' = (f, which gives

the form 325, VI. of the derived function /„(g', q'), we have

^...fn[q,q")=qf+fq-^n-Y'',

YI. . ,Mq, q' + f) = q{q^ + /O + [q + f) q + n-\q^ + qy ;

and therefore

YIL . . Mq, q' + O -Mq. f) = q^ + q'q + ^r^/^ + qY + AO
= (g + n-Y) q +q' {q + n'Y) + ^-Y

-fn{q + n-Y.q),

as required by the formula lY.

(3.) Admitting then that formula as proved, for all values of the number

n, we have only to conceive that number (or scalar) to fend to infinity, in order

to deduce this limiting form of the equation

:

YIII. . ./. [q, q' 4- f) =U [q. q') + f. [q, f) ',

or simply, with the abridged notation of 325, (4.),

IX. ../(?, g'+O =/(?,/) +/(?,?");

which contains the expression of the functional property, above asserted to

exist.

(4.) For example, by what has been already shown (comp. 325, (3.) and

(4.)),
X. . . if fq = q\ then f[q, q') = qq + q'q

;

and XI. . . if /g = q-\ then f{q, q') = - q-^q'q'^
;

in each of which instances we see that the derivedfunction f[q, q') is distributive

relatively to q\ although it is only in the first of them that it happens to be

distributive with respect to q also.

(5.) It follows at once from the formula IX. that we have generally*

XIL../(^,0) = 0;

* We abstract here from some exceptional cases of discontinuity, &c.
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and it is not difficult to prove, as a result including this, that

XIII. . ./($', x(i) = ir/((7, g-'), if x be any scalar.

(6.) As a confirmation of this last result, we may observe that the defini-

tion oif[q, q') may be expressed by the following formula (comp. 324, lY.,

and 325, IX.)

:

XIY. . . /(?, q") = lim . « {f{q + n-y) -fq]',
n = t»

we have therefore, if x be any finite scalar, and m = x'hi,

XT. . ./(?, xq) =x.\\m. ni[/{q + m-^q') -fq]\

a transformation which gives the recent property XIII., since it is evident

that the letter m may be written instead of », in the formula of definition XIV.

. 327. Resuming then the general expression 325, IX., or writing anew,

I...dA=/(g,d?),

we see (by 326, IX.) that this derivedfunction, d/q, of q and dq, is always (as

in the examples 324, YII. and XL) distributive with respect to that differential

dq, considered as an independent variable, whatever i\iQ form of the given funC'

tionfq may be. We see also (by 326, XIII.) , that if the diffej^ential dq of the

variable, q, be muUiplied by any scalar, x, the differential dfq, of the function fq,

comes to be multijplied, at the same time, by the same scalar, or that

11. . .f{q, xdq) = xf{q, dq), if x be any scalar.

And in fact it is evident, from the very conception and definition (320) of

sinmltaneous diferentials, that every system of such differentials must admit of

being all changed together to any system of equimultiples, or equisubmultiples, of

themselves, without ceasing to be simultaneous differentials : or more generally,

that it is permitted to multiply all the differentials of a system, by any common

scalar,

(1.) It follows that the quotient,

lU...dfq:dq=f{q,dq):dq,

of the two simultaneous differentials, dfq and dq, does not change when the

differential dq is thus multiplied by any scalar ; and consequently that this

quotient III, is independent of the tensor Tdq, although it is not generally inde-

pendent of the versor Vdq, if q and dq be quaternions : except that it remains

3L 2
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in general unchanged, when we merely change that versor to its own opposite

(or negative), or to—IJdg', because this comes to multiplying dg- by - 1, which

is a scalar.

(2.) For example, the quotient,

lY. . . ^. q^ :diq = q + ^q.q. d^-"^ = ? + Udg' . q .Udj"^,

in which d^-"^ and Udg^^ denote the reciprocals of dg- and Udg-, is very far from

being independent of d^q, or at least of Ud$' ; since it represents, as we see,

the sum of the given quaternion q, and of a certain other quaternion, which

latter, in its geometricalinterpretation (comp. 191, (5.)), may be considered as

being derived from q, by a conical rotation of Kx . q round A.x . dg, through an

angle = 2ldq : so that both the axis and the quantity of this rotation depend on

the versor Udg', and vary with that versor.

(3.) In general we may, if we please, say that the quotient III. is a

Differential Quotient ; but we ought not to call it a Differential Coefficient

(comp. 318), becouse d/g does not generally admit of decomposition into two

factors, whereof one shall be the differential dg', and the other a function of q

alone.

(4.) And for the same reason, we ought not to call that Quotient a Derived

Function (comp. again 318), unless in so speaking we understand a Function

of Two* independent Variables, namely of q and Udg', as before.

(5.) When, however, a quaternion, q, is considered as o. function of a scalar

variable, t, so that we have an equation of the form,

V. . . g' = fty where t denotes a scalar,

it is then permitted (comp. 100, (3.) and (4.) ) to write,

= lim.r'|/(il + A)-/i!j

and to call this limit, as usual, a derivedfunction oft, because it is (in fact) a

function of that scalar variable, t, alone, and is independent of the scalar difereii-

tial, dt.

* Compare the note to 326, (4.).
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(6.) We may also write, under these circumstanoes, the differential equation,

YII. ,.dq = 'Dtq. dt, or VIII. . . d/q =ft . d^,

and may call the derived quaternion, T>tq, ov/^t, as usual, a differential coefficient

in this formula, because the scalar differential, dt, is (in fact) multiplied by it,

in the expression thus found for the quaternion differential, dq or dft.

(7.) But as regards the logic of the question (eomp. again 100, (3.) ), it is

important to remember that ice regard this derived function, or differential

coefficient,

IK. ..ft, or Dtft, or D<^,

as being an actual quotient VI., obtained by dividing an actual quaternion,

X. . . dft, or dq,

by an actual scalar, dt, of which the value is altogether arbitrary, and may (if

we choose) be supposed to be large (comp. 322) ; while the dividend quaternion

X. depends, for its value, on the values of the two independent scalars, t and d^,

and on theform of the function ft, according to the laic which is expressed by

the general formula 324, IV., for the differentiation of explicit functions of any

single variable.

328. It is easy to conceive that similar remarks apply to quaternion func-

tions of more variables than one ; and that when the differential of such & func-

tion is expressed (comp. 324, II.) under the form,

I. . . dQ = dF[q, r, s, . .) = F{q, r, s, . . dq, dr, ds, . .),

the neiD function Fis always distributive, with respect to each separately of the

differentials dq, dr, ds, . . ; being also homogeneous of the first dimension (comp.

327), with respect to all those differentials, considered as a system ; in such a

manner that, whatever may be the form of the given quaternion function, Q, or

F, the derived* function F, or the third member of the formula I., must possess

this geneial functionalproperty (comp. 326, XIII., and 327, II.),

II. . . F{q, r, s, . . xdq, «dr, xds , .) = xF{qf r, s, . . dq, dr, ds, . .),

where x may be any scalar : so that products, as well as squares, of the differen-

tials dq, dr, &c., of q, r, &o. considered as so many variables on which Q
depends, are excluded from the expanded expression of the differential dQ of the

function Q.

* Compare the note last referred to.
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(1.) For example, if the function to be differentiated be a product of two

quaternions,

III. . . Q = F{q, r) =-- qr,

then it is easily found from the general formula 324, II., that (because the

limit of n~^ . dg' . dr is null, when the number n increases without limit) the

differential of the function is,

lY. . . dQ = d - g-r = diF{q, r) = F[q, r, dg', dr) = g . dr + dg . r
;

with analogous results, for differentials of products of more than two quater-

nions.

(2.) Again, if we take this other function,

Y. . . Q = F{q, r) = q-X

then, applying the same general formula 324, II., and observing that we

have, for all values of the number (or other scalar), n, and of the four quater-

nions, q, r, q\ /, the identical transformation (comp. 324, (2.) ),

YI. . . n[{q + n'^q')-^ (r + m"V) - g^V} = q~V - [q + nr^q')-^ 9'T^{^' + rrV),

we find, as the required limit, when n tends to infinity, the following differen-

tial of the function :

YII. . . dQ = d . q-'^r = diF{q, r) = F{q, r, dg-, dr) = g~^ . dr - q'^
. dg , g"V

;

which is again, like the expression lY., distributive with respect to each of the

differentials dg, dr, of the variables q, r, and does not involve the product of

those two differentials: although these two differential expressions, IV. and

and YII., are both entirely rigorous, and are not in any way dependent on

any supposition that the tensors of dg' and d?' are small (corap. again 322).

329. In thus differentiating a function of more variables than one, we are

led to consider what may be called Partial Differentials of Functions of two or

more Quaternions ; which may be thus denoted,

. I. . . d,Q, d,Q, d,Q, ...

if Q be a function, as above, of q, r, s, . . . which is here supposed to be

differentiated with respect to each variable separately, as if the others were

constant. And then, if dQ denote, as before, what may be called, by contrast,

the Total Differential of the function Q, we shall have the General Formula,

II. . . dQ = djQ + d,Q + d,Q + . . .

;
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or, briefly and symbolically,

m. . . d = dj + dr + da + . . .

,

if q, r, s, . . . denote the quaternion variables on which the quaternion function

depends, of which the total differential is to be taken ; whether those variables

be all independent, or be connected with each other, by any relation or relations.

(1.) For example (comp. 328, (1.) ),

IV. . . \1 Q = qr, then d^Q = dg- . r, and d^Q = g- . dr

;

and tlie sum of these tico partial differentials of Q makes up its total differential

dQ, as otherwise found above.

(2.) Again (comp. 328, (2.) ),

Y. . . if Q = r^r, then d^Q = - q-^d.q . gr'r ; d^Q = q-'dr
;

and dqQ + drQ = the same dQ as that which was otherwise found before, for

this form of tlie function Q.

(3.) To exemplify the possibility of a relation existing between the variables

q and r, let those variables be now supposed equal to each other in Y. ; we

shall then have Q = 1, dQ = ; and accordingly we have here d^Q = - q~^dq

= - drQ.

(4.) Again, in lY., let qr = c = any constant quaternion ; we shall then

again have = dQ = djQ + drQ; and may infer that

YI. , . dr = - q^^. dq. r, if qr = c = const.

;

a result which evidently agrees with, and includes, the expression 324, XI.,

for the differential of a reciprocal.

(5.) A quaternion, q, may happen to be expressed as a function of two or

more scalar variables, t, u, . . . ; and then it will have, as such, by the present

Article, its partial differentials, dtq, duq, &c. But because, by 327, YII., we

may in this case write,

YII. . . dtq = Dtq . d^, duq = D^q . du, . . .

where the coefficients are independent of the differentials (as in the ordinary

calculus), we shall have (by II.) an expression for the total differential dg-, of

the form,

YIII. . . dg- » d<g' + dttj' + . . . = Dtq . dt + Duq . dw + . . .

;
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and may at pleasure say, under the conditions here supposed^ that the derived

quaternions^

IX. . . T)tq, T>uq, . . .

are either the Partial Derivatives^ or the Partial Differential Coefficients, of the

Quaternion Function,

X...q = F{t,u,...)',

with analogous remarks for the case, when the quaternion, q, degenerates (comp.

289) into a vector, p.

330. In general, it may be considered as evident, from the definition in

320, that the differential of a constant is zero ; so that if Q be changed to anp

constant quaternion, c, in the equation 324, I,, then dQ is to be replaced by 0,

in the differentiated equation, 324, II. And if there be given any system of

equations, connecting the quaternion variables, q, r, s, ... we may treat the

corresponding system ofdifferentiated equations, as holding good, for the system of

simultaneous differentials, dg, dr, ds, . . . ; and may therefore, legitimately in

theory, whenever in practice it shall be found to be possible, eliminate any

one or more of those differentials, between the equations of this system.

(1.) As an example, let there be the two equations,

H. . . qr = c, and II. . . s = r^,

where c denotes a constant quaternion. Then (comp. 328, (1.), and 324, (1.)

)

we have the two differentiated equations corresponding,

III. . . g- . dr + dg' . r = ; lY. . . ds = r . dr + dr . r ;

in which the points* might be omitted. The former gives,

V. . . dr = - qr^dq . r, as in 329, VI.

;

and when we substitute this value in the latter, we thereby eliminate the

differential dr, and obtain this new differential equation,

VI. . . ds = - rq-'^ . dg . r - g^^ dg . r'.

(2.) The equation I. gives also the expression,

VII. . .r = q-'c',\

the equation II. gives therefore this other expression,

VIII. . . 5 = {qr'cf = (f'cq-%

. ,
* Compare the second note to 324, (1.), . . ,



A.RTS. 329,331.] ELIMINATION OP DIFFERENTIALS. 449

by elimination before differentiation. And if, in the formula YI., we substitute

the expressions YII. and VIII. for r and s, we get this other differential

equation,

IX. . . d . {q'^cf = - gr^cq-^ . dq . q-^c - g'^
. dq . q~^cq~'^e ;

which might have been otherwise obtained (comp. again 324, (1.) and (2.) ),

under the form,

X. . . d . {q-'cf = <r^c . d{q-'c) + d{r^c) . q-^c.

331. No special rules are required, for the differentiation of functions of

functions of quaternions ; but it may be instructive to show, briefly, how the

consideration of siich differentiation conducts (comp. 326) to a general property

offunctions of the class f{q, q') ; and how that property can be otherwise esta-

blished.

(1.) Let/, 0, and \p denote any functional operators, such that

then writing
I. . . ^^ = <i>{fq) ;

II. . . r =fq, and III. . . s = 0r, we have IV. . . s = ^q

;

whence V. . . ds = d\pq = d<^r.

That is, we may (as usual) differentiate the compound function, (jtifq), as iffq

were an independent vat^iabk, r; and then, in the expression so found, replace

the differential dfq by its valuer obtained by differentiating the simple function,fq.

For this comes virtually to the elimination of the differential dr, or of the

symbol dfq, in a way which we have seen to be permitted (330).

(2.) But, by the definitions of dfq and /„(§', q'), we saw (325, VIII. IX.)

that the differential dfq might generally be denoted by f^iq, dq), or briefly

by f{q, dq) ; whence d^r and d-[pq may also, by an extension of the same

notation, be represented by the analogous symbols, ^^{r, dr) and t//»(5', dq),

or simply by ^{r, dr) and ^^{q, dq).

(3.) We ought, therefore, to find that

VI. ..^.(y, d?) = 0.(/^,/«(y,d?)), if H = <l>{M;

or briefly that
'

VII. ..^ (!?,/) = .^ (A, /(?,/)). if H = <t>M

for any two quaternions, q, q\ and any tico functions,f (ft ;
provided that the

functions /„($', q'), ^n{q, q'), ipniq, q') are deduced (or derived) from the func-

tions fq, (jiq,
\f,q, according to the law expressed by the formula 325, IV. ;

Hamilton's Elements of Quaternions. 3 M
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and that then the limits to which these derived functions fn{qy q'), &o. tend,

when the number n tends to infinity, are denoted by these other functional

symbols, f{q, q'), &c.

(4.) To prove this otherwise, or to establish this general property YII., of

functions of this class f{q, q^), without any use of differentials, we may observe

that the general and rigorous transformation 325, Y., of the formula 325, lY.

by which the functions /^(y, q') are defined, gives for all values of n the

equation

:

YIII. . . ^f{q + n-^q') = fp{fq + n-%{q, <f) ) = <j>fq + n-'<l>n{fq,fn{q, q')

)

;

but also, by the same general transformation,

IX. . . ^ (^ + n-^q') =
\Pq + n'xPniq, i) ;

hence generally, for all values of the number n, as well as for all values of the

two independent quaternions, q, q', and for allforms of the two functions, f, 0, we

may write,

X. . . ^„(^, q') = (l>n{fq,fn{q, q') ), if ^q = ^fq \

an equation of which the limiting form, for w = oo, is (with the notations used)

the equation YII. which was to be proved.

(5.) It is scarce]y worth while to verify the general formula X., by any

particular example : yet, merely as an exercise, it may be remarked that if

we take the forms,

'Xl...fq = q\ <l>q
= q\ ^q = q\

of which the two first give, by 325, YI., the common derived form,

XII. . .fniq, q') = ^n{q, q) = qq' + qq + n-'q'\

the formula X. becomes,

XIII. . . ;/.«(?, q') = ^n{q\ qq' + q'q + n^q'')

= q\qq^ + q'q + n'^q'^) + [q^ + q'q + «"'g'^) q^ + «~^
[qcf + q'q + n'^cf^f ;

which agrees with the value deduced immediately from the function -^q or q^,

by the definition 325, lY., namely,

XIY. . . ^nM)-n[[q^n-^(iy-q'\^n\{f^n-\q^^q'q^n-S')Y-{(tn.
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(6.) In general, the theorem, or rule, for differentiating as in (1.) dt. function

of a function, of a quaternion or other variable, may be briefly and symboli-

cally expressed by the formula,

Xy...d(^/)^ = d^(/?);

and if we did not otherwise know it, a proof of its correctness would be

supplied, by the recent proof of the correctness of the equivalent formula YII.

SECTION 4.

Examples of iluateriiion DiflTereiitlation.

332. It will now be easy and useful to give a short collection of Examples

of JJifferentiation of Quaternion Functions and Equations, additional to and

inclusive of those which have incidentally occurred already, in treating of the

principles of the subject.

(1.) If c be any constant quaternion (as in 330), then

1. . . dc =
; 11. . . d(/^ + c) = d/g

;

III. . . d .c/^ = cdifq-, IV. . . d(/?. c) = d/y. c.

(2.) In general,

V. . . d(/g + ^g +...) = d/y + d^g + ... ; or briefly, YI. . . dS = 2d,

if S be used as a mark of summation.

(3.) Also, YII. . . d(/? . ^q) = difq . ^q +fq . d0^ ;

and similarly for a product of more functions than two : the rule being

simply, to diferentiate each factor separately, in its otcn place, or without dis-

turbing the order of the factors (comp. 318, 319) ; and then to add together ths

partial results (comp. 329).

(4.) In particular, if m be any positive whole number,

YIII. . . d . 5'" = q'^-^dq + ^'"-^5^
. g . . + j'dg .

g'""'* + ^q . f^^ ^

and because we have seen (324, (2.) ) that

IX. . . d .
g-i = - q-^

. dy . q-^,

3M2
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we have this analogous expression for the differential of a power of a quater-

nion, with a negative but whole exponent,

X. . .d.q-^ = - q-^d . q*^ .
g"'"

= - q~^ dq.q-^ - gr"^ dq .
q^-^ - . . - q^'"" dq .

q-"^ - q^ dq . q~\

(5.) To differentiate a square root, we are to resolve the linear equation*

XI. . . (^ ,d.q^ -^ d. q^ .q^ = dq\ or XF. . . rr' + r'r = ^,

if we write, for abridgment,

XII. . . r = g^, ^ = dq, / = d . y* = dr.

(6.) Writing also, for this purpose,

XIII. . . s = Kr = K . ?*,

whence (by 190, 196) it will follow that

XIY. . . rs = ^'/• = T^'' = Tg, and XV. . . r + s = 2Sr = 2S . ^*,

the product and sum of these two conjugate quaternions, r and s, being thus

scalars (140, 145), we have, by XI'.,

XYI. . . r~^ q's = r's + s/
;

whence, by addition,

XVII. . .q'+ r-'q's = (r + s) r' + r' {r + s) = 2r\r + s)

;

and finally,

XVIII. . .r = —r-. V> or XIX. . . d . g-* = — r^—i
;

2{r + s)
^ 4S . J*

an expression for the differential of the square-root of a quaternion, which

will be found to admit of many transformations, not needful to be considered

here.

(7.) In the three last sub-articles, as in the three preceding them, it has

been supposed, for the sake of generality, that q and dg' are two diplanar

* Although such solution of a linear equation, or equation of the^rs^ degree, in quaternions, is

easily enough accomplished in the present instance, yet in general the problem presents difficulties,

without the consideration of which the theory of differentiation of implicit functions of quaternions

would be entirely incomplete. But a general method, for the solution oi all such equations, will he

sketched in a subsequent Section.
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quaternions ; but if in any application tliey happen, on the contrary, to be

complanar, the expressions are then simplified^ and take usual, or algebraic

forms, as follows

:

XX. . . d . ^"^ = mq'^-'dq
;

XXI. . . d .
q-'" = - mq-'"-'dq

;

and
XXII. ..d.qi = iq-^dq, if XXIIL . . dq\\\q{123)

)

because, when q' is complanar with q, and therefore with q^, or with r, in the

expression XVIII., the numerator of that expression may be written as r~^q'

V + s).

(8.) More generally, if x be any scalar exponent, we may write, as in the

ordinary calculus, but still under the condition of complanarity XXIII.,

XXIV. . . d . g^ = xf-^dq ; or XXV. . . gd . ^ = xfdq,

333, ^il\\Q> functions of quaternions, which have been lately differentiated,

may be said to be of algebraic form ; the following are a few examples of

differentials of what may be called, by contrast, transcendental functions of

quaternions: the condition of complanarity {dq\\\q) being however here sup-

posed to be satisfied, in order that the expressions may not become too com-

plex. In fact, tvith this simplification, they will be found to assume, for the

most part, the known and usualforms, of the ordinary differential calculus.

(1.) Admitting the definitions in 316, and supposing throughout that

dglll^, we have the usual expressions for the differentials of e' and \q, namely,

I. . . d . £« = t^dq ; II. . . d\q = q-^dq.

(2.) We have also, by the same system of definitions (316),

III. . . d sin 5- = cos qdq ; IV. . . d cos g* = - sin qdq ; &o.

(3.) Also, if r and dr be complanar with q and dq, then, by 316,

IV'. . . d .
y** = d . t'-^i = ^'•d . r\q = q''{\qdr + q-^^dq)

;

or in the notation of partial differentials (329),

V. . . dj .
j'' = rq'-^dq, and VI. . . dr.q''= q''\qdr.

(4.) In particular, if the base g- be a given or constant vector, a, and if the

exponent r be a variable scalar, t, then (by the value 316, XIV. of \p) the

recent formula IV. becomes,

VII. ..d.a'=f'iTa + |UaVdt.
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(5.) If then the base a be a given unit line, so that ITa = 0, and Ua = a,

we may write simplj,

VIII. . . d . a* = ^ a''^ dit, if da = 0, and Ta = 1.

(6.) This useful formula, for tlie differential of a power of a constant unit

line, with a variable scalar exponent, may be obtained more rapidly from the

equation 308, VII., which gives,

IX. . . a' = cos "2- + a sin g-, if Ta = 1

;

since it is evident that the differential of this expression is equal to the ex-

pression itself multiplied by ^Trad^, because a'* = - 1.

(7.) The formula VIII. admits also of a simple geometrical interpretation,

connected with the rotation through t right angles, in a plane perpendicular to

a, of which rotation, or version, the power a*, or the versor Ua', is considered

(308) to be the instrument,* or agent, or operator (comp. 293).

334. Besides algebraical and transcendentalforms, there are other results of

operation on a quaternion, q, or on a function thereof, which may be regarded

as forming a new class (or kind) oi functions, arising out of the principles and

rules of the Quaternion Calculus itself: namely those which we have denoted

in former Chapters by the symbols,

I. . . Kg, Sg, V<z, Ng, Tg, Vq,

or by symbols formed through combinations of the same signs of operationy

such as

II. . . SUj, VUg, UVg, &o.

And it is essential that we should know how to differentiate expressions of

these forms, which can be done in the following manner, with the help of the

principles of the present and former Chapters, and without now assuming the

complanarity, ^q\\\q-

(1.) In general, let /represent, for a moment, any distributive symbol, so

that for any two quaternions, q and q\ we shall have the equation,

III... /(? + ?') =/?+//;

Compare the first note to page 135.
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and therefore also* (comp. 326, (5.)),

lY. . . /{xq) = xfq, if x be any scalar.

(2.) Then, with the notation 325, lY., we shall have

V. . . fn{q, q') = n{f{q + ir^q') - fq] =fq' ;

and therefore, by 325, YIII., for any such function fq, we shall have the

differential expression,

Yl...dfq=fdq.

(3.) But S, Y, K have been seen to be distributive symbols (197, 207) ; we

can therefore infer at once that

YII. . . dK? = Kd^ ; YIII. . . dSj = Sdg ; IX. . . dYq = Ydq ;

or in words, that the differentials of the conjugate, the scalar, and the vector of a

quaternion are, respectively, the conjugate, the scalar, and the vector of the

differential of that quaternion.

(4.) To find the differential of the norm, Nj, or to deduce an expression for

dNg, we have (by YII. and' 145) the equation,

X. . . dNj = d.qKq = dq.Kq + q. Kdq ;

but qKq = K . q'Kq, by 145, and 192, II.

;

and (1 + K) . q'Kq = 2S . q'Kq = 2S(K^ . q), by 196, II., and 198, I.
;

therefore XI. . . dN? = 2S(K^ . dq).

(5.) Or we might have deduced this expression XI. for dN^", more im-

mediately, by the generalformula 324, lY., from the earlier expression 200,

YII., or 210, XX., for the norm of a sum, under the form,

Xr. . . d'Nq = lim . «{N(? + n-'dq) - N<?}

= lim.{2S(K?.dg) + w-^Ndi?)
n=oo

= 2S(Kq.dq),
as before.

* In quaternions the equation III, is not a necessary consequence of IV., although the latter is

so of the former; for example, the equation IV., hut not the equation III., will be satisfied, if we
assume/^ = qcgr^c'q, where c and c' are any two constant quaternions, which do not degenerate into

scalars.



456 ELEMENTS OE QUATERNION'S. [III. n. § 4.

(6.) The teni^ot', Tq, is the square-root (190) of the norm, N$'; and because

T^- and N*/ are scalars, the formula 332, XXTI. may be applied ; which gives,

for the differential of the tensor of a quaternion, the expression (comp. 158),

XII. . . dT? =^ = S(KU^. d^) = S ^,

a result which is more easily remembered, under the form,

Tq q

(7.) The versor T^q is equal (by 188) to the quotient, q: Tq, of the quater-

nion q divided by its tensor Tq ; hence the differential of the versor is,

XIV...dUj-df = 3-S^')|- =T^.Uj;
Tq \q q JTq q

whence follows at once this formula, analogous to XIII., and like it easily

remembered,

XV... ^=y^.
Vq q

(8.) We might also have observed that because (by 188) we have generally

q = Tq . JJq, therefore (by 332, (3.)) we have also,

XVI. . .dq = dTq.'Uq + Tq. dJJq,

and
dq dT^ dU^,

if then we have in any manner establislied the equation XIII., we can im-

mediately deduce XV. ; and conversely, the former equation would follow at

once from the latter.

(9.) It may be considered as remarkable, that we should thus have

generally, 01 for any two quaternions, q and dq, the formula:*

XVIII. . .S(dU?:Ug) = 0; or XVIIF. . . dUg : U? = S"^ ;

* When the connexion of the theory of normals to surfaces, with the diferential calculus of quater-

nions, shall have been (even briefly) explained in a subsequent Section, the student will perhaps be

able to perceive, in this formula XVIII., a recognition, though not ft ;e7y direct one, of the geo-

metrical principle, that the radii of a sphere are its normals.
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but this vector character of the quotient dJJq : TJq can easily be confirmed, as

follows. Taking the conjugate of that quotient, we have, by VII. (comp. 192,

II. ; 158 ; and 324, XI.),

XIX. . . K (dUg . Vq-') = KUj-i . dKUg = U^ . ^{V<r') = - dUg . Vq-^ ;

whence
XX... (1 + K) (dU^.UD-0;

which agrees (by 196, II.) with XYIII.

(10.) The scalar character of the tensor, Tq, enables us always to write, as

in the ordinary calculus,

XXI. . . dlT^ = dTj : Tq
;

but ITj = Slg', by 316, Y. ; the recent formula XIII. may therefore, by YIII.,

be thus written,

XXII. ..Sdl? = dSl? = dT^:dg = S(dy:g); or XXIF. . . dl? - ?"% = S->0.

(11.) When dg'lllj, this last difference vanishes, by 333, II.; and the

equation XV. takes the form,

XXIII. . . dlU? = Vdl? = dVlg.

And in fact we have generally^ lUj = VI5', by 316, XX., although the differen-

tials of these two equal expressions do not separately coincide with the members

of the recent formula XV., when q and d$ are diplanar. We may however

write generally (comp. XXII.),

XXIV. . . dlU? - dUy :U^ = V(dl^ - dj :?) = dl? - dy : ^.

335. We have now differentiated the six simple functions 334, I., which

are formed by the operation of the six characteristics,

K,S,V,N,T,U;

and as regards the differentiation of the compoundfunctions 334, II., which

are formed by combinations of those former operations, it is easy on the same

principles to determine them, as may be seen in the few following examples.

(1.) The axis Ax. g' of a quaternion has been seen (291) to admit of being

represented by the combination UVg' ; the differential of this axis may there-

fore, by 334, IX. and XIV., be thus expressed :

Hamilton's Elements of Quaternions, 3 N

I
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I. . . d(Ax. q) = dUVy = V(Yd? : V^) . TJV? ;

whence

d(Ax.g) _ dUyg Ydg
• • Ax. J

~ TJV? ~ yq

The differential of the axis is therefore, generally , a /me perpendicular to that

axis, or situated w ^/^e j^/awe of the quaternion ; but it vanishes, when the jt?/rt«e

(and therefore the axis) of that quaternion is constant ; or when the quaternion

and its differential are complanar.

(2.) Hence,

III. . . dUV? = 0, if IV. ..d?|ll(?;

and conversely this complanarity IV. may be expressed by the equation III.

(3.) It is easy to prove, on similar principles, that

V. . . dVU^ = VdU^ =V^V^ . JJq\ ;

and . ,

VI. . . dSUg = SdUg = S (V^ . U^

(4.) But in general, for any two quaternions, q and q\ we have (comp.

223, (5.)) the transformations,

VII. . . S{V/. ?) = S (V?'. V?) = S . q'Nq
;

and when we thus suppress the characteristic V before ^q: q, and insert it

before Ug-, under the sign S in the last expression VI., we may replace the

new factor VU^ by TVU^.UVUg (188), or by TVUg.UV^ (274, XIII.),

or by - TVUg- : TJYq (204, V.), where the scalar factor TVUg' may be taken

outside (by 196, VIII.) ; also for q''^
: UVg' we may substitute 1 : (UVg". q),

or 1 : qTJYq, because UVglH g- ; the formula VI. may therefore be thus written,

VIIL..dSUg = -Sj:^^.TVU^.

(5.) Now it may be remembered, that among the earliest connexions of

quaternions with trigonometry, the following formulae occurred (196, XVI.,

and 204, XIX.),

IX. . . SUg' = cos z q, TVU^ = sin z J

;

we had also, in 316, these expressions for the angle of a quaternion,

X. .. zj = TVl? = TlUg;
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we may therefore establish the following expression for the differential of the

angle of a quaternion,

XI. . . d z g = dTVl? = dTlU^ = S
qVYq

(6.) The following is another way of arriving at the same result, through

the differentiation of the sine instead of the cosine of the angle, or through

the calculation of dTVUi/, instead of dSUg. For this purpose, it is only

necessary to remark that we have, by 334, XII. XIV., and by some easy

transformations of the kind lately employed in (4.), the formula,

XII...dTVU,.S^4| = S^^=8(T^.^J = S-^.Str,;

dividing which by SUj', and attending to IX. and X., we arrive again at

the expression XI., for the differential of the angle of a quaternion.

(7.) Eliminating S (dg : jUVg') between VIII. and XII., we obtain the

differential equation,

XIII. . . SU? . dSUg + TVUg . dTVU? = ;

of which, on account of the scalar character of the differentiated variables, the

integralia evidently of the /orm,

XIV. . . (SU^)''+ (TVUj)^= const.

;

and accordingly we saw, in 204, XX., that the sum in the first member of

this equation is constantly equal to positive unity.

(8.) The formula XI. may also be thus written,

XV. ..d2ly=S(V(d?.j):UV?);

with the verification, that when we suppose dg- Ills',
as in IV., and therefore

dUVg- = by III., the expression under the .sign S becomes the differential

of the quotient, Y\q : UVg-, and therefore, by 316, VI., of the angle L q itself.

336. An important application of the foregoing principles and rules

consists in the differentiation of scalar functions of vectors, when those functions

are defined and expressed according to the laws and notations of quaternions.

It will be found, in fact, that such differentiations play a very extensive part,

in the applications of quaternions to geometry ; but, for the moment, we shall

treat them here, as merely exercises of calculation. The following are a few

examples.

3 N 2
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(1.) Let p denote, in these sub-articles, a variable vector ; and let the

following equation be proposed,

I. . . r' + p' = 0, in which Yr = 0,

so that r is a (generally variable) scalar. Differentiating, and observing that,

by 279, III., pp' + p'p = 2Spp\ if p' be any second vector, such as we suppose

dp to be, we have, by 322, VIII., and 324, YII., the equation,

II. . . rdr + Spdp = ; or III. . . dr = - r'^Spdp = rSp'^dp.

In fact, if r be supposed positive, it is here, by 282, II., the tensor oi p; so

that this last expression III. for dr is included in the general formula, 334,

XIII.

(2.) If this tensor, r, be constant, the differential equation II. becomes

simply,

IV. . . Spdp = 0, if - p» = const., or if dTp = 0.

(3.) Again, let the proposed equation be (comp. 282, XIX.),

V. . . r' = T (/|0 + pk), with di = 0, die = 0,

so that ( and k are here two constant vectors. Then, squaring and differen-

tiating, we have (by 334, XI., because Kip = pi, &c.),

VI. . . 2r»dr = id'Niip +pK) = S{pi + icp) [idp + dpic) = (t* + k') Spdp + 2^Kpidp
;

or more briefly,

VII. . . 2r-'dr = Svd^o,

if V be an auxiliary vector, determined by the equation,

VIIL..r*v=(t»-hK»)/o + 2V.c/t>t;

which admits of several transformations.

(4.) For example we may write, by 295, VII.,

IX. . . r^V = {l^ + K-^) |0 + IC(Ot + ipK = t (tp + jO/c) -k- K{pi-\- Kp) ',

or, by 294, III., and 282, XII.,

X. . . rV = (t' + ^)p + 2 [K^ip - pSiK + Skp) = (t - k)V + 2 {iSKp + KSip) ; &o.
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(5.) The equation V. gives (comp. 190, Y.), when squared without
differentiation,

XI. . , r* = N(»jO + /ok) = {ip + pk) {pi + Kp)

= {i^ + K^) /o" + ipKp + pKpt

= {i" + K^) p^ + 2B,pKp

= (i - kY p"^ + 4S<|0 Skjo = &0.,

by transformations of the same kind as before ; we have therefore, by the

recent expressions for r*v, the following remarkably simple relation between

tlie two variable vectors, p and v,

XII. ..Bvp = l', or Xir. . . S/)v = 1.

(6.) When the scalar, r, is constant, we have, by VII., the differential

equation,

XIII. . . Svd|0 = ; whence also XIY. . . Spdv = 0, by XII.

;

a relation of reciprocity thus existing, between the two vectors p and v, of which

the geometrical signification will soon be seen.

(7.) Meanwhile, supposing r again to vary, we see that the last expression

YI. for 2rW may be otherwise obtained, by taking half the differential of

either of the two last expanded expressions XI. for r* ; it beiug remembered,

in all these little calculations, that cyclical permutation of factors, under the

sign S, is permitted {^2^, (10.)), even if those factors be quaternions, and what-

ever their number may be : and that if they be vectors, and if their number be

odd, it is then permitted, under the sign Y, to invert their order (295, (9.) ),

and so to write, for instance, Y//oic instead of Yk|Oi, in the formula YIII.

(8.) As another example of a scalar function of a vector, let p denote the

proximity (or nearness) of a variable point p to the origin o ; so that

XY. . . iJ - (- p*)-i = Tp-S or XT. .,p-'^p' = 0.

Then,

XYI. . . dj(? = Si^dp, if XYII. ..v^p'p^ p'Vp
;

V being here a new auxiliary vector, distinct from the one lately considered

(YIII.), and having (as we see) the same versor (or the same direction) as the

vector p itself, but having its tensor equal to the square of the proximity ofptoo;

or equal to the inverse square of the distance, of one of those two points from

the other.

337. On the other hand, we have often occasion, in the applications, to

consider vectors as functions of scalars, as in 99, but now With, forms arising
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out of operations on quaternions, and therefore such as had not been considered

in the First Book. And whenever we have thus an expression such as either

of the two following,

I. . . p = 0(0, or II. . . |0 = <^(s, t\

for the variable vector of a curve, or of a surface (comp. again 99), s and t

being two variable scalars, and ^{t) and ^{s, t) denoting any functions of vector

form, w^hereof the latter is here supposed to be entirely independent* of the

former, we may then employ (comp, 100, (4.) and (9.) and the more recent

sub-articles, 327, (5.), (6.), and 329, (5.) ) the notations of derivatives, total or

partial ; and so may write, as the differentiated equations, resulting from the

forms I. and II. respectively, the following :

III. . . Ap = ii,'t At = pdf = Dtp . dt
;

IV. . . dp = dsp + dtp = I)sp . ds + Dtp . dt
;

of which the geometrical significations have been already partially seen, in

the sub-articles to 100, and will soon be more fully developed.

(1.) Thus, for the circular locus, 314, (1.), for which

V. . . |0 = a% Ta = 1, Saj3 = 0,

we have, by 333, VIII., the following derived vector,

VI. ..p' = D,p = p-/3 = ^ap.

(2.) And for the elliptic locus, 314, (2.), for which

VII. . . p = V. a% Ta = 1, but not Sa(3 = 0,

we have, in like manner, this other derived vector,

•

VIII. ..p' = D,p = ^V.a**»/3. ,

(3.) As an example of a vectorfunction of more scalars than one, let us

resume the expression (308, XVIII.),

IX. . . p = rh'fkj-'k-'
;

* We are therefore not employing here the temporary notation of some recent Articles, according

to which we should have had, d^j- - (f>{q, dq).
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in which we shall now suppose that the tensor r is given, so that p is the

variable vector of a point upon a g'uen spheric surface, of which the radius is r,

and the centre is at the origin ; while s and t are two independent scalar variables,

with respect to which the tico partial derivatives of the vector p are to be

determined.

(4.) The derivation relatively to t is easy ; for, since ijk are vector-units

(295), and since we have generally, by 333, YIII.,

X. . . d . a^^ =
I

a'^'dix, and therefore XI. . . D, . a^ = |a^"D<a;,

if Ta = 1, and if x be any scalar function of t, we may write, at once, by

279, lY.,

XII. . . D,|0 = ^ {kp -pk) = vYkp
;

and we see that

XIII. . . &pDtp = 0,

a result which was to be expected, on account of the equation,

XIV. . .p'+r'=0,

which follows, by 308, XXIY., from the recent expression IX. for p.

(5.) To form an expression of about the same degree of simplicity, for the

other partial derivative of p, we may observe that j'*^kj'* is equal to its own

vector part (its scalar vanishing) ; hence*

XY. . .Dsp = TTk'jk-'p ; or XYI. . . D.p = trk^'jp = irjk-^'p,

by the transformation 308, (11.)' ^^^ because the scalar of k*jk~* is zero, we

have thus the equation,

XYII. . . ^pVfsp = 0,

which is analogous to XIII., and might have been otherwise obtained, by

taking the derivative of XIY. with respect to the variable scalar s.

(6.) The partial derivative D^p must be a vector ; hence, by XY. or XYI.,

|0 must he perpendicular to the vector k^jk'\ or ¥^j, oxjk~^*', a result which,

under the last form, is easily confirmed by the expression 315, XII. for p.

In fact that expression gives, by 315, (3.) and (4.), and by the recent values

* [Thus D.iJ'kJ-') ='!L(^j'*ikJ-»+j'kj-'-^) = nj'*^/cj-; and therefore Dtp = -irrk'Jk-'ktj'kj-'k-t which

is equivalent to XV.]

k
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XII. XVI., these other forms for the two partial derivatives of p, which have

been above considered

:

XYIII. . . D.p = TrrFT.y" ; XIX. . . D,p = 7rr(/r<V. P+'- Y. ¥')
;

which might have been immediately obtained, by partial derivations, from

the expression 315, XII. itself, and of which both are vector-forms.

(7.) And hence, or immediately by derivating the expanded expression

315, XIII., we obtain these new forms for the partial derivatives of p :

XX. . . J)tp - 7rr{j cos t-rr - i sin tir) sin sir
;

XXI. . . Dsp = irr
[
{i cos tir +/ sin tir) cos sir-k sin sir ]

.

(8.) We may add that not only is the variable vector p perpendicular to

each of the two derived vectors, Dsp and Dtp, but also thep are perpendicular to

each other ; for we may write, by XII. and XVI.,

XXII. . . S (D,p . Dtp) = - TT^S . k-^ypVc = ttV^S . Ic'H = ;

and the same conclusion may be drawn from the expressions XX. and XXI.

(9.) A vector may be considered as a function of three independent scalar

variables, such as r, s, t ; or rather it must be so considered, if it is to admit of

being the vector of an arbitrary point of space : and then it will have a total

differential (329) of the trinomialform,

XXIII. . . dp = d,.p + d,jo + d^jo = Drp . dr + B^p . ds + Dtp . dt ;

and will thus have three* partial derivatives.

(10.) For example, when p has the expression IX., we have this thif^d

partial derivative,

XXIV. . .J)rp = r-'p = Up,

which may also be thus more fully written (comp. again 315, XIII.),

XXY. . . Drp = kyicj-'k'* = {i cos tvr +J sin tir) sin sir + k cos sw ;

and we see that the three derived rectors,

XXVI. . . Drp, Dsp, Dtp,

compose here a rectangular system.

* That is to say, three of the first order; for we shall soon have occasion to consider successive

differentials, of functions cf one or mere variables, and so shall be conducted to the consideration of

orders of differentials and derivatives, higher than the first.
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SECTION 5.

On Successive DifTerentials, and Developments, of Functions

of Ciuaternions.

338. There will now be no difficulty in the successive differentiation, total

or partial, of functions of one or more quaternions ; and such differentiation

will be found to be useful, as in the ordinary calculus, in connexion with

developments of functions : besides that it is necessary for many of those

geometrical and physical applications of differentials of quaternions, on which

we have not entered yet. A few examples of successive differentiation may

serve to show, more easily than any general precepts, the nature and effects

of the operation ; and we shall begin, for simplicity, with explicit functions of

one quaternion variable.

(1.) Take then the square, q^, of a quaternion, as a function /g', which is to

be twice differentiated. We saw, in 324, VII., that a first differentiation

gave the equation,

I. . . d/g- = di.q^ = q.^q + diq.q;

but we are now to differentiate again, in order to form the second differential

dyg- of the function q^, treating the differential of the variable q as still equal

to Aq, and in general writing dd^' = di^q, where d,^q is a neio arbitrary quaternion,

of whicli the tensor, Td^q, need not he small (comp. 322) . And thus we get,

in general, this twice differentiated expression, or differential of the second order,

II. . . dy^ = d\ ?' = ^ . d'V + 2dj'' + d^g . q.

(2.) The second differential of the reciprocal of a quaternion is generally

(comp. 324, XI.),

III. . . d\ ^^ = 2{q-'dqf q-' - q-'d'q . q'K

(3.) If |0 be a variable vector, then (comp. 336, (1.) ) we have, for the first

and second differentials of its square, the expressions

:

lY. . . d . p^ = 2Spd|0 ; V. . .d^|0^ = 2S/>dV + 2d|t)^

(4.) lifp be any other scalar function of a variable vector p, and if (comp.

again the sub-articles to 336) its first differential be put under the form,

VI. . . dfp = 2Svdp, when v is another variable vector,

Hamilton's Elements of Quaternions. 3 O
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then the second differential of the same function may be expressed as follows :

YII. . . d'fp = 2SvdV + 2MvAp
;

in which we have written, briefly, Sdvd/o, instead of S (dv . dp).

(5.) The following very simple equation will be found useful, in the

theory of motions, performed under the influence of central forces :

VIII. . . dYpdp = V/od> ; because Y. dp' = 0.

(6.) As an example of the second differential of a quaternion, considered

as a function of a scalar variable (comp. 5^33, YIII., and 337, (1.)), the follow-

ing may be assigned, in which a denotes a given unit line, so that a'^ = - 1,

da = 0, but a; is a variable scalar

:

IX. . . d\a'=d('^a''^'dx] = '^^ a^+'d'^ - (^)Vd:»^

(7.) The second differential of the product of anp two functions of a quater-

nion q may be expressed as follows (comp, II.)

:

X. . . d' {fq . (pq) = d'fq . (}>q + 2dfq . d<pq +fq . d'.^^.

339. The second differential, d'^, of the variable quaternion q, enters

general/// (as has been seen) into the expression of the second differential dYq,

of the fuuction fq, as a new and arbitrary quaternion : but, for that very

reason, it is permitted, and it is frequently found to be convenient, to asmme

that this second differential d^q is equal to zero : or, what comes to the same

thing, that the first differential dq is constant. And when we make this neiv

supposition,

J.. . . dq = constant, or Y. . . d'^q = 0,

the expressions for d^q become of course more simple, as in the following

examples.

(1.) With this last supposition, I. or T., we have the following second

differentials, of the square and the reciprocal of a quaternion

:

II. . .d-.q' = 2dq' ; III. . . d\ q-' = 2 [q-'dqfq-' = 2q-'{dq .
q-')'.

(2.) Again, if we suppose that Co, Ci, c^ are any three constant quaternions,

and take the function,

lY. . .fq = Coqc.qCi,
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we find, under the same condition I. or I'., that its first and second differen-

tials are,

Y. . . d/g- = Cods' . c^qCi + e^qcAq . Cj ; YI. . . dyg- = 2codg . Cidg . c^
;

in writiDg which, the j^om^s* may be omitted.

(3.) The first differential, d^-, remaining still entirely arbitrary (comp.

322, (8.), and 325, (2.) ), so that no supposition is made that its tensor TAq is

smally although we now suppose this differential dg- to be constant (I.) we have

rigorousli/,

YIL . . {q + dqy=q'+d.q'+id\q';

an equation which may be also written thus,

YIII. ..{q + dqy = (1 + d + |d'0 . q\

(4.) And in like manner we shall have, more generally, under the same

condition of constancy of dq, the equation,

IX. ../{q + dq) = {l + d + hd') fq,

if the function fq be the sum of any number of monomes, each separately of the

form lY., and therefore eacli rational, integral, and homogeneous of the second

dimension, with respect to the variable quaternion, q ; or of such monomes,

combined with others of the first dimension, and with constant terms: that is,

if ao, bo, bi, b\, b\, . . and Co, Ci, Cj, c'o, c\, c\, . . be any constant quaternions,

and
X. . . /j = ao + 2JoJ^i + ^c^qcxqc-i,.

340. It is easy to carry on the operation of differentiating, to the third

and higher orders ; remembering only that if, in any former stage, we have

denoted the first differentials of q, dq, . . by dq, d'q, . . we then continue so to

denote them, in every subsequent stage of the successive differentiation : and

that if we find it convenient to treat any one differential as constant, we must

then treat all its successive differentials as vanishing. A few examples may be

given, chiefly with a view to the extension of the recent formula 339, IX., for

the function f{q + dq) of a sum, of any two quaternions, q and d^', to polynomial

forms, of dimensions higher than the second.

* Compare the second Note to page 439.

3 2
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(1.) The third differential of a square is generally (comp. 338, II.),

I. . . d^ (?^ = y . d'? + d'g . ? + 3 (d^ . dV + d^ • d?).

(2.) More generally, the third differential of o. product of two quaternion

functions (comp. 338, X.) may be thus expressed :

II. . . d^(/g . <^q) = Afq . (j>q + 3dyg . d^^ + 3d/? . d^(pq + fq . d'<j}q.

(3.) More generally still, the «'* differential of a product is, as in the

ordinary calculus,

III. . . 6r{fq. <j,q) = d"fq. <l>q
+ nd"''fq . dtjiq + nA*''^fq-d^H + • • +fq'd"<pq,

if n.-"-^, n.-'±^^, &o.;

the only thing peculiar to quaternions being, that we are obliged to retain

(generally) the order of the factors, in each term of this expansion III.

(4.) Hence, in particular, denoting briefly the function fq by r, and

changing (j)q to q,

TV. . .d*'.rq = d^r . q + nd'^'^r . dq, if d'^q = 0.

(5.) Hence also, under this condition that dq is constant, if c be any other

constant quaternion, we have the transformation,

y...(l,d.id^.^d3.....-i-^d'^)..,.=

__l___d-^r.(?+d?)c, if dV=0.\ + d + ^d^ + ~d»+...+-

(6.) Hence, by 339, (4.), it is easy to infer that if we interpret the symbol

e^ by the equation (comp. 316, I.),

VI. . .
£d=

1 + d + |d'+-i^d' + &o.,

that is, if''we interpret this other symbol ey?, as concisely denoting the series

which is formed horafq, by operating on it with this symbolic development

;

and if \hQ function fq, thus operated on, be any finite polyname, involving (like

the expression 339, X.) no fractional nor negative exponents ; we may then

write, as an extension of a recent equation (339, IX.) the formula

:

VII. . . ey? =/(g + d?), if d^<? = 0;
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which is here a perfectly rigorous one, all the terms of this expansion for a

function of a sum of two quaternions, q and dg-, becoming separately equal to

zero, as soon as the symbolic exponent of d becomes greater than the dimension

of the polynome.

(7.) We shall soon [342] see that there is a sense, in which this exponential

transformation VII. may be extended, to other functional forms which are not

composed as above : and that thus an analogue of Taylor''s Theorem can be

establislied for Quaternions. Meanwhile it may be observed that by changing

diq to ^q, in the finite expansion obtained as above, we may write the formula

as follows

:

VIII. . . t^fq =f[q + A?) = (1 + ^)fq, or briefly, IX. . . £^= I + A ;

which last symbolical equation may be operated on^ or transformed, as in the

usual calculus of differences and differentials. For instance, it being under-

stood that we treat ^^q as well as ^q as vanishing, we have thus (for any

positive and whole exponent m), the two following transformations of IX.,

X. . . A*" = fed _ l)m^ and XI. . . d"» = (log (1 + A))'"

;

the results of operating^ with the symbols thus equated, on any polynomial

function fq, of the kind above described, being alw&jB Jfnite expansions, which

are rigorously equal to each other.

341. Let Fx and (px be any two functions of a scalar variable, of which both

vanish with that variable ; so that they satisfy the two conditions,

I. . . i^O = 0, ^0 = 0.

Then the three simultaneous values,

II. . . X, Fx, <px,

of the variable and the two functions, are at the same time (comp. 320, 321)

three simultaneous differences, as compared with this other system of three

simultaneous values,

III. . . 0, FO, 00.

If, then, any equimultiples,

IV. . . nx, nFx, n<j)X,

of the three values II., can be made, by any suitable increase of tlie number,

n, combined with a decrease of the variable, x, to tend together to any system of
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limits^ those Utnits must (by the definition in 320, compare agaiu 321) admit

of being considered as a system of simultaneous differentials^

y. . . diT, diFx, d(l>a;,

answering to the system of initial values III. ; and must he proportional to the

ultimate values of the connected system of derivatives,

YI. . . J , F'x, (ji^x, when x tends to zero.

We may therefore write, as expressions for those ultimate values of the two

last derivedfunctions,

YII. . . rO = lim . nF-, ^'0 = lim . «^ -, if FO = <j>0 = 0.
« = CO n M = 00 n

And eiJew if these last values vanish, or if the ^m?o we?^' conditions

YIII. . . i^'O = 0, 0'O = 0,

are satisfied, so that x, F'x, and <l>'x are now (comp. II.) a new system of

simultaneous differences, we may still establish the following equation of limits

of quotients, which is independent of these last conditions YIII.,

IX. . . lim {Fx : </>«;) = lim {F'x : (p'x), if JPO = <^0 = ;

it being understood that, in certain cases, these two quotients may both vanish

with X ; or may tend together to infinity, when x tends, as before, to zero.

(1.) This theorem is so important, that it will not be useless to confirm it

by a geometrical illustration, which may at the same time serve for a geometri-

calproof ; at least for the extensive case where both the functionsfx and (px

are of scalar forms, and consequently may be represented, or constructed, by

the corresponding ordinates, XT and XZ (or ordinates answering to one com-

mon abscissa OX), of two curves OyY and OsZ, which are in one j^lane, and set

out from (or pass through) one common origin 0, as in the annexed figure 75.

We shall afterwards see that the result, so obtained, can be extended to quater-

nion functions,

(2.) Suppose then, first, that the ordinates of these two curves are pro-

portional, or that they bear to each other one fixed and constant ratio ; so that

the equation,

X. . . XY : XZ = xy : xz,

is satisfied for every pair of abscissce, OX and Ox, however great or small the

corresponding ordinates may be. Prolonging then (if necessary) the chord
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Yy of the first curve, to meet the axis of abseissse in some point t, and so to

determine a subsecant tX., we see at once (by similar triangles) that the

corresponding chord Zz of the second curve will meet the same axis in the same

point, t ; and therefore that it will determine [rigorously] the smne subsecant, ^X.

(3.) Hence, if the point a; be conceived to approach to X, so that the

secant Yyt of the first curve tends to coincide with the tangent YT to that

curve at the point Y, the secant Tizt of the second curve must tend to coincide

with the line ZT, which line therefore must be the tangent to that second

curve : or in other words, corresponding subtangents

coincide, and of course are equal, under the supposed

condition X., of a constant proportionality of ordi-

nates.

(4.) Suppose next that corresponding ordinates

only tend to bear a given or constant ratio to each

other ; or that their (now) variable ratio tends to a

given or fixed limit, when the common abscissa is

indefinitely diminished, or when the point X tends

to ; and let T be still the variable point in which

the tangent to i\\e first curve at Y meets the axis, so that the line TX is still

i\\Q first subtangent. Then the corresponding tangent to the second curve at

Z will not in general pass through the point T, but will meet the axis in some

different point U. But the ratio of the two corresponding subtangents, TX and

UX, which had been a ratio of equality, when the condition of proportionality

X. was satisfied rigorously, will now at least tend to such a ratio ; so that we

shall have, under this new condition, of tendency to proportionality of ordinates,

the limiting equation,

XL. .lim(TX:UX) = l;

whence the equation IX. results, under the geometricalform,

XII. . . lim (tan XTY : tan XUZ) = lim (XY : XZ)

.

(5.) We might also have observed that, when the proportion X. is rigorous,

corresponding areas* (such as xXXy and a?XZs) of the two curres are then

exactly in the given ratio of the ordinates ; so that this other equation, or

proportion,

XIII. . . OXY|/0 : OXZzO = XY : XZ,

* Compare the Fourth Lemma of the First Book of the Principia ; and see especially its

Corollary, in which the reasoning of the present sub-article is virtually anticipated.
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is then also rigorous. Hence if we only suppose, as in (4.), that the ordinates

tend to some jRxed limiting ratio, the areas must tend to the same ; so that if

the second member of the equation IX. have amj definite value, as a limit, the

Jlrst member must have the same : whereas the recent proof, hy suhtangents,

served rather to show that if the first (or left hand) limit in IX. existed, then

the second limit in that equation existed also, and was equal to the first.

(6.) If the fmction Fx be a quaternion, we may (by 221) express it as

follows,

Xiy. . .Fx = W^ iX + j7+ kZ,

where W, X, Y, Z are four scalar functions of x, of which each separately can

be constructed, as the ordinate of a plane curve ; and the recent geometrical*

reasoning will thus apply to each of them, and therefore to their linear combi-

nation Fx : which quaternion function reduces itself to a vector function of x,

when W= 0.

(7.) And if <px were another quaternion or vector function, we might first

substitute it for Fx, and then eliminate the scalar function (px; so that a

limiting equation of the form IX. may thus be proved to hold good, when

both the functions compared are vectors, or quaternions, supposed still to vanish

with X.

(8.) The general considerations, however, on which the equation IX., was

lately established, appear to be more simple and direct ; and it is evident

that tliey give, in like manner, this other but analogous equation, in which

F'^x and ^"a; are second derivatives, and the conditions YIII. are now supposed

to be satisfied

:

XV. . . \\.m[rx : <p'x) = lim (F^'x : <l>''x), if F'O = 0, ^'0 = 0.

• Instead of the equation IX., it has hecome usual, in modem works on the Differential Calculus,

to give one of the following form (deduced from principles of Lagrange)

:

^.^M. if ;(0) = ^(0) = 0;

6 denoting some proper fraction, or quantity between and 1. And a geometrical illustration, which

is also & geometrical proof, when ^& functions Fx and <f>x can be constructed (or conceived to be con-

structed) as the ordinates of two plane curves, is sometimes derived from the axiom (or geometrical

intuition), that the chord of any finite and plane arc must be parallel to the tangent, drawn at some

point of i\xa,t finite arc. But this parallelism no longer exists, in general, when the curve is one of

double curvature ; and accordingly the equation in this note is not generally true, when the functions

are quaternions ; or even when one of them is a quaternion, or a vector.
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And so we might proceed, as long as successive derivatives, of higher orders,

continue to vanish together.

(9.) Hence, in particular, if we take this scalarform,

2 . 3 . . . m'

which evidently gives the values,

XVII. ..^0 = 0, f = 0, <^"Q = 0, . . .
0("'-i)O = 0, ^HO = 1,

and if we suppose that tlie function F.v is such that

XVIII. . . Fo = 0, F'i) = 0, r'o = 0, . . . i^('»-i)o = 0,

while i^('")0 has any finite value, we may then establish this limiting equation :

XIX. . . \im.{Fx:<t»x)«F<'")0;

in which the function Fx, and the value JP('")0, are here supposed to be generally

quaternions ; although they may happen, in particular cases, to reduce them-

selves (292) to vectors, or to scalars.

342. It will now be easy to extend the Exponential Transformation 340,

VII. ; and to show that there is a sense in which that very important Formula,

which is, in fact, a known* mode of expressing the Series or Theorem of

Taylor, holds good for Quaternion Functions generally, and not merely for

those functions oi finite audi polynomial form, Vfiih. positive and n-hoJe exponents,

for which it was lately deduced, in 340, (6.). For let /j and /(«7 + d^-)

denote any ttco states, or values, of which neither is infinite, of anyfunction of a

quaternion ; and of the tn first differentials,

II. . . ^fq, di'fq, . . d"'/$', in which Aq = const.,

let it be supposed that no one is infinite, and that the last of them is different

from zero; while all that precede it, and the functions /§' and/(5' + d$') tliem-

selves, may or may not happen to vanish. Let the first 7n terms, of (he

* Lacroix, for instance, in page 168 of the First Volume of his larger Treatise on the iJifFerential

and Integral Calculus (Paris, 1810), presents the Theorem of Taylor under the form,

d<« d-M d% d*«<
u =u-\ 4 — 4- + — + &c. ;

I 1.2 1.2.3 1.2.3.4

where u' denotes the value which the function u receives, when the variahle x receives the arbitrary

increment dx (I'accroissement quelconque da;).

Hamilton's Elements of Quaternions. 3P
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exponential deulopment of the symbol {t^ - Vj/q^ be denoted briefly by q^, q^, . .

qm ; and let r^ denote what may be called the remainder of the series, or the

correction which must be conceived to be added to the sum of these m terms,

in order to produce the exact value of the diference,

III. . . A/^ =f{q + Aq) -fq -f{q + dq) -fq ;

in such a manner that we shall have rigorously, by the notations employed,

the equation,

ly. . . f{q + dg) =/g + ^1 + ^2 + . . + ?m + Tm, where Om =
2.3. .m

this term q,n being different from zero, but no one of the terms being infinite,

by what has been above supposed. Then we shall prove, as a Theorem^ that

Y. . . lim. [Trm : T^qm) = 0, if lim. Tdg = ;

or in words, that the tensor of the retnainder may he made to bear as small a

ratio as ice phase, to the tensor of the last term retained, by diminishing the tensor,

without changing the versor, of the differential (or difference) dq. And this very

general result, which will soon be seen to extend to functions of several

quaternions, is in the present Calculus that analogue of Taylor's theorem to

which we lately alluded (in 340, (7.) ) ; and it may be called, for the sake of

reference, " Taylor^s Theorem adapted to Quaternions.^'

(1.) Writing

YL . . Fx =f{q + xd.q) -fq - xdfq - - dV?? - . . - ^-^-^— d--/?,

we shall have the following successive derivatives with respect to x,

F'x = d/(j + xdq) -dfq- x&Vq -..- 373777(^-32)
^"'>^«

5

YII. . .J
r'x = d^f{q+xd.q) - dy^- . .

- .^-^—^—^ d-yg; . .

.

F('»-l);^; = d"'-y ((/ + xAq) - dJ^-'fq ; and finally,

^F^^)x = d!'f{q + a?dg)
;

because, by 327, YI., and 324, lY.,

YIII. . . 'Df{q + xdq) = lim.

w

{f[q + xdiq + M-Mg) -f{q + irdg-)} = df{q + xdq),

and in like manner,

IX. . . Dy(? + xdq) = dy(/ + xdq), &c.

;
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the mark of derivation D referring to the scalar variable a", while d operates

on q alone, and not here on cc, nor on dq.

(2.) We have therefore, by VI. and VII., the values,

X. . .F0 = 0, F'O = 0, F^'O = 0, . . Fi"'-')0 = 0, Fi^)0 = d^q
;

whence, by 341, XIX., we have this limiting equation,

or

x'^drfq
XII. . . Km. {Fx : xf^x) = 1, if xpx =

^2.3... My

(3.) But these two functions, Fx and \px, are formed by IV. from q„i + ?•„»

and qm, by changing d^' to xdq ; and instead of thus multiplying dq by a

decreasing scalar^ Xy we may diminish its tensor Tdg, without changing its

versor Vdq. We may therefore say that, when this is done, the quotient

[qm + ^m) : qm teuds to unity, or this other quotient I'm : qm to zero, as its limit

;

or in other words, the limiting equation V. holds good.

(4.) As an example, let the function fq be the reciprocal, g-"^ ; then (oomp.

339, III.) its m^^ differential is (for dq = const.),

XIII. . . d'"fq = d"*. q-' = 2 . 3 . . . m .
j"' (- r)'", if r = dq .

q-'
;

and it is easy to prove, ivithout differentials, that

XIV. . . (q + rqy = q-' (1 + r)-' = q-^{l -r+ r' - . . + {- /-)»'+ (- r)'«+^ (1 + r)-');

we have therefore here

XV. . . q,, = q-' {- r)"\ r,„ = -- g^r (I + r)-\ T (r,„ : q„,) = Tr . T (1 + r)"';

and this last tensor indefinitely diminishes with Tdq, the quaternion q being

supposed to have some given value different from zero.

(5.) In general, if we establish the following equation,

n~^ n^~^
XTI. ../{? + ,r'dy) =/y + „-M/!r+- dyy + .. +

2.3...(ro-i)
'^-'-^?

as a definitional extension of the equation 325, V. ; and if we suppose that

neither the function fq itself, nor any one of its differentials as far as d^'^fq

is infinite ; the result contained in the limiting equation XI. may then be

expressed by the formula,

XVIL../(m)(<y,dg)=dV?;
3P2
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which for the particular value m = 1, if we suppress the upper index, coincides

with the form 325, YIII. of the definition dfx, but for higJier values of m
contains a theorem : namely (when A.^fq is supposed neither to vanish, nor to

become infinite), what we have called Taylor^s Theorem adapted to Quaternions.

343. That very important theorem may be applied to cases, in which a

quaternion (as in 327, (5.) ), or a vector (as in 337), is expressed as a function of

a scalar', also to transcendentalforms (333), whenever the differentiations can

be effected; and to those new forms (334), which result from the peculiar

operations of the present Calculus itself. A few such applications may here

be given.

(1.) Taking first this transcendental and quaternion function of a variable

scalar,

1. . . q =ft = u*, with To = 1, da = 0, d^ =^ const.,

we have, by 333, YIII., the general term,

2 . 6 . .fn 2 . 6 . .m\ 2 J 2 .6 . . m

dividing then t^ . a* by a*, we obtain an infinite series, which is found to be

correct, and convergent; namely (comp. 308, (4.) ),

TTT ^/ 1 i^aV (xa)"' , Trdt . vdt
III. . . a^^ = l + xa+ ^-~- + . . + i^-~- + . . = 6^°- = cos -7T- + a sm -^r-.

2 2 . 3 . .m 2 2

(2.) Correct and finite expansions, for S {q ^-dg-), Y [q+ dq), K (;? + dq), and

N ((/ + dq), are obtained when we operate with e^ on Sg, Yq, Kq, and Ng- ; for

example {dq being still constant), the third and higher differentials of Ni/

vanish by 334, XI., and we have

lY. .. £dNg = (l + d + |d^)Ng = Ng + 2S(Kg.d?} + Nd? = N(? + d?);

an expression for the norm of a sum, which agrees with 210, XX., and with

200, YII.

(3.) To develop, on like principles, the tensor and versor of a sum, let us

again write r for dq : q, and denote the scalar and vector parts of this quotient

by s and «;; so that, by 334, XIII. and XY.,

<? Ty '

q ^q

(4.) Then writing also, for abridgment, as in a known notation of

factorialSf

YlI...[-l] = (-l).(-2).(-3)....(-/.0»
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we shall have, by 342, XIII., dq being still treated as constant, the equation,

m w
YIII. ..d"'{s + v) = d'"r = [- 1] r'»+i = [- 1] {s + v)"'*\

of which it is easy to separate the scalar and vector parts ; for example,

IX. . . ds = - S . {s + vY = -{s' + v^) ; dv = -Y .{s + vf = -2sv.

(5.) We have also, by V. and YI.,

d"'U<7 d*""^U<7
xi...^X(..d)^--^-...=(.+drii

the notation being such that we have, for instance, by IX.,

XII... (s + d)l = s; (s + dy 1 = {s+ d) s =s' + ds = -v^

I

XIII. . .{v+ d)l = v', {v + dy I = {v + d) v= v^ + dv = v"^ - 2sv.

(6.) The exponentialformula 342, I., gives, therefore,

XIV. ..T{q + dq)= t^'q = e'*^ 1 .Tq]

XV. . .V{q+dq) = t^Uq= ,'^H .Vq

;

or, dividing and substituting,

XVI. ..T{l+s + v) = £*+d 1 . XVII. ..V{l + s + v) = t''n',

s and V being here a scalar and a vectovy which are entirely independent of each

other ; but of which, in the applications, the tensors must not be taken too

large, in order that the series may converge.

(7.) The symbolical expressions, XVI. and XVII., for those two series, may

be developed by (4.) and (5.) ; thus, if we only write down the terms which do

not exceed the second dimension, with respect to s and v, we have by XII.

and XIII. the development,

XVIII. . . T (1 + s + «;) = 1 + s - i«>^ + . .
.

,

XIX... U(l + « + «;) = \^-v+[W--sv) + . ..;

of which accordingly the product is 1 + s + z?, to the same order of approxi-

mation.

(8.) h. function of a sum of two quaternions can sometimes be developed,

without differentials, by processes of a more algebraical character ; and when
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this happens, we may compare the result with the form given by Taylor^s

Series, as adapted to quaternions in 342, and so deduce the values of the

successive differentials of the function ; for example, we can infer the expression

342, XIII. for d'". g-"^, from the series 342, XIV, for the reciprocal of a sum.

(9.) And not only may we verify the recent developments, XYIII. and

XIX., by comparing them with the more algebraicalforms,*

XX...T(l + s + «?) = {l + s + v)^l + s-v]i,

XX.J...V{l+s + v)={l+s + v)h{i+s-vyi,

but also, if the first of these, for example (when expanded by ordinary

processes, which are in this case applicable), have given us, without differen-

tials,

XXII. ..T{q + q') = {l + s-ivK.)Tq, where s = SqY\ and v = YqY\
we can then infer the values of the first and second differentials of the tensor of

a quaternion, as follows

:

XXIII... dTg = S^.T?; d'Tq^-h^yTq;

whereof the first agrees with 334, XII. or XIII., and the second can be

deduced from it, under the form,

XXIT. . . d'Ts = d (S 1^ Ty) =
(
(s !jj- S .

(^J)
Tq.

(10.) In general, if we can only develop a function /((/ + q') as far as the

term or terms which are of the first dimension relatively to q% we shall still

obtain thus an expression for the first differential dfq, by merely writing dq in

the place of q\ But we have not chosen (corap. 100, (14.) ) to regard this

property of the differential of a function as ihQ fundamental one, or to adopt it as

the definition of dfq-, because we have not chosen to postulate the general

possibility of such developments offunctions of quaternion sums, of which in fact

it is in many cases difficult to discover the laics, or even to prove the ezistence,

except in some such way as that above explained.

(11.) This opportunity may be taken to observe, that (with recent nota-

tions) we have, by VIII., the symbolical expression,

XXV. ..t^+^-M = 1 + 5 + ^; or XXVI. . . /'M = 1 + r.t

* [These are equivalent to the transformations

v/,-VKi = ^^Vl^ = T, and ^ = ,^=^^0

t [In fact by VIII., dr = - r^ and (r + d)^ . 1 = (r + d) . r = r^ - r^ = 0.]



Ams. 343-345.] SUCCESSIVE DIFEEEENCES AND DERIVATIONS. 479

344. Successive differentials are also connected with successive differences, by

laws which it is easy to investigate, and on which only a few words need here

be said.

(1.) We can easily prove, from the definition 324, lY. of d/g, that if d^

be constant,

T. . . dy<7 = lim. n^ [f{g + 2n-' dq) - 2f{q + n-' dq) +/q} ;

with analogous expressions for differentials of higher orders.

(2.) Hence we may say (comp. 340, X.) that the successive differentials,

11... dy^, dy?, d'fq,.. for d\ = 0,

are limits to which the following multiples of successive differences,

III. . . n^fq, n^AVq, n'A'fq, . . for A^ = 0,

all simultaneously tend, when the multiple nAq is either constantly equal to

dq, or at least tends to become equal thereto, while the number n increases

indefinitely.

(3.) And hence we might prove, in a new way, that if the function

f[q + dq) can he developed, in a series proceeding according to ascending and

whole dimensions with respect to dq, the parts of this series, wliich are of those

successive dimensions, must follow the law expressed by Taylor s Theorem*

adapted to Quaternions (342).

345. It is easy to conceive that the foregoing results may be extended

(comp. 338), to the successive differentiations of functions of several quater-

nions ; and that thus there arises, in each such case, a mystem of successive

differentials, total and partial : as also a system of partial derivatives, of orders

higher than the first, when a quaternion, or a vector, is regarded (comp. 337)

as a function of several scalars.

(1.) The general expression for the second total differential,

l,..d'Q=d'F[q,r,..),

involves d% dh, .
.

; but it is often convenient to suppose that all these second

differentials vanish, or that the first differentials dq, dr, . . are constant ; and

then d'"Q, or d^'Fiq, r, . .), becomes a rational, integral, and homogeneous

function of the m*'' dimension, of those first differentials d^, dr, . . , which

may (comp. 329, III.) be thus denoted,

II. . . d»'Q = {dg + ir + . .)'"Q ; or briefly, III. . . d'" = (d^ + d^ + . .)'",

* Some remarks on the adaptation and proof of this important theorem will he found in the

Lectures, pages 589, &c.
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in developing which symbolical power, the multinomial theorem of algebra may

be employed : because we have generally, for quaternions as in the ordinary

calculus,

IV. . . drdj = djd^.

(2.) For example, if we denote dj and dr by q' and /, and suppose

Y. . . Q = rqr, then VI. . . d^Q - rqr ; VII. . . d^Q - r'qr + rq/-,

and VIII. . . d,d^Q = d^d^Q = rqr + rqr'.

And in general, each of the two equated symbols IV. gives, by its operation

on F{q, r), the limit of this other function, or product (comp. 344, I.),

IX. . . nn' [ F{q + n~^ dq, r + ii''^ dr) - F{q, r + «'"^ dr) - F{q + n'^ dq, r) + F{q, r)

]

;

in which the numbers n and n' are supposed to tend to infinity.

(3.) We may also write, for functions of several quaternions,

X... Q^ ^Q = F{q^dq, r + dr,..) = t^<i^^^"F{q, r)

;

or briefly, XI. . . 1 + A = th^^r*-- = t^

;

with interpretations and transformations analogous to those which have

occurred already, for functions of a single quaternion.

(4.) Finally, as an example of successive and partial derivation, if we resume

the vector expression 308, XVIII. (comp. 315, XII. and XIII.), namely,

XII. . . p = rk'fkj-'k-\

which has been seen to be capable of representing the vector of any point of

space, we may observe that it gives, without trigonometry, by the principle

mentioned in 308, (11.), and by the sub-articles to 315, not only the form

XIII. . . p = rk'j'^k'-', as in 308, XIX.,

but also, if a be any vector unit,

XIV. . . p = rk*^^p'k-^ = rk\k^ . a^* + ?S . a''-') . /r'

;

whence
XV. . . p = rV. F*" + rk-^'N. ^^ as in 315, XII.

(5.) We have therefore the following new expressions (compare the sub-

articles to 337), for the i^fo partial derivatives of they^^'S^ order, of this variable

vector p, taken with respect to s and t :

XVI. . . D,p = Trrk^'if'Jc^^ - Trpk\jk-\

with the verification, that

XVII. . . pD,p = Txr' . U'l'kfk-' . k^j'ij^k-* = irrVM-' ; and
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XYIII. . .BtP = nrF'Y.f' = TrrF'yS . a''-' = r-^D.p . S . a ''-^

whence

XIX. . . pDtp = - rDsp . S . a^-\ and XX. . . D,p . D,|0 = nS-p^ . o""^

;

while

XXI. . .J)rp = r-'p = k*fkj-'k:', as in 337, XXV. ;

so that we have the following ternary product of these derived vectors of the

first order,

XXII. . . D.P . Tfsp . T^tp = rryS . a"-^ = 7r>''D.S . a^'

;

the scalar character of which product depends (comp. 299, (9.)) on the cir-

cumstance, that the vectors thus multiplied compose (337, (10.)) a rectangular

system.

(6.) It is easy then to infer, for the six partial derivatives of p, of the

second order, taken with respect to the same three scalar variables, r, s, t,

the expressions

:

XXIII. . .D,> = ; 'DrDsp = D,D,/3 = r-'Dsp ; D,D,/r, = D,D,/> = r-'Tftp
;

XXIY . . . D,V = - ttV ; D*Df/o = D*D«p = ^V/r'Y. /*^'
; D,V = - nhk^'N .

^•^^

(7.) The three partial differentials of the first orders of the same variable

vector p, are the following

:

XXY. . . d,|0 = r-^pdr ; d«|0 = Dg/o . ds ; d</o = D/jO . d/

;

with the products,

XXYI. . . d,|0 . d,/o = - TrrpdS . a"> . dj!

;

XX YII. . . d,|0 . d,p . d,p = 7r?Mr . dS . a" . d^.

(8.) These differential vectors, d,|t), d,(0, d^|0, are (in the present theory)

generally finite ) drp, like Drp, being a line in the direction of p, or of the

radius of this sp/iere round the origin, at least if dr, like r, be positive; while

dsp, like Dsp, is (comp. 100, (9.)) a tangent to the meridian of that spheric

surface, for which r and t are constant ; but d^^o, like Dtp, is on the contrary

a tangent to the small circle (or parallel), on the same sphere, for which r and

s are constant.

(9.) Treating only the radius r as constant, and writing p = op, if we pass

from the point p, or {s, t), to another point q, or (s + As, t), on the same

meridian, the chord pq is represented by the finite difference, A^p ; and in like
Hamilton's Elements of Quaternions. 3 Q
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manner, if we pass from p to a point r, or (s, t + A^), on the s«m<? j?am^/e/, the

new chord pr is represented by the oilier partial and finite difference, A<p

;

while the point (s + As, t + Aif] may be denoted by s.

(10.) If now the tico points q and r be conceived to approach to p, and to

come to be very near it, the chords pq and pr will very nearly coincide with the

two corresponding arcs of meridian and parallel ; or with the tangents to the

same two circles at p, so drawn as to have the lengths of those two arcs

:

or finally with the diferential and tangential vectors, d^p and dtp, if we suppose

(as we may, comp. 322) that the two arbitrary and scalar differentials, ds and

d^, are so assumed as to be constantly equal to the two differences, As and A^,

and consequently to diminish icith them.

(11.) Whether the differentials ds and d^ be large or small, the product

^sp • d</o, like the product Dgp Dtp, represents rigorously a normal vector

(as in XXVI. and XX.) ; of which the length bears to the unit of length

(comp. 281) the same ratio, as that which the rectangle under the two perpen-

dicular tangents, dsp and Atp, to the sphere, bears to the unit of area. Hence,

with the recent suppositions (10.), we may regard this product dsjo . dup as

representing, with a continually and indefinitely increasing accuracy, even

in the way of ratio, what we may call the directed element of spheric surface,

PQRS, considered as thus represented (or constructed) by a normal at p ; and

the tensor of the same product, namely (by XXYI.),

XXYIII. . . T(d,/> . dtp) = - TrrMS . a'' . dt,

in which the negative sign is retained, because S . a^* decreases from + 1 to - 1,

while s increases from to 1, is an expression on the same plan for what we

may call by contrast the undirected element of spheric area, or that element

considered with reference merely to quantity, and not with reference to

direction.

(12.) Integrating, then, this last differential expression XXVIII., from

^ = to ^ = 2, and from s = So to s = Si, that is, taking the limit of the sum of

all the elements pqrs between these bounding values, we find the following

equation

:

XXIX. . . Area of Spheric Zone = 27rr^S(a^*o _ a"i)

;

whence

XXX. . . Area of Spheric Cap (s) = 27rr^(l - S . a") = 47rr'{TY . a")' ;

and finally,

XXXI. . . Area of Sphere = 47rr% as usual.
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(13.) In like manner the expression XXYII., with its sign changed (on

account of the decrease of S . a% as in (11.) ), represents the element of volume ;

and thus, by integrating from r = t'o to r = Ti, from s = to s = I, and from

^ = to ^ = 2, we obtain anew the known values :

XXXII. . . Volume of Spheric Shell = %(ri' -
^o')

;

o

and

XXXIII. . . Volume of Sphere (r) = —^j as usual.
o

(14.) These are however only specimens of what may be called Scalar

hitegratioiiy although connected with quaternion forms ; and it will be more

characteristic of the present Calculus, if we apply it briefly to take the

Vector Integral, or the limit of the vector-sum of tlie directed elements (11.) of

a portion of a spheric surface : a problem which corresponds, in hydrostatics,

to calculating the resultant of the ^jressures on that surface, each pressure

having a normal direction, and a quantity proportional to the element of area.

(15.) For this purpose, we may employ the expression XXVI. with its

sign changed, in order to denote an inward normal, or a pressure acting from

without ; and if we then substitute for p its value XY., and observe that

XXXIV. . li^^dt = 0, because Jc^ = - 1,*

and remember that V. /<;"+' = k^ . a'*, we easily deduce tbe expressions :

XXXV. . . Sum of Directed Elements of Elementary Zone = TrrVid . (S . a'^^f ;

XXXVI. . . Sum of Directed Elements of Spheric Cap (.s) = - irrVe{l - (S . a^'Y)

= 7rr'k(V.a''y = w-'k^DtpY = Trk(Vkpy.

(16.) But the radius of the plane and circular base, of the spheric segment

corresponding, is TYkp, so that its area is in quantify - - tt (Vkpf ; and the

common direction of all its imcard normals is that of + k ; hence, if we still

represent the directed elements by normals thus drawn inwards, we have this

new expression :

XXXVII. . . Sum of Directed Elements of Circular Base = - nkiykpY;

comparing which with XXXVI., we arrive at the formula,

• [Since dF«-i = jA;2<d(2if- 1) by 333 (5.), the integral f A-2<dif = - (i=«-i-A-i).]

2 Jo
""

3Q2
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XXXVIII. . . Sum of Directed Elements of Spheric Segment = Zero\

a result which may be greatly extended, and which evidently answers to a

known case of equilibrium in hydrostatics,

(17.) These few examples may serve to show already, that Differentials of

Quaternions (or of Vectors) may be applied to various geometrical and physical

questions ; and that, when so applied, it is permitted to treat them as smalls if

any convenience be gained thereby, as in cases of integration there always is.

But we must now pass to an important investigation of another kind, with

which differentials will be found to have only a sort of indirect or suggestive

connexion.

SECTION 6.

On the DiiTerentiation of Implicit Functions of Q,uaternions

;

and on tlie Crcneral Inversion of a liinear Function, of a
Sector or a Q,uateruion : witli some connected Investigations.

346. "We saw, when differentiating the square-root of a quaternion (332,

(5.) and (6.) ), that it was necessary for that purpose to resolve a linear

equation,* or an equation of the first degree ; namely the equation,

I. . . rr' + rr = q\

in which r and (f represented two given quaternions, <^ and dg, while /
represented a sought quaternion, namely dr or d . f. And generally, from

the linear or distributive form (327), of the quaternion differential

II. ..dQ = d/g=/(g,d?),

of any given and explicit function fq, when considered as depending on the

differential 6.q of the quaternion variable q, we see that the return from the

former differential to the latter, that is from dQ to dj?, or the diferentiation of

the inverse or implicit function f^Q, requires for its accomplishment the

Solution of an Equation of the First Degree : or what may be called the

Inversion of a Linear Function of a Quaternion. We are therefore led to con-

eider here that general Problem ; to which accordingly, and to investigations

connected with which, we shall devote the present Section, dismissing however

now the special consideration of the Differentials above mentioned, or treating

t Compare the Note to page 452.
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them only as Quaternions, sought or given, of which the relations to each other

are to be studied.

347. Whatever the particular form of the given linear or distributive

function, fq, may be, we can always decompose it as follows

:

I. -fq =/(S? + V?) =f^Q +/V? = s? ./I +./T'7

;

taking then separately scalars and vectors, or operating with S and V on the

proposed linear equation,

11. ..fq^r,

where r is a given quaternion, and q a sought one, we can in general eliminate

S^, and so reduce the problem to the solution of a linear and vector equation,

of the form,
III. . . (Pp

= a ',

where or is a given vector, but p {= Yq) is a sought one, and ^ is used as the

characteristic of a given linear and vector function of a vector, which function

we shall tliroughout suppose to be a real one, or to involve no imaginary/

constants in its composition. But, to every such function (pp, there always

corresponds what may be called a conjugate linear and vector function
<l>'p,

connected with it by the following Equation of Conjugation,

rV. . . SA^/o = S/o^'A
;

where A and p are any two vectors. Assuming then, as we may, that fi and v

are two auxiliary vectors, so chosen as to satisfy the equation,

and therefore also,

VI. . . SAo- = SA^v, Sju<T = 0, Sv<T = 0,

where A is a third auxiliary and arbitrary vector, we may (oomp. 312) replace

the one vector equation III. by the three scalar equations,

VII. . . SjO^'A = SA/iv, Sp(p'n = 0, Spcji^v = 0.

And these give, by principles with which the reader is supposed to be already

familiar,* the expression,

VIII. . . mp = ipa, or IX. . . jO = ^~^a = m'^xpa,

* A student might find it useful, at this stage, to read again the Sixth Section of the preceding

Chapter ; or at least the early suh-articles to Art. 291, a familiar acquaintance with M-hich is

presumed in the present Section.
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if m be a scalar-constant, and ip an aiixiliary linear and vector function, of which

the value and ih.Q form are determined by the two following equations :

XL, .4^(Jiiv)=\{^'n.<p'v)\

X'. . . m^X^v = S . (j)'\^^ix(}>'v,

XL. . . ipY/iiv = V. (j)^fi(j>'v.

or briefly,

and

And thus the proposed Problem of Inversion, of the linear and vector function

<ji, may be considered to be, in all its generality, resolved ; because it is always

possible so to prepare the second members of the equations X. and XL, that

they shall take the forms indicated in the first members of those equations.*

(1.) For example, if we assume any three diplanar vectors a, a, a", and

deduce from them three other vectors /3o, (i'o, i3"oj by the equations,

XII. . . Po Saa'a" = ^aa\ j^^Saaa' = \a'a, j3"oSaa'a'' = Vaa',

then any vector p may, by 294, XY., be expressed as follows

:

XIII. • • p = jSoSap + j3'oSa'p + j3'''oSa'"/o ;

if then we write,

XIY. . . |3 = <^^o, 13' = tj>l5'o, ^" = ^i3"o,t

we shall have the following General Expression, or Standard Trinomial Form,

for a Linear and Vector Function of a Vector,

XV. . . (jip = j3Sap + j3'Sa'|0 + 13'^Sa^p
;

containing, as we see, three vector constants, j3, j3^ /3", or nine scalar constants,

suoh as

XYI. . . SajS, Sa'jS, Sa"i3; Sa/3', Sa'j3', Sa'^^'; Soj3", Sa'iS'^ Sa"i3'';

which may (and generally will) all vary, in passing from one linear and vector

function (pp to another such function ; but which are all supposed to be real,

and given, for each particular form of that function.

* [For a more elementary solution of the problem of Inversion, see sub-art. (4.).]

t [The equations XIV. lead to a useful expression for a linear vector function in terms of three

diplanar vectors )3o> )8'o, and fi'o, and the derived vectors ;3, 0, and j3".]
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(2.) Passing to what we have called the conjugate linear function 0'|O, the

form XV. gives, by lY., the expression,

XVII. . . «^> = aSjSp + a'SjSV + a"S/3''p
;

but

V. («Sj3/i + a'S/3V) (aSj3v + a'S/3'v) = Yaa'S . ^'{v^^fx - /iSjSr)

=-. Vaa'S . j3T. jSV^ui; = Yaa'S . ^'^Yfxv ;

therefore the transformation XI. succeeds, and gives,

XVIII. . . ^/> = VoV'S^''/3> + Va"«S/3i3'V f Yaa'Sj3'i3it>,

as an expression for the auxiliary function ;// ; of which the conjugate may be

thus written,

XIX. . . ^> = Vi3'^"Sa"a> + Yi3"^Saa'> + Y^i3'Sa'«|0 ;

80 that ;// is changed to ^p\ when ^ is changed to 0', by interchanging each of

the three alphas with the corresponding beta.

(3.) If we write, as in this whole investigation we propose to do,

XX. . . X' = Y/ii^, fi = Yi/X, V = YAju,

the formulae XI. and X. become,

XXI. . . 1/.V = Y. ^V^V, and XXII. . . »?SXX' = S . <i>'Xi^y,

with the same sort of abridgment of notation as in XL'. ; and because the

coeflScient of SaaV in this last expression XXII. is by XVII. XVIII.,

Sj3XSi3"i3'X' + Si3'XS/3i3''X' + Si3"AS/3'i3X' = Si3''/3'i3SAX',

the division by SXX', or by SX/xv, succeeds, and we find the expression,

XXIII. . .m = Saa'a''S|3"/3'^
;

which may also be thus written,

XXIir. . .m = S/3/3'^''Sa'Va,

so that tn does not change when we pass from to 0', on which account we
may write also,

XXIY. . . wSXX' = S . <j>X^p'\\ or XXIY'. . . mSX/xv = S . <t>X(Pin(j>v,

because, by (2.), we can deduce from XI. the conjugate expression,

XXY. . .^'X' = V.0/i^i/.
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(4.) We ouglit then to find that the linear equation,

XXVI. ..a=<l>p = (5Sap + j3'Sa> + /3"Sa'>,

has its solution expressed (comp. YIII.) by the formula,

XXVII. . . /oSaa'a''S/3''i3'/3 = Va'a"S/3"/3V + Vc/'aSjSjS'a + Vaa'S/3'/3(T
;

and accordingly, if we operate on the expression XXVI. for a with the three

symbols,
XXVIII. . . S . i3"i3', S . /3/3", S . jS'jS,

we obtain the three scalar equations,

XXIX. . . Si3''/3V = Si3"i3'/3Sap, &c.,

from which the equation XXVII. follows immediately, without any intro-

duction of the auxiliary vectors A, /x, v, although these are useful in the

theory generally.

(5.) Conversely, if the equation XXVII. were given, and the value of a

sought, we might operate with the three symbols,

XXX- . . S . a, S . j3, S . 7,

and so obtain the three scalar equations XXIX., from which the expression

XXVI. for a would follow.

(6.) It will be found a useful check on formulse of this sort, to consider

each beta, in what we have called the Standard Form (1.) of
(f>p,

as being of

the first dimension ; for then we may say that (p and 0' are also of the first

dimension, but ;/< and \p^ of the second, and m of the third ; and every formula,

into which these symbols enter, will thus be homogeneous : a, a, a", and A, fx,

V, p, being not counted, in this mode of estimating dimensions, but a being

treated as of ihe first dimension, when it is taken as representing <pp*

(7.) And although the trinomialform XV. has been seen to be sufficiently

general, yet if we choose to take the more expanded form,

XXXI. . . 0/5 = 2i3So|0, which gives XXXII. . . 0> = SaSj3|0,

any number of terms of ^p, such as jSSap, (^'Sap, &c., being now included in

the sum 2, there is no difficulty in proving that the equations VIII. and IX.

are satisfied, when we write,

* [Compare the first Note to Art. 350.]
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XXXIII. . .^p = SVaa'Sj3'j3|0, with XXXIY. . .rP'p = 2Vj3^'Sa'a^,

^^^ XXXV. ..m^ 2Saa'a''S^"j3'/3 = 2S^P'/3"S«''a'a.

(8.) The important property (2.), that the auxiliary function \p is changed

to its own conjugate xp, when ^ is changed to
<f)\

may be proved without any

reference to the form 2|3Sap of cpp, by means of the definitions IV. and XI.,

of (^' and t//, as follows. Whatever four vectors /i, v, /ai, and vi may be, if we

write

XXXVI. . .X\ = V;i:vi, and XXXVII. . . i^'Yfxv = V. <l>,x<pv,

adopting here this last equation as a definition of the function \p\ we may

proceed to prove that it is conjugate to \p, by observing that we have the

tran sformation s,

xxxviii. . . sx'ify = s(V;zivi.v.0/i0v) = s.//,(v. v^v.^/i^i.)

= S.ju(V. vV. 0'^1^'vi) = S(V/^v.V.0'^i(^'vi) = SA''!//A'i

;

which establish the relation in question, between ip and \p'.

(9.) And the not less important property (3.), that m remains unchanged

when we pass from
(f)

to ^', may in like manner be proved, without reference

to the/or/» XV. or XXXI. of
<f)p,

by observing that we have by XXXVII.,
&c., the transformations,

XXXIX. . . S . (f)\(i>p^v = S . <j)\\p'y = SA't//0A = fuBX'X = mSAjuv,

because the equations III. and VIII. give,

XL. . . \P(})p
= mp, whatever vector p may be

;

so that the value of this scalar constant m may now be derived from the

original linear function <p, exactly as it was in X. or X'. from the conjugate

function <p'.

348. It is found, then, that the linear and vector equation,

I. . . ^p = cr, gives II. . . tnp = \Pa,

as its formula of solution
; with the general method, above explained, of

deducing m and ^ from <p. We have therefore the two identities,

III. . . ma = <j)\p(T, mp = \p(pp ;

or briefly and symbolically,

IIF. . , m = ^\p = \p(p ]

Hamilton's Elements of Quaternions 3 R
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with which, by what has been shown, we may connect these conjugate equations,

Iir
.
..m = 0V' = f0'-

Changing then successively fi and v to ^/-'ju and t//'v, in the equation of

definition of the auxiliary function ;//, or in the formula,

^Y/xi;=V.r/,Vfv, 347, Xr.,

we get these two other equations,

IV. . . - ^V. v^p'^l •= mY.n(t>'v ; V. . . ;//V. x^'fi^p'r = m'Yuv
;

in the former of which tlie points may be omitted, while in each of them

accented may be exchanged with unaccented symbols of operation : and we

see that the law of homogeneity (347, (6.) ) is preserved. And many other

transformations of the same sort may be made, of which tlie following are a

few examples.

(1.) Operating on Y. by \p''\ or by wr^^>, we get this new formula,

VI. . . V. xp'/ui-ip'v = niifSffiv
;

comparing which with the lately cited definition of t/-, we see that we may

change (p to t//, if we at the same time change \p to m<j), and therefore also m to m^;

^' being then changed to \p\ and ^' to mcp'.

(2.) For example, we may thus pass from IV. and V. to the formulae,

VII. . . - (pYv(j)'fi = Yfi\fj'v, and VIII. . . ^V. ^V^V = mYfxv ;

in which we see that the lately cited law of homogeneity is still observed.

(3.) The equation VII. might have been otherwise obtained, by inter-

changing ju and V in IV., and operating with - m'^tp, or with - \p~^
; and the

formula VIII. may be at onoe deduced from the equation of definition of \p,

by operating on it with ^. In fact, our rule of inversion, of the linear function

(j), may be said to be contained in the formula,

IX. . . (p-'Yfxv = m-'Y. ^'fi<p'v ;

where m is a scalar constant, as above.

(4.) By similar operations and substitutions,

X. . . ^"^Y . <i)^n(j)'v
= 7n<pYfxv = V. ip^juip'v

;

XI. . . m^Y . (p'fxip'v = m^Yjxv = -ipY .xp'fixp'v ',

XII. . . m*V. (f>'fi(i>\>
= m'lf^Yfxv = »/-'V . f/i;//'v ;

XIII. . . V. fV^'^r = ^V. ^VfV = xp'Yfiv ', &0.
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(5.) But we have also,

XIV. . . S . X^'/o = S . (pptp'X = S . p^'~\,

so that the second functions ^^ and
<l>'^

are conjugate (compare 347, IV.
)

;

hence, by XIII., i//^ is formed from ^^ as ;// from ^ ; and generally it will

be found, that if w be any whole number, and if we change <p to cp", we change

at the same time ^' to 0'", \p to \p", \p^ to i//'", and m to m".

(6.) It may also be remarked that tlie changes (1.) conduct to the

equation,

XV. . . (S . <j>\(Pfi(f>vY = SA/ivS . xp\^Pn^Pv ;

and to many other analogous formulae.

349. The expressions,

with the significations 347, XX. of X\ p, v', and others of the same type,

are easily proved to vanish when A, /u, v are complanar* and therefore to be

divisible by SX/^v, since each such expression involves each of the three

auxiliary vectors X, ^u, v in the first degree only ; the quotients of such

divisions being therefore certain constant quaternions, independent of X, fx, v,

and depending only on iYiQ particular form of <p, or on the (scalar or vector,

but real) constants, which enter into the composition of that given function.

Writing, then,

I. . . §'i = (X'^X + /u'0/i + v^v) : SX/ii',

and
II. . . q2 = {X'\pX + fXTpfi + vxpv) : SXfiv,

we shall find it useful to consider separately the scalar and vector parts of

these two quaternion constants, qi and q^ ; which constants are, respectively, of

the first and second dimensions, in a sense lately explained.!

(1.) Since YX'^X = fiSvcpX - vSA^'^, &c., it follows that the vector parts

of qi and ^2 change signs, when <j> is changed to ^', and therefore xp to p'. On

the other hand, we may change the arbitrary vectors X, fi, v to X', //, v , if

we at the same time change X' to Vfi'v', or to - XSX/^v, &c., and SA/uv, or

SXX', to - (SXyuv)'^ ; dividing then by - SX^v, we find these new expressions,

III. . . q^- (X^X' + \x^ii + v(pv) : SX/iv,

IV. . . q% = {h\jX' + yipix + v-pv) : SXfxv ;

* [By putting v = x\ + y/jL."]

t [It may be instructive to the student to reduce these quaternion constants by replacing A., /n,

and vhj xi + yj + zk, x'i + y'j + z'fc, and x"i + y"j + z'k.']

3R2
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operating on which by S, we return to the sealars of the expressions I. and

II., with (j) and xp changed to (p^ and \p\

(2.) Hence the conjugate quaternion constants, K^i and ^Qz, are obtained

by passing to the conjugate linear functions ; and thus we may write,

Y. . . Kqi = (X'^'A + ju'^V + v(l>'v) : SX/ii;

;

VI. . ,Kq, = (A'i/.'X + mW + ^'^'v) ' SA/xv

;

or, interchanging X with X", &c., in the dividends,

YII. ..Kq,= (X^'X' + /t<^y + v(j>'v) : Skfxv ;

YIII. . .Kq,= (XfX' + /if/ f vxp'v') : SXfiv ;

where X' = Yjuv, &c., as before.

(3.) Operating with Y . p on Yji, and observing that

Y. pYX'<l>\ = <^(XSX» - VSX.^V, &c.,

while

0(XSX'p + juSju'/) + vSv^p) = (ppSXfXV,

and

with similar transformations for Y. pYq^, we find that

rX. . . Y. pYqi = (pp - <p'p
;

and
X. . . Y. pYqz = iip - ip'p.

(4.) Accordingly, since

Sp{(pp - (p'p) = - Sp{<pp - ((>'p) = 0,

the vector (^p - <j)'p, if it do not vanish, must be a line perpendicular to p, and

therefore of the form,
XI. . . (pp - (ji'p = 2Yyp,

in which y is some constant vector ;* so that we may write,

XII. . . ^jo = 0OJO + Yyp, (p'p = ^o/o - Yyp,

where the function <pop is its own conjugate, or is the common self-conjugate part

of <pp and <p'p ; namely the part,

XIII. . . cp,p = ^{<pp + <p'p).

And we see that, with this signification of y,

XIY. . . Y(X>X + fx'^fx + v'<pv) = - 2y^Xfiv, or XIY'. . . Ygi = - 2y

;

* [Thia vector y has been callud the spin- vector of the function <^.]
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while we have, in like manner,

XV. . . y(A'i//A + fi'^fi + vxPv) = - 28SAAiv, or XV'. . . V^^ = - 2S,

if

XVI. . .^Pp-xP'p = 2Vg/).

As a confirmation, the part ^o of has by (1.) no effect in Vg-i ; and if we

change ^A to YjX, &c., in the first member of XIV., we have thus,

(AS-yA' + fxSyiu + vSyi/) - 'yS(AA' + fjifi' + I'l'') = ySX/uiv - 'SySXfiv.

(5.) Since YK'^'X = - 0VA(^T, &c., by 348, VII., while we may write,

by (L), (2.), and (4.),

XVII. . . V(A^A' + fi<pfi + v<^v) = - 27SA/X1;,

XVIII. . . Y{\-^y + ^x^iJfx' + v^Pv) = - 2gSA/x..,

or

XIX. . . V(A0'A' + /u<|>V + v^V) = + 2-ySA^i.,

and
XX. . . y(AYA + /u'f// + i/f I.) = + 28SAiui/,

we have this relation between the two new vector constants,

XXI. . . S = — <\iy = — ^'y — — 0o7 >

for ^, ^', and 0o have all the same effect, on this particular vector, 7.

(6.) We may add that the vector constant y is of the first dimension^ and

that 8 is of the second dimension, with respect to the betas of the standard

form ; in fact, with that/orw, 347, XV., of 0|O, we have the expressions,

XXII. . . 7 = iV(/3a + ^V + /3"a"),

and
XXIII. ..^ = |V(Vi3'j3" . Va'«" + Vi3"i3 . Ya'^a + V/3/3' . Yaa') .

(7.) If we denote by ;^o and nio, what ^p and m become when ^ is changed

to 0o> we easily find that

XXIV. . .\pp = -pop - 787/) + VS/0 ; XXV. . . -^^fp = rpop - y^yp - VSjo
;

so that the self-conjugate part of -pp contains a term, - y^yp, which involves

the vector 7, but only in the second degree ; and in like manner,

XXVI. . . w = w^o + S78 = Mo - 87^7 ;

7 again entering only in an even degree, because m remains unchanged, when

we pass from ^ to 0', or from 7 to - 7.*

* [Expand ^V^v = ¥(^0/* - ^yiJ-){<pov - V71').]
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(8.) It is evident that we have the relations,

XXVII. . .mo = (}>o\po = ^//o^o

;

and that, in a sense already explained, ^oj ^o, and m^ are of the Jirst, second,

and third dimensions, respectively.

350. After thus considering the vector parts of the tico quaternion constants,

qi and qz, we proceed to consider their scalar j^arts ; which will introduce two

netv scalar constants, m" and ?n\ and will lead to the employment of two new

conjugate auxiliary /unctions, ^p and xp ; whence also will result the establish-

ment of a certain Symholic and Cubic Equation,

I. . . = m - m'^ + m'^ip^ - ^^,

which is satisfied by the Linear Symbol of Operation,
<f>,

and is of great

importance in this whole Theory of Linear Functions*

(1.) Writing, then,

II. . .m" = Sg'i, and III. . .m = ^q^,

we see' first that neither of these two new constants changes value, when we

pass from ^ to <}>\ or from 7 to - y ; because, in such a passage, it has been

seen that we only change g-i and q^ to Kq^ and Kqi. Accordingly, if we

denote by m'o and m"o what w' and m'' become, when ^ is changed to ^0, we

easily find the expressions,

IV. . . m" = ni\ ; and V. . . m' = m'o - 7^.

* [Or directly, without introducing x or x\ for an arbitrary vector \ tlie relation

will generally exist. This may be briefly written in the form,

0^A — mi(()''\ + ?«2</)A — »«3A = 0,

where the coeflBcients m can only depend on <p and A. Operating on this by <p and f^,

(p*\ - mi<p^\ + «i2^^A - m3<p\ =
and

<^'A - mi(j)*\ + mz(tfi\ - mzip'^x = 0.

But an arbitrary vector p may be expressed in the form

and hence from the three equations, on multiplying by x, y, and z, and adding, the equation

<l>^p
— mi(p'p + m2<i>p — m^p =

results. This must be identical with the equation found by treating p directly, in the same manner

as A has been treated, and therefore the coefficients m must be independent of A. The suffixes here

printed serve to indicate the dimensions of the m. See 347 (6.).]
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(2.) It may be noted that m'\ or m'\, is of the fir&t dimension, but that

m' and m\ are of the second, with respect to the standard form of ^ ; and

accordingly, with that form we have,

VI. ..m" = S«i3 + Sa'/3' + Sa^'jS" ;

and
VII. ..m' = ^{YaV . V/3"/3' + Ya''a . VjSjS" + Yaa' . VjS'^).

(3.) If we introduce iico new linear functioiis, xp and xp, such that

VIII. . . xV/ui' = V(/xf I. - vrp'fi),

and
IX. . . x'V^uv = Y{iui<pv - v<piu)y

it is easily proved that these functions are conjugate to each other, and that

each is of the Jirst dimension ; in fact, with the standard form of ^p, we have

the expressions,

X. . . x/«
= V(aV/3|0 + a'V/3> + a'Y(5"p),

XI. . . x> = V(i3V«jo + i3'Va> + i3"Va'» ;

and S . XaVjS/o = S . pftYaX, &c. Also, if xo be formed from ^o> as x from (p,

it will be found that

XII. .
. XP = x^p - ^yp> ^^^^ XIII. .

. xV = x<'P + ^yp ;

where xo is of the first dimension.

(4.) Since

the expression II. gives, by 349, V., the equation,

XIV...w/'SXX' = S.A(0 + x)V,

X and X' being two arbitrary and independent vectors ; which can only be, by

our having i\i& functional relation,

XV. . . (pp + XP = ^'^'V ;

or briefly and symbolically,

XVI. . . X + «^ = w/'.

Accordingly it is evident that the relation XV. is verified, by the form X. of

Xp, combined with the standard form of fp, and with the expression VI. for

the constant m'\
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(5.) The formula XVI. gives,

XYII. ..xi> = ni"<i> -ct>' = <j>xl

and accordingly tlie identity of x^P ^^^ ^X ^^7 easily be otherwise proved,

by changing /n and v to xp'/n and xp'v in the definition YIII. of x> ^^^

remembering that

V . -ip'/uLxp'v = mtfSffxv, (()'ip' = m, and Yfxxp'v = - ^Yv^V 5

for thus we have,

XYIII. . . x^^t^v = Y{iii\p'v - vxp'/it) - ^Y(iu<^'v - I'^V) = ^X^i"^'

as required.

(6.) Since, then,

the value III. of w" gives, by 349, YI., the equation,

XIX. . . w/sxx' = s . x(^ + <i>x)y,

X and X' being independent vectors ; hence,

XX. . .-(pp + <iixp = 'ni'pi

or briefly,

XXI. . .^ +
(j>x

= ni'.

And in fact, with the standard form of ^jO, we have

XXII. ..ci>xp = xi>P = Y(V(5'(i'\YpVaV' + Y/3"i3 .YpYa'a + Y(5(5'.YpYaa') ;

which verifies the equation XX., when it is combined with the value YII. of

in\ and with the expression 347, XYIII. for \pp.

(7.) Eliminating the symbol x^ between the two equations XYI. and

XXI., and remembering that (pip = ^'/) = m^ we find the symbolic expression,

XXIII. . . m<f^ = xp = m' - m''<p + ^^

;

and thus the symbolic and cubic equation I. is proved.

(8.) And because the coefficients, m, m', m'\ of that equation, have been

seen to remain unaltered, in the passage from ^ to 0', we may write also this

conjugate equation,

XXIY. . . = m - m'<\; + m'>'^ - </>'^*

* [This may also be proved thus :—If p and a are arhitrary vectors, by 348 (5.),

S/} (^'^ — in"(p"^ + m'^' — m) a = Scr (<^^ — m"<(>'^ + w'^ — m) p,

and therefore vanishes. This requires (^'* — m" <p"^ + m'<p' — m) a = 0, as p is arbitrary.]
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(9.) Multiplying symbolically the equation I. by - mr^ xf/, and reducing

by ;//0 = m, we eliminate the symbol 0, and obtain this cubic in rp,

XXV. . .0 = m^~ mnf^p + »/i//' - ^//^

;

in which ;//' may be substituted for ^.

(10.) In general, it may be remarked, that when we change ^ to ^, and

therefore -ip to m</), as before, we change not only m to wi^, but also m to mm",

and m" to m'; while
x.

is at the same time changed to 0)(, or to x^> ^'^d the

quaternion qy is changed to q-i. Accordingly, we may thus pass from the

relation XYI. to XXI. ; and conversely, from the latter to the former.

(11.) And if the two new auxiliary functions, )^ and )(, be considered as

defined by the equations VIII. and IX., their conjugate rekttion (3.) to each

other may be proved, without any reference to the standard form of cpp, by

reasonings similar to those which were employed in 347, (8.), to establish the

corresponding conjugation of the functions \p and \p'.

(12.) It may be added that the relations between ^, (j>', x, x* ^^^ '"''^
S^^^

the following additional transformations, which are occasionally useful

:

XXVI. . . (ji'Yfxv = V(/uxi' + v(f)ij) = - V(vxJ" + i"^'')>

XXVII. .
. ^Ynv = Y{^x'^ + »^^V) = - "V(i'xV + i"«^'")

;

with others on which we cannot here delay.*

35 1 . The cubic in may be thus written :

I. . . = nip - m'(l>p + m''<p^p - (p^p ;

where p is an arbitrary vector. If then it happen that for some particular

but actual vector, p, the linear function (fip vanishes, so that <pp = 0, <j>^p = 0,

(p^p = 0, &c., the constant m must be zero ; or in symbols,

II. . . if (pp = 0, and Tp > 0, then m = 0.

Hence, by the expression 347, XXI II. for m, when the standard form for (pp

is adopted, we must have either

III. . . Saa'a" = 0, or else IV. . . S/3"i3'j3 =
;

so that, in each case, that generally trinomial form, 347, XV., must admit of

* [AVithoiit introducing x, since for any three vectors in"%\p.v = Sa (^'V/tj' + YfKpv + Y<pf^v), it

follows, as \ is arbitrary, that m"Nixv = (p'Yfiv + Yfj.<pv + Y<ptiv. This is equivalent to XXVI.]

Hamilton's Elements of Quaternions, 3 S
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being reduced to a binomial. Conversely, when we have thus a function of

the particular form,
\. . . <Pp

= jdSap + j3'Sa'jO,

we have then,

YI. . . ^Yaa = ;

so that if a and a be actual and non-parallel lines, the real and actual vector

Yaa will be a value of p, which will satisfy the equation tpp = ; but no

other real and actual value of jO, except p = xYaa, will satisfy that equation, if

/3 and /3' be actual, and non-parallel. lu this case Y., the operation cji reduces

every other rector to the fixed plane of j3, /3', which plane is therefore the locm

of ^p ; and since we have also,

YII. . . ^'p = aS(3p + a'Sj3'/o,

we see that the locus of the functionally conjugate vector, cf/p, is another fixed

plane, namely that of a, a. Also, the normal to the latter plane is the line

which is destroyed by the former operation, namely by <(> ; wliile the normal to

the former plane is in like manner the line, which is annihilated by the latter

operation, 0', since we have

Yin. . . 0Ti3i3' = 0,

but not (^'p = 0, for any actual p, in any direction except that of Yj3/3', or its

opposite, which may however, for the present purpose, be regarded as the same.*

In tliis case we have also monomialforms for -ipp and -ip^p, namely

IX. . .xPp = Yaa'S/3'i3|0, and X. . . ^P'p
= Y/3j3'Sa'ap ;

so that the operation \p destroys every line in the first fixed plane (of |3, /3'), and

the conjugate operation \p' annihilates every line in the second fixed plane

(of a, a). On the other hand, the operation \p reduces every line, which is

out of the first plane, to the fixed direction of the normal to the second plane
;

and the operation ^' reduces every line which is out of the second plane, to that

other fixed direction, which is normal to the^rs^ plane. And thus it comes to

pass, that whether we operate first with \p, and then with
<f>

; or first with <}>,

and then with ^p ; or first with \p' and tlien with f//; or first with <p\ and then

with xp^; in all these cases, we arrive at last at a null line, in conformity with

the symbolic equations,

XL . . <l)ip = \P(f)
= (p^-ip' = xp'cp' = m = 0,

which belong to the case here considered.

* Accordingly, m (he present investigation, whenever we shall speak of a "Jixed direction," or the

"direction of a given line," &c., we are always to be understood as lueauing, "or the opposite of that

direction,"
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(1.) Without recurring to the standardform of (^p, the equation 348, YI.,

namely Y. \p'fi\p'v = m^Y/biv, and the analogous equation Y .xp/nxpv = m^'Yfiv,

might have enabled us to foresee that xp'p and Tpp, if they do not both

constantly vanish, must (if m = 0) have each Q.fxed direction; and therefore

that each must be expressible by a monome, as above : the fixed direction of

\pp being that of a line which is annihilated by the operation 0, and similarly

for \p'p and (j)\

(2.) And because, by 347, XI. and XXY., we have

xpYfxv = Y. (fi'fxfp'v, and tp'Yfxv — Y . (ftficpv,

so that the line ^'ju, if actual, is perpendicular to ^pY/xv, and the line (pn per-

pendicular to xjj'Yiuv, we see that each of the itco lines, ^'p and ^p, must have

(in the present case) a plane locus ; whence the binomial forms of the two

conjugate vector functions, <pp and
(f>'p,

might have been foreseen : xpp and xp'p

being here supposed to be actual vectors.

(3.) The relations of rectangulariti/, of the two fixed lines [or directions), to

the two fixed planes, might also have been thus deduced, through the two

conjugate binomial forms, Y. and YII., without the previous establishment of

the more general trinomial (or standard) form of ^p.

(4.) The existence of a plane locus for ^p, and of another for (p'p, for the

case when m = 0, might also have been foreseen from the equations,

S . ^X^fj.(f)v = S . ^'\<{>'fji(p^v = mSXfiv ;

and the same equations might have enabled us to foresee, that the scalar

constant m must be zero, if for any one actual vector, such as X, either ^A or ^'A

becomes null.

(5.) And the reducibility of the trinomial to tlie binomialform, when this

last condition is satisfied, might have been anticipated, without any reference

to the composition of the constant m, from the simple consideration (comp.

294, (10.) ), that no actual vector p can be perpendicular, at once, to three

diplanar lines.

352. It may happen, that besides the recent reduction (351) of the linear

function <j)p to a binomialform, when tlie relation

I. . . w =

exists between the constants of that function, in which case the symbolic and

cubic equation 350, 1, reduces itself to the form,

II. . . 03 - ni'<p- + «/0 = 0,

3 S2
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thus losing its absolute term, or having one root equal to zero, this equation

may undergo a further reduction, by two of its roots becoming equal to each

other ; namely either by our having

III. . . m' = 0, and lY. . . 0^(0 - nf) = ;

or in another way, by the existence of these other equations,

V. . . m"^ - Am' = 0, and YI. . . 0(<^ - Wf = 0.

In each of these two cases, we shall find that certain new geometrical relations

firise, which it may be interesting briefly to investigate ; and of which the

principal is the mutual rectangularity of two fixed planes, which are the loci

(comp. 351) of certain derived, and functionally conjugate vectors : namely, in

the case III. lY., the loci of <^p and <^'p ; and in the case Y. YI., the loci of

$/> and <I> p, if

YII. . . O = .^ - >", and YIII. . .
$' = ^' - W\

so that, in this last case, the symbol $ satisfies this new cubic,

IX. ..0 = $'(4> + |»O;

while $' satisfies at the same time a cubic equation with the same coefficients

(comp. 350, (8.) ), namely

(1.) We saw in 351, (1.), (2.), that when m = the line \p'p has generally

a. fixed direction, to which that of the line <^p \^ perpendicular ; and that in like

manner the line -ipp has then another fixed direction, to which 0'/o is perpen-

dicular. If then the plane loci of ^|0 and <p'p be at right angles to each other,

we must also have the fixed lines \p'X and xpp, rectangular, or

XL . . = S . ^'A^^ = SA^V,

independently of the directions of A and p. ; whence

XII. . . = i/^V, or XIII. . . ^^ =^ 0,

since p is an arbitrary vector.

(2.) Now in general, by the functional relation 350, XXI. combined with

^^ = in, we have the transformation,

XIY. ..;//' = \P{m' - (j>x)
= nt'xl^ - mx ;
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if then m = 0, as in I., the symbol -^ must satisfy the depressed or quadratic

equation,

XV. . . = n^ -i^)

which is accordingly o, factor of the cubic equation,

XVI. . . = »iV^ - ^^

whereto the general equation 350, XXV. is reduced^ by this supposition of m
vanishing.

(3.) If then we have not only m = 0, as in I., but a/so m' - 0, as in III.,

the condition XIII. is satisfied, by XV. ; and the tioo planes, above referred

to, are generally rectangular.

(4.) We might indeed propose to satisfy that condition XIII., by sup-

posing that we had always,

XVII. . .xp = 0, that is, XVII'. . . ^p = 0,

for evert/ direction of p ; but in this case, the quaternion constant q^ would

vanish (by 349, II.) ; and therefore the constant m\ as being its scalar part

(by 350, III.), would still be equal to zero.

(5.) The particular supposition XVIL would however alter completely the

geometrical character of the question; for it would imply (comp. 351, (2.))

that the directions of the lines cpp and ^'p (when not evanescent) are fixed,

instead of those lines having only certain planes for their loci, as before.

(6.) On the side of calculation, we should thus have, for the two conjugate

functions, (pp and cp'p, monomial expressions of the forms,

XVIII. . .
<f)p

= j3Sap, cp'p = aS(5p
;

whence, by 347, XVIII., and 350, VII., we should recover the equations,

\pp = and m' = 0.

(7.) We should have also, in this particular case,

XIX. ..^p = 0, if p±a, and XX. . . 0> = 0, if p±(5;

so that ^p now vanishes, if p be any line in the fxed plane perpendiculur to a ;

and in like manner <j)'p is a null line, if p be in that other fixed plane, which is

at right angles to the other given line, j3.

(8.) These two planes, or their normals a and /3, or the fixed directions of

the two lines ^'p and ^p, will be rectangular (comp. (1.) ), if we have this new

equation,

XXI. . . 0^ = 0, or XXI'. . . fp = 0,
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for every direction of p ; and accordingly the expression XVIII. gives

0-|O = Sa|3 . (pp = 0, if (5 J- a, and reciprocally.

(9.) Without expressly introducing a and (5, the equation 350, XXIII.

shows that when \p = 0, and therefore also m' = 0, as in (4.), the symbol ^

satisfies (comp. (2.) ) the new quadratic or depressed equation,

XXII. . .0 = f- m''(t> ;

which is accordingly a, factor of the cubic IV., but to which that cubic is not

reducible, unless we have thus ;// = 0, as well as m' = 0.

(10.) The condition, then, of the existence and rectangularity of the two

planes {?.), for which we have respectively <pp = and <p^p = 0, without ^p

generally vanishing (a case which it would be useless to consider), is that tlie

four following equations should subsist

:

XXIII. . . m = 0, w' = 0, m" = 0, and XVII. . . ^ = ;

or that the cubic IV., and its quadratic factor XXII., should reduce them-

selves to the very simple forms,

XXIV. . .f = 0, and XXV. . .f = 0;

the cubic in
<f)
having thus its three roots equal, and mcll, and -tpp vanishing.

(11.) "We may also observe that as, when even one root of the general

cubic 350, I. is zero, that is when m = 0, the vector equation

XXVI. . .(Pp =

was seen (in 351) to be satisfied by one real direction of p, so when we have

also m' = 0, or when the cubic in <j> has two null roots, or takes the form IV.,

then the two vector equations,

XXVII. . .<j>p = 0, i^p
= 0,

are satisfied by one common direction of the real and actual line p ; because we

have, by 350, XVII. and XX., the general relation,

xPp = m'p -
x<t>p-

(12.) And because, by 350, XV., we have also the relation xp = ^^'V " ^P»

it follows that when the three roots of the cubic all vanish, or when the three
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scalar equations XXIII. are satisfied, then the three vector equations,

XXVIII. . .(^p = 0, T^/o = 0, XP = 0,

have a common {real and actual) vector root ; or are all satisfied by one common

direction of p.

(13.) Since m" ~ <^ = x» the cubic IV. may be written under any one of

the following forms,

XXIX. . . = ^''x = ^X0 = xf = i>- 0X = <^c.,

in which accented may be substituted for unaccented symbols : and its

geometrical signification may be illustrated by a reference to certain fi^ed lines,

and fixed planes, as follows.

(14.) Suppose first that m and m' both vanish, but that m" is different

from zero, so that the cubic in is reducible to the form IV., but not to the

form XXIV. ; and that the operation \p, which is here equivalent to - 0x> or

to -
x^, does not annihilate everi/ vector p, so that (comp. (4.) (5.) (6.) ) <j>p

and
(l)'p

have not the directions of two fixed lines, but have only (comp. (1.)

and (3.) ) two fixed and rectangular planes, n and 11', as their loci; and let the

normals to these two planes be denoted by A and X, so that these two

rectangular lines, A and X, are situated respectively in the planes 11' and 11.

(15.) Then it is easily shown (comp. 351) that the operation ^ destroys the

line \' itself, while it reduces* every other line (that is, every line which is not

of the form xX, with Va? = 0) to the j)lane 11 ± X ; and that it reduces every

line in that plane to affixed direction, p., in the same plane, which is thus the

common direction of all the lines ^^p, whatever the direction of p may be.

And the symbolical equation, x • ^'^ "= ^> expresses that this fixed direction

p. of ^^p may also be denoted by x'^0 ; or that we have the equation,

XXX. . . = Xju = m"p - (jtp, if p =
(l>'p,

which can accordingly be otherwise proved : with similar results for the

conjugate symbols, 0' and x'-

(16.) For example, we may represent the conditions of the present case by

the following system of equations (comp. 351, V. VII. IX. X., and 350, VI.

VII. X. XL)

:

'^p = (5Sap + /3'Sa'jo, (p'p = aSj3/o + a'S|3'/o,

XXXI. . . J - m' = S (Vaa'.Vj3'i3) = Sa/3Sa'i3' - SajS'Sa'jS,

m"=S«j3 + Sa'i3';

* We propose to include the case where an operation of this sort destroys a line, or reduces it to

zero, under the case when the same operation reduces a line to ixjixed direction, or to &,Jixed plane.
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^XP = Y(aY^p + aTi3» = m''p -
<(>p,

X'p = Y (jSYap + /3'Ya» = m''p -
<f>'p,

-^9 = ^XP = X<f>P = Yaa'S/3/3>,

,

- ^V = ¥XP = X'^V = Y/3^'Saa'/o
;

and may then write (not here supposing X' = Yfxv, &c.),

[X = Y|3i3', A' = Yaa', SXV=0,
XXXIII.

[^ = 0/3 II <p(5\ fx = ^V
II 0'a, SXju = SX'ju' = ;

after which we easily find that

\(I>X = 0, fp II fx, (j)/i = w'V, Xi"
= ;

XXXIY.
0'x = 0, 0'v II /"'> 0V = ^'V» xV = ^•

(17.) Since we have thus xV =" ^> where fi is a line in the fixed direction

of 0'V» we have also the equation,

xxxY. ..o = SpxV= Vxp. or Xi« J-
i"'

;

the locus of XjO is therefore a j9/«we perpendicular to the line / ; and in like

manner, p, is the normal to a plane, which is the locus of the line xp- -^.nd

the symbolical equations, ^ • 0X "^ ^» ^^' X ^ ^> ^^7 ^^ interpreted as express-

ing, that the operation ^ reduces every line in this new plane of xp ^o the

/tcec? direction of 0"H), or of X' ; and that the operation (j)^ destroys every line

in this plane 1. p ; with analogous results, when accented are interchanged

with unacce)ited symbols. Accordingly we see, by XXXII., that ^x/^ ^^^^

the fixed direction of Yau', or of X' ; and that ^ . ^x/^ = ^j because ^X' = 0.

(18.) We see also, that the operation 0x> or x0> destroys every line in

the plane EI, to which the operation ^ reduces every line ; and that thus the

symbolical equations, ^x • = ^> X0 • = ^j ^^7 ^® interpreted.

(19.) As a verification, it may be remarked that i\iQ fixed direction W, of

0Xi" or x0/o> ought to be that of the line of intersection of the two fixed planes

of 0jO and XP \
^"^^ accordingly it is perj)endicular by XXXIII. to their two

normals, X and p : with similar remarks respecting the fixed direction X, of

¥XP or x¥Pi which is perpendicular to X' and to p.

(20.) Let us next suppose, that besides w = 0, and m' = 0, we have xp = 0,

but that m" is still different from zero. In this ease, it has been seen (6.)

that the expression for (jyp reduces itself to the monomial form, (dSap ; and

therefore that the operation destroys every line in & fixed plane (_L a), while

it reduces every other line to a fixed direction
(|| j3), which is not contained in

that plane, because we have not now Safi = 0.
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(21.) In this case we have by (16.), equating a or /3' to 0, the expressions,

XXXVI.
0/0 = ^Sap, (p'p = aSj3jO, mf^ = Sa|3 0,

XP = V. «Vi3/o = K' -
<i>)p, x'p = V. /3Vap = («r - 0Op,

so that tlie equations XVIII. are reproduced ; and the depressed ciihic^ or the

quadratic XXII. in 0, may be written under the very simple form,

XXXVII. .
. = </.x

= x<^.

(2?.) Accordingly (comp. (5.) and (7.) ), the operation ^ here reduces an

arbitrary line to the fixed direction of j3, while x destroys every line in that

direction ; and conversely, the operation x reduces an arbitrary line to the

fixed plane perpendicular to a, and destroys every line in that fixed plane.

But because we do not here suppose that m" = 0, the fxed direction of ^p is

not contained in the fxed plane of xp ; and (comp. (8.) and (10.)) the directions

of <{>p and <p'p are not rectangular to each other.

(23.) On the other hand, if we suppose that the three roots of the cubic in

(j) vanish, or that we have m = 0, m' = 0, and m'' = 0, as in XXIII., but that

the equation \pp = is not satisfied for all directions of p, then the binomial

forms XXXI. of <pp and (j)'p reappear, but with these two equations of con-

dition between their vector constants, whereof only one had occurred before :

XXXVIII. . . = Sai3Sa'/3' - Sa/3'Sa'/3, = Sa^ + Sa'j3'.

(24.) We have also now the expressions,

XXXIX. .
. xp = - (pp, XP = - i>'pi

and the cubic in <ji becomes simply
<f)^

= 0, as in XXIV. ; but it is important

to observe that we have not here (comp. (9.) ) the depressed or quadratic equa-

tion ^^ = 0, since we have now on the contrary the two conjugate expressions,

XL. . .fp = xPp = Vaa'S/3'/3|0, <p''p = xP'p = V/3^'SaV,

which do not generally vanish. And the equation 0^ = is now interpreted,

by observing that ^^ here reduces every line to the fjced direction of 0~*O ;

while reduces an arbitrary vector to that Jixed plane, all lines in which are

destroyed by tfi^.

(25.) In this last case (23.), in which all the roots of the cubic in ^ are

equal, and are null, tlie theorem (12.), of the existence of a common vector root

Hamilton's Elements of Quaternions. 3 T
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of the three equations XXVIII., may be verified by observing that we have

now,
XLI. . . ^Yaa' = 0, xpYaa' = 0, x"^""' = ^ J

the third of which would not have here held good, unless we had supposed

(26.) This last condition allows us to write, by (16.),

XLII. . . 0/i = 0, <j>'f/
= 0, V/xX' = 0, Y^'X = 0, ii^ifi' = 0,

the lines f/ and /j. thus coinciding in direction with the normals X and X', to

the planes n and 11' ; if then we write,

XLIII. . . V = VXX' II Yfxfi', so that Sjuv = 0, Sfi'v = 0,

this new vector v will be a line in the intersection of those two rectangular

planes, which were lately seen (14.) to be the loci of the lines (j)p and ^'/o, and

are now (comp. (17.) ) the loci of xp ^'^d xp > ^^^ ^^® ^^"'^^ ^"'^^ i"' '"' ^

(or X', X, 1^) will compose a rectangular system.

(27.) In general, it is easy to prove that the expressions,

XLIV f
= ^^3^ + *^'^' /3'=«'/3. + i'/3^

(oi = aa + da, a\ = ba + Va!

,

in which a, j3, a, )3' may be any four vectors, and a, h, a, V may be any four

scalars, conduct to the following trausformatious (in which p may be any

vector) :

XLV. . . Sa,/3i + Sa'i/3'i = Sa^ + Sa'|3' ;

XLVI. . . j3iS(MjO + li'iSa'ijo = jSSojO + j3'Sa'jO
;

XLYII. . . Ya,a\ .Yi3';i3i = Yaa' .YjS'iS

;

so that the scalar, Sa/3 + Sa'j3' ; the vector, /SSap + jS'Sa'/o ; and the quater-

nion,* Yaa .Yj3'/3, remain unaltered in value, when we pass from a ^it'ew system

oifour vectors ajdajd', to another system of four vectors aij3ia'ij3'i, by expressions

of the forms XLIY.

(28.) With the help of this general principle (27.), and of the remarks in

(26.), it may be shown, without diflBculty, that in the case (23.) the vector

* "W^e have, in these transformations, examples of what may be called Quaternion Invariants,
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constants of the binomial expression (5Sap + (i'Sap for <{>p may, without any

real loss of generality, be supposed subject to the/owr following conditions,

XLVIII. . . = S«/3 = Sa'|3 = 8/3)3' = Sa'jS'

;

which evidently conduct to these other expressions,

XLIX. ..fp = i3Sai3'Sa>, 0V =
;

and thus put in evidence, in a very simple manner, the general non-depression

of the cubic (j)^ = 0, to the quadratic, ^' = 0.

(29.) The case, or sub-case, when we have not only m = 0, m' = 0, m'^ = 0,

but also \p = 0, and therefore ^^ = 0, as a depressed form of ^' = 0, by the

linear function ^|0 reducing itself to the monomial (5Sap, with the relation

Sa/3 = between its constants, lias been already considered (in (10.)); and

thus the consequences of the supposition III., that there are (at least) two

equal but null roots of the cubic in <(», have been perhaps sufficiently discussed.

(30.) As regards the other principal case of equal roots, of the cubic

equation in ^, namely that in which the vector constants are connected by

the relation v., or by the equation of condition,

L. . . = m"' - im' = (Sai3 + Sa'/30' - 4S(Yaa'.y/3'i3)

= (Sa/3 - Sa'/37 + 4Sa/3'Sa'/3,

it may suffice to remark that it conducts, by YI., or by YII. and IX., to the

symbolical equation,

LI. . . = ^$^ if <P =
<f>- Im" ;

and that thus its interpretation is precisely similar to that of the analogous

equation,

X^''
= 0, where x = m'' - ^, XXIX.,

as given in (14.), and in the following sub-articles.*

* [The following resume of the special cases discxissed in recent, articles may not he superfluous :

—

Assuming arbitrarily any three constant and diplanar vectors )8, i^' , and )3", any linear vector

function <pp may he resolved along these three vectors ; thus <pp = x^ + x'ff + x'^" . In this expres-

sion X, x' , and x" are linear and scalar functions of p, and may consequently be replaced by So/?,

So'/j, and So"/). Hence the trinomial form ^p = )3Sop + fi'Sa'p + fi"Sa"p is established, and the

function <p is made to depend upon the three vectors o, o', and o". When these are given, <p is deter-

mined ; and conversely, when <p is given, the three vectors o, o', and o" are determinate, retaining

always the same set of vectors of reference /8, j8', and yS". Special cases will arise when special

relations connect o, o', and a".

If </>p = for a particular value of p. Bap = Sap = Sa"p = are necessary consequences, and

3T2
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353. When we have m = 0, but not m' = 0, nor m'"^ = 4m', the three roots

of the cubic in <p are all unequal, while 07ie of them is still null, as before ;

and the two roots of the quadratic and scalar equation, with real coefficients

(347),

I. . . = c^ + w/'c + m',

which is formed from the cubic by changing to - c, and then dividing by

c, are also necessarily unequal, whether they be real or imaginary. We shall

find that when these two scalar roots, Ci, Ci, are real, there are then txco real

directions, pi and p2, in that Jixed plane Tl which is the locus (351, 352) of the

line 0jo, possessing the property that for each of them the homogeneous and

vector equation of the second degree,

II. . . Yptpp = 0, or <j>p II p,

is satisfied, without p vanishing ; namely by our having, for the ^rst of these

two directions, the equation

III. . . (j)pi = - cxpi, or 0,(Oi = 0, if 01 = + Ci

;

and for the second of them the analogous equation,

lY. . . ^pi = - C2/02, or 02/02 = 0, if 02 = + C2

:

but that no other direction of the real and actual vector p, satisfies the equation

therefore a, a', and a" (if actual) must be complanar. But if o, a, and o" are coniplanar, the tri-

nomial form reduces on rearrangement to the binomial form

<pp = {fi + afi")8ap + (/3' + a')3")Sa>,

provided a and a are the scalars determined by the relation of complanarity a" = aa + a'a. Con-

versely, if the trinomial reduces to a binomial form, the three vectors a, a, and a" (if actual) must be

complanar.

Fiirtlier reduction to the monomial form will not be possible unless these three vectors are parallel.

In general, also, as ^p =Ya'a"Sfi" fi'p-\^\a"aS$fi"p +Yaa'Sfi'fip, \l/p
will not vanish identically, or the

equation xj/ = will not be true, unless the vectors are parallel. This easily follows on replacing p

successively by /3, fi', and /8".

Eeraarking that, when (j> is expressible in a binomial foim, it reduces those vectors which it does

not annul to a fixed plane, we may assume a plane containing a pair of arbitrarily chosen vectors

j8 and &', and consider all those functions (p which reduce vectors to this particular plane. Just as in

the case of the trinomial form, these functions (p may be expressed by the type <pp = fiSap + fi'Sa'p,

and they depend on and may be determined by the vectors a and a if the vectors /8 and /3' are pre-

served unchanged.

A second root of the cubic will vanish if m' = SVoo'V;3'/3 is equal to zero. This may happen in

two ways—(1) when Vaa' = 0, in which case the binomial is reducible to the monomial form, and
\f/p

will vanish for all values of p, or \}/ = ; (2) M'hen Vaa' is actual and perpendicular to Yfi0, that is,

when the plane of a and o' is at right angles to that of j8 and /3'. In this latter case, the assumptions
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v., except that third whiGh. has already been considered (351), as satisfying

the linear and vector equation,

Y...(l>p = 0, with T|O>0.

It will also be shown that these tico directions, pi, p^, are not only real, but

rectangular, to each other and to the third direction p, when the linear function

<Pp is self-conjugate (349, (4.)), or when the condition

VI. .i>'p
=

(l>p,
or Vr. . . 8X<l>p = Sp<j>\,

is satisfied by the given form of 0, or by the constants which enter into the

composition of that linear symbol ; but that when this condition of self-conju-

gation is not satisfied, the roots of the quadratic I. way happen to he imaginary:

and that in this case there exists no real direction of p, for which the vector

equation II. of the second degree is satisfied, by actual values of p, except that

one direction which has been seen before to satisfy the linear equation V.

(1.) The most obvious mode of seeking to satisfy II., otherwise than

through v., is to assume an expression of the form, p = ^/3 + x^', and to

seek thereby to satisfy the equation, (^ + c]p = 0, with ^p = j3Sajo + /3'Sa'jo,

by satisfying separately the two scalar equations,

YII. ..0 = x{c + Saj3) + ir'Sa/3', = x'{c + Sa'/3') + irSa'jS,

a = afi" + 5V/3/8' and a = a $" + b'Yfifi' are legitimate when a, a, b, and b' are scalars, while $" is

some vector in the plane of fi and fi', and not, as before, diplanav to them. Replacing a and a, the

new binomial form, tpp = {afi + a'P')Sfi"p + (bfi + b'P')S\$0. p is obtained, and rpp = {ab' - a'b)

V. fi-'Yfifi'Sfi-pp.

Again, a third root wil^ vanish if m" = Sa;8 + So')8' = S(aj8 + a'$')^" = 0, or if fi" || V(«;8 + a'fi')Yfi0.

Examining separately the case in which the symbolic equation of the binomial is depressed to a

quadratic, it is seen at once that it must be of the form (j>^ + xcp = 0. It cannot be of the form

<p^ + X(t> + y = 0, for <pp, <p^p, &c., are in the plane of fi and fi', and p is not generally in that plane.

On calculation of (p-p, it is found that

^V + ^^/> = fi{S>a$Sap + Safi'Sa'p + xSap) + 0'{Sa'fiSap + Sa'/3'Sa'p + xSa'p) ;

and if this vanishes for all values of p,

a: = - Sa/8 = - Sa'3', and Soj8' = Sa'/3 = 0.

The second pair of equations is satisfied by assuming a = Yr'fi' and a = Vt/3, and then from

the first pair x = — Sr'jB'iS = — Srfifi'. Hence, it is easy to see that the general solutions are

B' B / X \
a = aVBB' - X y^,, and a = a'YBB' + ^ ^—r, and that Yaa =- x{aB + a'B' + y^^, )

•

From these x = — \m", and .r^ = + m = ^m'"^. If x vanishes, the function becomes monomial.

Of course when m is zero, the usual solution mp = ^a of the equation <pp = a is nugatory. In this

case, since <\>^p — m"<p^p + m'(\>p = 0, or (^^o- — m"<i><T + m'(pp = 0, the solution is m'p = m"a -(j>a + <p'^0,

and it is indeterminate ; if in addition m' = 0, the solution is m"p = <r + <^"*0.]
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which give, by elimination of x' : a;, the following quadratic in c,

VIII. . . (c + SajS) (c + Sa'j3') = Sai3'Sa'/3,

which is easily seen to be only another form of I. Denoting then, as above,

by Ci and C2, the roots of that quadratic I., supposed for the present to be

real^ we have these two real directions for p, in the plane 11 of j3, /3'

:

IX. ..py = /3(ci + Sa'i3') - i3'Sa'j3 = c,i3 + YaTi3'i3 ;

X. . . p, = /3(r2 + Sa'iS') - i3'Sf/j3 = C2^ + Ya'y/3'i3 ;

which satisfy the equations III. and lY. In fact, the expression IX. gives

0jOi = Ci^|3 + m^ = - Cijoi, or 0ipi = 0,

because we may write it thus,

XI. . . pi = {m'' + cOi3 -
(l>(5

= - c,(5 - (p(5 = - (pS = - -^jS - m'c,-'(5
;

and in like manner, the expression X. may be thus written,

XII. . . p, = (m" + c,](5 - .^13 = - ci|3 - .^j3 = -
(^,i3

= - ^j3 - mc^-%

and gives,

0jO2 = ^2^)3 + 7w'j3 = - C2jO, or 02jO2 = 0.

(2.) We may also write,

XIII. ..p\ = i3'(f 1 + Sa/3) - /3Saj3' = c,j5' + Y«Y/3/3' = -
<t>^(^' II pi

;

XIY. ..p\ = 15' (c^ + Saj3) - i3Sa/3' = C2i3' + YaYi3/3' = - 0,^' li (02;

and shall then have the equations,

XY. . . ^ijo'i = 0, (p^p'i = ;

but the directions of p\ and p\ will be the same by YIII. as those of pi and

pi, and so will furnish no new solution of the problem just resolved.

(3.) Since we have thus,

XYI. . . 02i3' II ^2)3 II pi II
<prO, and XYI. . . ^.jS' || ^ijS || p2 II <l>f%

it follows that the operation ^2 reduces every line in the fixed plane of ^p to

the Jixed direction of ^f^O; and that, in like manner, the operation 0i reduces

every line, in the same fixed plane of (jtp, to the other fixed direction of (j>f^O.

(4.) Hence we may write the symbolic equations,

XYII. . . ^1 . ^2<^ = 0,
(t>2

. (pi<i>
= 0,

in which the points may be omitted ; and in fact we have the transformations,

XYIII. . . ^102 = (})'4i = (^ + ci) (^ + C2) = ^' - wi''^ + w' = t//, '

so that

d)i^2 . d) = 02^1 • — ^^0 ~ ''^ ~ '-'•
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(5.) If we propose to form \pi from 0,, by the same general rule (347,

XI.) by which \p is formed from <p, we have

XIX. . . XpiYfXV = V. (f)\l[i<p\v = V. (^V + Ciju) {(f/v + (?iv),

and therefore, by the definition 350, VIII. of x»

XX. . . xPip = i/zjO + Cixp + Ci^p, or XXI. . . -ipi = tp + c,x + <^i^
'i

and in like manner,
XXII. . . t/'z = t/' + <^2X + ''2%

even if m be different from zero, and if Ci, Co be arbitrary scalars.

(6.) Accordingly, without assuming that ni vanishes, if we operate on ipxp

with 01, or symbolically multiply the expression XXI. for ^i by ^i, we get

the symbolic product,

XXIII. . . 0i;/.i = (0 + Ci) {^ + c,x + c,')

=
<l>i' + ci{(}>x + ^) + c'{^ + X) + c'

= m + Cxin' + Cxuf + Ci = nii,

where nii is what the scalar m becomes, when ^ is changed to </)i, or is such that

XXIV. . . mSXfiv = S . <p\\<^\fi(^\v «= S . (^'X + c,X) (^V + <^il^){<l>'v + Civ)

;

as appears by the definitions of ^\ xp, %' ^> '^'j ^*
"> *^^ ^7 ^^® relations

between those symbols which have been established in recent Articles, or

in the sub-articles appended to them.

(7.) Supposing now again that m = 0, and that Ci, c^ are the roots of the

quadratic I. in c, we have by XXIII.,

XXV. . . <l>i\pi
= ^1 = ; and in like manner XXVI. . . ^iipz = ^2 = 0,

if tUi be formed from Wi, by changing Ci to Cj.

(8.) Comparing XXV. with XXVII., we may be led to suspect the

existence of an intimate connexion existing between xpi and
^2<l>,

since each

reduces an arbitrary vector to the fixed direction of ^f^O, or of /oi ; and in fact

these two operations are identical, because, by XXI., and by the known

relations between the symbols, we have the transformations,

XXVII. ..;//! = i/. + Cix + c,^ = {m - m"<p + 0') + Ci(m" - <p) + c,^

=
<t>^

- {ni^ + Ci)0 = 0* + C20 = 002

;

and similarly

XXVIII. . . ;/»2 = 0' + Ci0 = 001

;

while i// = 0102, as before.
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(9.) We have thus the new symbolic equation,

XXIX. . . ^^1^2 = 0,

in which the three symbolic factors, ^, ^i, 02 may be in any manner grouped

and transposed, so that it includes the two equations XVII. ; and in which

the subject of operation is an arbitrary vector p. Its interpretation has been

already partly given ; but we may add, that while ^ reduces every vector to

iloQ fixed plane FT, 0i reduces every line to another fixed plane, Hi, and 02

reduces to a third plane, 112 ; thus 0i02> or 020i, while it destroys two lines pi,

P2, and therefore every line in the plane n, reduces an arbitrary line to the

fixed direction of the intersection of the two planes JJiTli, which intersection

must thus have the direction of 0"^O ; and in like manner, the fixed direction

pi of <j)i~^0, as being that to which an arbitrary vector is reduced (3.) by the

compound operation 020, or 002, must be that of the intersection of the planes

nn2 ; and p2, or 02~^O, has the direction of the intersection of lllli ; while on

the other hand 002 destroys every line in Hi, and 00i every line in 112 : so

that these three planes, with their three lines of intersection, are the chief

elements in the geometrical interpretation of the equation 00i02 = 0.

(10.) The conjugate equation,

XXX. . . 10 2 = 0,

may be interpreted in a similar way, and so conducts to the consideration of

a conjugate system of planes and lines ; namely the planes 11', Il'i, n'2, which

are the loci of (p'p, <p\p, ^'^p, while the operations 0'i0'2, 0'20'i, and 0'0'i destroy

all lines in these three planes respectively, and reduce arbitrary lines to the

fixed directions of the intersections, n'in'2, ^\ll\ II'll'i, which are also those

of 0'-^O, (p\-% 0V'O.

(11.) It is important to observe that these three last lines are the normals

to the three first planes, U, U\ 11''; and that, in like manner, the three former

lines are perpendicular to the three latter planes. To prove this, it is sufficient

to observe that

XXXI. . . S|o'0/o = S/30'jo' = 0, if 0'/t>' = 0, or that 0/o ± 0'-^O

;

and similarly, (j)'p ± 0"'O, &c.*

* [More symmetrically, without assuming one root to be zero, if ^ satisfies the symbolical cubic

{<p + Ci) (<p + C2) {<p + C3) = 0, it is easy to show that pi, the result of operating by ((p + Ci) {<t> + cs) on

any vector p, is parallel to a fixed direction. For a second arbitrary vector a may be expressed in the

form x<j>'^p + j/<pp + zp, and so (<^ + c>) (<{> + 03)0- = x<t>'^pi + i/<l>pi 4 zpi = {xci^ — yci + z)pi (since by the

symbolical cubic (<^ 4- ci)pi = 0) is likewise
||
pi. Thus the operators {<p + Ci) {cp + C3),

{<t> + ''s) (<^ + ci),
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(12.) Instead of eliminating x' : x between the two equations YII., we
might have eliminated c ; which would have given this other quadratic,

XXXII. . . = x'Ba'[5 + xx'iSa'fi' - Saj3) - x''Sa(5'
;

also, if x\ : Xi and x\ : x^ be the two values of x^ : x, then

^^^
XXXIII. ..p,\\ x,ft + x\(5', p, II

x,(d + x\(5\

XXXIY. . . x,x^ : {x^x\ + x,x\) : x\x\ = - Saj3' : (Saj3 - Sa'/30 : Sa'jS ;

hence the condition of rectangularity of the two lines pi, pz, or ^f^O, <j)2~^0, is

expressed by the equation,

XXXY. . . = - ^^Saj3' + S^j3'(Sa/3 - Sa'jS') + /3'^Sa'^ = S . i3/3TO« + ^V)

;

and consequently it is satisfied, if the given function be self-conjugate (YI.),

because we have then the relation,

XXXYL ..Yi3a+Yi3V=0;

in fact the binomial form of ^ gives (comp. 349, XXII.),

XXXYII. . . fp - 0(0 = (aSj3p - ^Sap) + (a'S/3> - jS'Sa'p) = Y. pY{(5a + jSV),

which cannot vanish independently of p, unless the constants satisfy the con-

dition XXXYI.
(13.) With this condition then, of self-conjugation of

(f>,
we have the relation

of rectangularity,

XXXYIII. . . S^i|02 = 0,* or ^f'O ± <^2-'0
;

at least if these directions pi and p^ be t^eal, which they can easily be proved

to be, as follows. The condition XXXYI. gives,

XXXIX. . . = S . aa'Y{(5a + (5W) = a^Sa'jS + Saa'(Sa'j3' - SajS) - a'^SajS'
;

and {(p + ci) (<^ 4- cz) reduce any vector to lines parallel respectively to three fixed directions p\, p2,

and p3. Further, by the property of the conjugate function (p', {<p' + ci)p is a general expression for a

vector perpendicular to pi. In the same way {(p' + a) ((p' + C2.)p is perpendicular to p% and also to pz

and parallel to a fixed direction p'\ which satisfies {^' + c\)p'i = ; and p'2 and p'3 similarly found and

satisfying ((/>' + C2)p'2 and (0' + C3)p'3= are at right angles respectively to the planes of p3, pi, and

of pi, p2. Taking unit vectors through a common origin and parallel to these fixed vectors, Upi, Up2,

and Ups determine a triangle on the unit sphere and IJp'i, Up'2, and Up'3 are the vectors to the vertices

of the supplemental triangle. Again if 7 is the spin-vector defined in 349 (4.), U((^ + c\)y or its equal

U(^' + c\)y terminates at the pole of the great circle through Upi and Up'i, and the point determined

by UV7^7 is the common orthocentre of the two triangles. "When the function is self-conjugate,

the two supplemental triangles coincide, and consequently the solutions of Vp<^op = are mutually

perpendicular (16.).]

* [In general by 349 (4.), 2S7pip2 = S(^ - (p')pipz = (cz — ci)Spip2. So if pi is perpendicular

to p2, 7, if it does not vanish, lies in their plane. Conversely, if 7 lies in the plane of pi and pi,

either Spip2 = 0, or ci = C2.]

Hamilton's Elements of Quaternions. 3 U
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hence (a'Sa'/S - a'^SajS')' = (Saa7 (SajS - ^a'fij,

aV'{m"' - 4m') = a^a'M(Sa^ - Sa^jS')' + 4Sai3'Sa'j3)

= {a'a:' - (SaaO') (SajS - Sa'/3T 4- (a^Sa'jS + a'^SajS')' > 0,

and XL. . . (Sa/3 - ^a(5y + 4Saj3'Sa'/3 = m"^ - 4m' > ;

so that each of the two quadratics, I. (or YIII.), and XXXII., has real and

unequal roots : a conclusion which may also be otherwise derived, from the

expressions j3 = «a + ha, ^' = ba + a'a , which the condition allows us to

substitute for /3 and /3'.

(14.) The same condition XXXVI. shows that the/oMr vectors a^a^' are

eomplanar, or that we have the relations,

XLI. . . SajSiS' = 0, Sa'/3i3' = 0, Y(yaa'.V/3'^) = ;

hence Yaa', or ^"^0 is now normal to the plane n ; and therefore by (13.),

when the function is self-conjugate (VI.), the three directions,

XLII. . . p, pr, p2, or 0-^0, 01-^0, ^2-^0,

compose a real and rectangular system.

(15.) In the present series of sub-articles (to 353), we suppose that the

three roots of the cubic in ^ are all unequal, the cases of equal roots (with m=Q)
having been discussed in a preceding series (352) ; but it may be remarked,

in passing, that when a self-conjugate function (^p is reducible to the monomial

form (58ap, we must have the relation V/3a = ; and that thus the line (5, to

the fxed direction of which (comp. 352, (5.) and (6.) ) the operation then

reduces an arbitrary vector, is perpendicular to the fxed j^lane (352, (7.)), every

line in which is destroyed by that operation 0.

(16.) In general, if ip be thus self-conjugate, it is evident that the three

planes n\ II'i, n'2, which are (comp. (10.)) the loci oi (j>'p, ^'ip, ^'sjo* coincide

with the planes II, IIi, II2, which are the loci of ^p, (pip, <p2p-

(17.) When <}> is not self-conjugate, so that <pp and 0'p are not generally

equal, it has been remarked that the scalar quadratic I., and therefore also the

symbolical cubic in 0, may have imaginary roots ; and that, in this case, the

vector equation II. of the second degree cannot be satisfied by any real direction

of p, except that one which satisfies the linear equation V., or causes (ftp itself

to vanish, while p remains real and actual. As an example of such imaginary

scalars, as roots of I., and of what may be called imaginary directions, or
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imaginari/ vectors (comp. 214, (4.) ), which correspond to those scalars, and are

themselves imaginary roots of II., we may take the very simple expressions

(comp. 349, XII.),

XLIII. . . <pp = Yyp, (p'p = - Yyp ;

in which y denotes some real and given vector, and which evidently do not

satisfy the condition YI., the function (p being here the negative of its own

conjugate, so that its self-conjugate part ^o is zero (comp. 349, XIII.). We
have thus,

XLIV. . . mo = 0, m'o = 0, m'\ = 0, ^o = 0, ip, = 0, xo = 0,

and consequently, by the sub-articles to 349 and 350,

XLV. . . m = 0, m' = - y^, m" =0, ^pp = - ySy/o, XP = ~ ^JP 5

the quadratic I., and its roots Ci, Cj, become therefore,

XLVI. . . C' - 7^ = 0, C, = + y^.Ty, Ca = - y^.Ty,

where v/- 1 is the imaginary of algebra (comp. 214, (3.) ) ; thus by XX. or

XXI., and XXII. we have now

XLYII. . . ypiG = - -yS-yd - CiYytr + Ci^a = (7 - Ci) ¥70-, \p-ia = (7 - Cz)Yy(T
;

hence
S70i<T = 0, Yyipia = 7t/'i(T, &0.,

XLYIII. . . ^i^iff = (^ + Ci)\P,tT = (7 + Cy) (7 - C,)Yy<T = (7' - C,')Yy<T = 0,

and in like manner XLYIII'. . . ^2^2<t == ;

if then we take an arbitrary vector a, and derive (or rather conceive as derived)

from it ttoo {imaginary) vectors pi and p^ by the (imaginary) operations xpi and

\p2, we shall have (comp. III. and lY.) the equations,

XLIX. . . pi = \pi(T, (pipi = 0, ^pi = - Cipi, YjOi^pi = 0,

and L. . . |02 = 1//2CT, ^2/02 = 0, (pp^ = - C2i02, Yp2<pp% = 0,

as ones which are at least symbolically true. We find then that the two imagi-

nary directions, p, and pz, satisfy (at least in a symbolical sense, or as far as

calculation is concerned) the vector equation II., or that />i and p^ are two

imaginary vector roots of Yp(pp =
; but that, because the scalar quadratic I.

has here imaginary roots, this vector equation II. has (as above stated) no real

vector root p, except one in the direction of the given and real vector 7, which

satisfies the linear equation Y., or gives (^p = 0.

8 U 2
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(18.) This particular example might have been more simply treated, by a

less general method, as follows. We wish to satisfy the equation,

LI. . . = V. pVjp = pSyjO - p^y ;

which gives, when we operate on it by V. y and Y. p, these others,

LII. . . = Vy/o . Syp, = p'Yyp

;

if then we wish to avoid supposing
(f)p

= Yyp = 0, we must seek to satisfy the

two scalar equations,

LIII. . . Syp = 0, p^ = 0;

and conversely, if we can satisfy these by any (real or imaginary) p, we shall

have satisfied (really or symbolically) the vector equation LI. Now the Jirst

equation LIU. is satisfied, when we assume the expression,

LIY. . . p = [c + 7)Y'y<r = Yya . [c - y),

where a is an arbitrary vector, and c is any scalar, or symbol subject to tlie

laws ofscalars ; and this expression LIY. for p, with its transformation just

assigned, gives

LY. ..p' = {c'- f) [Yyaf = 0, if c^ - y = ;

the quadratic XLYI. is therefore reproduced, and we have the same imaginary

roots, and imaginary directions, as before.

(19.) Geometrically, the imaginary character of the recent problem, of

satisfying the equation Y. pYyp = by any direction of p except that of the

given line y, is apparent from the circumstance that ^p, or Nyp, is here a

vector per^jcndiciilar to p, if both be actual lines ; and that therefore the one

cannot be also parallel to the other, so long as both are real*

354. In the three preceding Articles, and in the sub-articles annexed, we

have supposed throughout that the absolute term of the cubic in ^ is wanting,

or that the condition m = is satisfied ; in which case we have seen (351)

* Accordingly the two imaginary directions, above found for p, are easily seen to be those which

in modern geometry are called the directions of lines drawn in a given plane (perpendicular here to the

given line y), to the circular points at infinity: of which supposed directions the imaginary character

may be said to be precisely this, that each is (in the given plane) its own perpendicular.

[As additional examples :

—

If (pp = qpq-^, it is obvious that <p' = <j>-^. This shows that the cubic of <p is reciprocal, and it

may easily be reduced to (^ - 1) ((/>* - 2 cos 2m <^ + 1) = if m = Z. ;?. The real direction is V^, and

the imaginary directions are the lines to the circular points at infinity in the plane perpendicular to

Yq. Again, if
<f) changes a into fi, /3 into y, and y into a, the cubic is ^» - 1 = 0. The directions

are o + a>^ + a'^y, where w is an algebraic cube root of unity.]
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that it is always possible to satisfy the linear equation ^p = 0, by at least one

real and actual value of p (with an arbitrary scalar coefficient) ; or by at

least one real direction. It will be easy now to show, that although con-

versely (comp. 351, (4.) ) the function
<f>p

cannot vanish for a«y actual vector

p, unless we have thus m = 0, yet there is always at least one real direction for

which the vector equation of the second degree^

I. . . Np<i>p = 0,

which has already been considered (353) in combination with the condition

m = 0, is satisfied ; and that if the function ^ be a self-conjugate one, then

this equation I. is always satisfied by at least three real and rectangular direc-

tions, but not generally by more directions than three ; although, in this case

of self-conjugation, namely when

II. . . 0^/0 = 0/0, or II'. . . SX^jO = S/o^X,

for all values of the vectors p and X, the equation I. may happen to become

true, for one real direction of p, and for every direction perpendicular thereto :

or even for all possible directions, according to the particular system of

constants, which enter into the composition of the function ^p. We shall

show also that the scalar (or algebraic) and cubic equation,

III. . . = m + m'c + m"c^ + c',

which is formed from the symbolic and cubic equation 350, I., by changing ^

to - c, enters importantly into this whole theory ; and that if it have one real

and two imaginary roots, the quadratic and vector equation I. is satisfied by

only one real direction of p ; but that it may then be said (comp. 353, (17.) ) to

be satisfied also by two imaginary directions, or to have two imaginary and vector

roots : so that this equation I. may be said to represent generally a system of

three right lines, whereof one at least must be real. For the case II., the

scalar roots of III. will be proved to be ahoays real ; so that if Wo, m'o, and m'\

be formed (as in sub- articles to 349 and 350) from the self-conjugate part ^„p

of any linear and vector function ^p, as m, m', and m" are formed from that

function ^p itself, then the new cubic,

lY. . . = mo + m\c + m'^c^ + ^,

which thus results, can never have imaginary roots.

(1.) If we write,

V. . . 4»/o = <^|t> + cp, <P'p =
(i>'p

+ cp, or briefly, V. . . $ = ^ + c, <!>' = <^' + c,

where c is an arbitrary scalar, and if we denote by ^, ^', and M what i//, \p',
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and m^ become, by this change of to ^ + c or O, the calculations in

353, (5.), (6.), show that we have the expressions,

YI. . . ^ = ;// + ex + c% ^' = ;//' + ex + c%

and
VII. . .M=m ^- m'c + m"c^ + &,

with
VIII. . . J/ = $^ = ^O = $'^' = ^'O'.

(2.) Hence it may be inferred that the functions x> x'> ^'^^ ^^® constants

;»', m" become,

IX. . . X = Do>P = X + 2c, X' = D«^' = x' + 2c,

r 2!/' = J)M = m' + 2m"c + 3c%
•*

lil/'' = iD/i!f=w'' + 3c;

with the verifications,

XI. . . $ + X = *' + X' = Jf'', OX + ^ = 4»'X' + 4^' = if",

as we had, by the sub-articles to 350,

+ X = <^' + X = ^"j ^X + 'P = ¥x + V'' = ^'•

(3.) The neio linear symbol $ must satisfy the new cubic,

XII. . . = if - i!/'0 + M''^' - $^;

which accordingly can be at once derived from the old cubic 350, I., under

the form,

XIII. . . = m + m\c - a>) + m'\c - ^Y + (c - ^)\

(4.) Now it is always possible to satisfy the condition,

XIV. ..if =0,

by substituting for c a real roof of the scalar cubic III. ; and thereby to

reduce the neio symbolical cubic XII. to the/orm,

XV. . . = <I>' - il/^O^ + Jf'O

;

which is precisely similar to the form,

= (^3 _ ;^''^2 + „/^^ 352, II.,

and conducts to analogous consequences, which need not here be developed

in detail, since they can easily be supplied by anyone who will take the

trouble to read again the few recent series of sub-articles.

(5.) For example, unless it happen that "^p constantly vanishes, in which

case M' = 0, and Op (if not identically null) takes a monomialform, which is
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reduced to zero (comp. 352, (7.) ) for every direction of |0 iu a given plane,

the operation "»? reduces (eomp. 351) an arbitrary vector to a given direction
;

and the operation $ destroys every line in that direction : so that, in every

case, there is at least one real way of satisfying the vector equation (pp = 0,

and therefore also (as above asserted) the equation I., without causing p

itself to vanish.

(6.) And since that equation I. may be thus written,

XYI. . . Yp^p = 0, or <Pp
II p,

we see that it can be satisfied without ^p vanishing, if this neio scalar and

quadratic equation,

XYII. . . = O* + M''C + M\ comp. 353, 1.,

have real and unequal roots, Ci, Ci ; for if we then write,

XVIII. . . $1 = $ + Cx, $, = * + Cj,

the line ^p will generally have for its locus a given plane, and there will be

two real and distinct directions pi and p^ in that plane, for one of which

4>i|0i = 0, while Os/oz = for the other, so that each satisfies XYI., or I.
;

and these are precisely the fxed directions of ^ip and "^^p, if ^i and ^2 be

formed from ^ by changiDg 4> to $1 and <^2 respectively.

(7.) Cases of equal and of imaginary roots need not be dwelt on here
;

but it may be remarked in passing, that if the function ^p have the par-

ticularfortn {g being any scalar constant),

XIX. . . ^/o = gp, then XX. ..{g-(pY = 0, and XXI. . . M = {g + c)'

;

the cubic XIY. or III. having thus all its roots equal, and the equation I.

being satisfied by every direction of p, in this particular case.

(8.) The general existence of a real and rectangular system of three directions

satisfying I., when the condition II. is satisfied, may be proved as in

353, (14.) ; and it is unnecessary to dwell on the case where, by ttvo roots

of the cubic becoming equal, all lines in a given plane, and also the normal

to tliat plane, are vector roofs of I., with the same condition II.

(9.) And because the quadratic, = 0"^ + m"c + m' (353, I.), has been

proved to have always rm/ roots (353, (13.)) when ^'p = ^p, the analogous

quadratic XYII. must likewise then have real roots, Ci, C2 ; whence it

immediately follows (comp. XII. and XIII.), that (under the same con-

dition of self-conjugation) the cubic III. has three real roots, c, c + Ci, c + Cj

;

and therefore that (as above stated) the other cubic lY., which is formed
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from the self-conjugate part ^o of the general linear and vector function ^, and

which may on that account be thus denoted,

XXII. . . Mo = 0, has its roots always real.

(10.) If we denote in like manner by 4>o the symbol ^o + c, the equation

m = mo- Sy<Poy (349, XXVI., comp. 349, XXI.) becomes,

XKIll. . , M =^ Mo - Sy^oj ;

whence, by comparing powers of c, we recover the relations,

mf = m\ - y^, and m'^ = m'^o, as in 350, (I.)-*

(11.) On a similar plan, the equation im^'Yfiv = Y.ipiuipv becomes,

XXIV. . . M^P'Yfiv - V.^M^v, comp. 348, (1.),

in which ju and v are arbitrary vectors, and c is an arbitrary scalar ; or more

fully,

XXV. . . (m + m'c + m"c^ + c^) [^' + c)Yfiv = V. {xpfi + cxfx + c'^fJ-) (^v + ^X^^ + c^v)',

whence follow these new equations,

XXVI. . . {m + m'(j>')Yimv = Y{^fi .x^-i^v. Xiu)>

XXVIl. . . {m' + n/'<j>')Yfiv = Y(^n\Pv - v\Pn + XJ^'Xv)i

XXVIII. . . {m" + <t>')Yfiv = V(mx^ - ^Xm),

which can all be otherwise proved, and from the last of which (by changing

^ to xfj, &c.) we can infer this other of the same kind,

XXIX. . . {m' + ip^)Yfiv = Y{in(l>xv - v^Xj")-

(12.) As an example of the existence of a real and rectangular system of

three directions (8.), represented jointly by an equation of the form I., and

of a system of three real roots of the scalar cubic III., when the condition II.

is satisfied, let us take the form

XXX. . . <pp = gp + YXpfi - (p'p,

g being here any real and given scalar, and A, /x any real and non-parallel

*[lf
(ppi = (popi + Yyp\ = - cipi, then pi = - (^o + ciy^Nypi

(mo + m'oBi + m'Vi^ + cv^)p\ = - "V(<^o + <;i)7(<^o + ci)pi = V((po + ^1)777^1

= piS7(^o + ^'1)7 - 7Spi(</>o + ci)y = piS7(<^ + ^1)7.

From this, ci is a root of

{mo - 87^7) + {m'o - y^)c + >»"oc* + c^ = 0,

and this cubic must be identical with m + m'o + m"c'^ + c^ = 0, as they have three roots common.]
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given vectors ; to which form, indeed, we shall soon find that every self-

conjugate function ^^p can be brought. We have now (after some reductions),

XXXI. . .x^p = YXp/uBXfx - YX/x^Xpfji - g{XSpp + m^Xp) + g^p,

XXXII. . . x/a = - (^S^P + i^SAp) + 2gp,
and

XXXIII. ..m = {g- SA/i) (g' - Xy) , m' = - Ay - 2gSXfi + dg\

mf' = - SA/x + 3^

;

where the part of ^pp which is independent of g may be put under several

other forms, such as the following,

XXXIV. . . Y(XpjuBXfx — XjuSXpfi) = ApjuSA/u - AjuSApju

= A(|oSA/x + SAjUjo)ju = ^X{Xfip + pXpjp. = X{XSpp + juSAp - Xpfijfi, &c.

;

and <I>, *, X, -¥, JT, M^' may be formed from 0, \p, x> »*, w/, ?w", by simply

changing ^ to c + ^. The equation M = has therefore here three real and

unequal roots, namely the three following

XXXV. ..c = -^ + SAju, c+ C^ = -g + TXfi, c + C, = - g -TX^;

and the corresponding forms of H'p are found to be,

XXXVI. .,^p = YX^SXnp, ^,p = - (AT/i + fxTX)S . p{XTfi + /xTA),

>F,p = - (XTfx - //TA)S . p(AlV - )uTA).

Thus ^p, ^1/0, and ^sp have in fact the three fixed and rectangular directions

of VA/i, ATjU + /uTA, and ATju - /uTA, namely of the normal to the given

plane of A, p., and the bisectors of the angles made by those two given

lines ; and these are accordingly the only directions which satisfy the vector

equation of the second degree,

XXXVII. . . [Yp^p = V. pVAjo^ =)YpX^pp + Ypp^Xp - ;

so that this last equation represents (as was expected) a system of three right

lines, in these three respective directions.

(13.) In general, if Ci, d, Cz denote the three roots (real or imaginary) of

the cubic equation M = 0, and if we write,

XXXVIII. . . Oi = + Ci, <I>2 = (^ + C2, ^3 = ^ + C3,

the corresponding values of ^ will be (comp. VI.),

XXXIX. . .'¥, = xfj + cix + Ci\ ^2 =
^Z'
+ <72X + ^'' 'i'3 =

"Z*
+ c,x + C3'

;

Hamilton's Elbmbnts of Quatbrmions, 3 ^
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also we have the relations,

/^
Ci + Cz + Cs = - w'' = - ^ -

;)(,

XL. . . } CiCz + C3C1 + C1C2 = + m' = ^x + ^»

\C1C2C3 = - m = - ^xp;

whence it is easy to infer the expressions,

XLI. . . O. = (c, - c,)-' (^3 - ^2), $2 = (ca - 6'O^n^i - ^3)»

which enable us to express the functions <Pijo, $2/0, ^3/0 as binomials (comp.

351, &c.), when '^ip, ^^p, ^Vsp have been expressed as tnonomes, and to assign

the planes (real or imaginary), which are the loci of the lines Oip, <l>2p, ^sp.

(14.) Accordingly, the three operations, O, $1, $2) by which lines in the

three lately determined directions (12.) are destroyed, or reduced to zero, and

which at first present themselves under the forms,

XLII. . . $p - \8pp + mSXjo, $,/o = YXpiu + pTXp, 4>2 = VA/>/x - pTX/x,

are found to admit of the transformations,

where ^, "^i, "^2 have the recent forms XXXYI., and the loci of $p, 0,p,

$2)0 compose a system of three rectangular planes.

(15.) In general, the relations (13.) give also (comp. 353, (8.)),

XLIY. . . ^1 = $2<I>3, ^2 = ^h^i, ^3 = ^1^2,
and

XLV. . . ^,^, = ^.,^2 = 4)3^3 = a>i<J>2<I>3 = 0,

whence also,

XLVI. . . ^r^n = ^2^3 = ^3^1 = 0,

the symbols (in any one system of this sort) admitting of being transposed

and grouped at pleasure ; if then the roots of Jf = be real and unequal,

there arises a system of three real and distinct planes, which are connected

with the interp)retatioti of the symbolical equation, <l>i$o$3 = 0, exactly as the

three planes in 353, (9.) were connected with the analogous equation ^^1^2 = 0.

(16.) And when the cubic has two imaginary roots, it may then be said

that there is one real plane (such as the plane X 7 in 353, (18.), (19.)),

containing the two imaginary directions which then satisfy the equation I.

;

and tico imaginary planes, which respectively contain those two directions,

and intersect each other in one real line (such as the line y in the example

cited), namely the one real vector root of the same equation I.
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355. Some additional light may be thrown upon that vector equation of

the second degree, by considering the system of the two scalar equations^

I. . . SAp^yo = 0, and II. . . SXp = 0,

and investigating the condition of the reality of the two* directions, p^ and p2,

by which they are generally satisfied, and for each of which the plane of p
and ^p contains generally the given line X in I., or is normal to the plane

locus II. of p. We shall find that these two directions are always real and

rectangular (except that they may become indeterminate) y when the linear

function ^ is its own conjugate ; and that then, if A be a root po of the vector

equation,

III. . . Yp^p = 0,

which has been already otherwise discussed, the lines pi and p2 are also roots

of that equation ; the general existence (354) of a system of three real and

rectangular directions, which satisfy this equation III. when (ft'p
=

(j)p, being

thus proved aneiv : whence also will follow a new proof of the reality of the

scalar roots of the cubic M = 0, for this case of self-conjugation of ; and

therefore of the necessary reality of the roots of that other cubic, M^ = 0, which

is formed (354, lY. or XXII.) from the self-conjugate part ^o of the general

linear and vector function (j>, && M = was formed from <j>.

(1.) Let A, ft, V be a system of three rectangular vector units, following in

all respects the laws (182, 183), of the symbols i,J, k. Writing then,

lY. . . p = yfi + zv, and therefore, \p = yv - Zju, (pp = y^fi + s^i/,

the equation II. is satisfied, and I. becomes,

Y. . . = y'^^v^jx + yz{^v(pv - S^u^/x) - s'^S^^v

;

the roots of which quadratic will be real and unequal, if

YI. . . (Sj/^v — SfKPfxY + 4S/i^vSi'0ju > ;

* Geometrically, the equation I. represents a cone of the second order, with \ for one side, and with

the three lines p which satisfy III. for three other sides ; and II. represents a j?/awe through the vertex,

perpendicular to the side A. The two directions sought are thus the two sides, in which this plane

cuts the cone. [The general equation of a quadric may he written in the form S/)^p = 1 where the

function <p is self-conjugate. The cone, through its intersection with a concentric sphere, is

Sp{<f> 4- r'-)p = if r is the radius of the sphere. If this touches the plane SAp = 0, it is geometrically

evident that the edge of contact is a principal axis of the plane section of the quadric as it passes

through the points of contact of the concentric sections of the quadric and the sphere. The condition

for contact is A
||

(</> + r-'^)p, or S\p(pp = 0, coupled with SAp = 0. The directions of the principal

axes thus determined are always real whether the plane cuts the quadric in a real curve or not.]

3X2
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and the corresponding directions of p will be rectangular, if

YII. . . = S {i/ifi + ziv) {y^fi + Z2v) = - [yiVi + Z1Z2)
;

that is, if

YIII. . . Sv^/i = S/x^v,

at least for this particular pair of vectors, n and v.

(2.) Introducing now the expression, <^p = ^^^p + Y-yp (349, XII.), the

conditions YI. and YIII. take the forms,

IX. . . (Si;^ov - S^0oiu)^ + 4S(/x0o»)' > 4(S7^v)^ and X. . . ^yp.v = ;

which are both satisfied generally when 7 = 0, or = 0' = ^0 ; the only ex-

ception being, that the quadratic Y. may happen to become an identity, by all

its coefficients vanishing: but the opposite inequality (to YI. and IX.) can

never hold good, that is to say, the roots of that quadratic can never be

imaginary, when ^ is thus self-covjugate.

(3.) On the other hand, when y is actual, or ^'p not generally = rpp, the

condition X. of reetangularity can only accidentally be satisfied, namely by

the given or Jixed line y happening to be in the assumed plane oi p, v

;

and when the two directions of p are thus not rectangular, or when the scalar

Sypv does not vanish, we have only to suppose that the square of this scalar

becomes large enough, in order to render (by IX.) those directions coincident,

or imaginary.

(4.) When ^' = ^, or 7 = 0, we may take p and v for the two rectangular

directions of p, or may reduce the quadratic to the very simple form yz = ;

but, for this purpose, we must establish the relations,

XT. . . Sp<j)v = Sv(pp = 0.

(5.) And if, at the same time, X satisfies the equation III., so that ^X || X,

we shall have these other scalar equations,

XII. . . = SptpX = Sv^X = SX^ju = SX^v
;

whence

(j>p II YvX II p, and (pv
II
YXp || v,

or,

XIII. . . == YX^X = Ypi>p = Yv^v
;

X, p, V thus forming (as above stated) a system, of three real and rectangular

roots, of that vector equation III.

(6.) But in general, if III. be satisfied by even tico real and distinct

directions of p, the scalar and cubic equation J/ = can have no imaginary
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root ; for if those two directions give tuo unequal but real and scalar values,

Oi and ^2, for the quotient -
(l>p

: p, then Ci and C2 are two real roots of the cubic,

of which therefore the third root is also real ; and if, on the other hand, the

two directions pi and po give one common real and scalar value, such as Ci, for

that quotient, then (j>p = - Cip, or $ip = {<p + Ci)p = 0, for ereri/ line in the plane

of pi, p<i ; so that <^p must be of the form, - c^p + ^Spip2p, and the cubic will

have at least two equal roots, since it will take the form,

XIV. . . = (c - cf (c - c, + Sp,|02/3),

as is easily shown from principles and formulae already established.

(7.) It is then proved anew, that the equation J/ = has all its roots real,

if ^'p = (pp ; and therefore that the equation Jfo = (as above stated) can

never have an imaginary root.

(8.) And we see, at the same time, how the scalar cubic M= might

have been deduced from the symbolical cubic 350, I., or from the equation

351, I., as the condition for the vector equation III. being satisfied by any

actual p ; namely by observing that if ^p = - cp, then (ji^p = c-p, ^^p = - (^p,

&c., and therefore 3fp = 0, in which p, by supposition, is different from zero.

(9.) Finally, as regards the case* of indetermination, above alluded to, when

the quadratic Y. fails to assign any definite values to y: z, or any definite

directions in the given plane to p, this case is evidently distinguished by the

condition,

XV. . . ^fx<l>fi = Sv^v,

in combination with the equations XI.

356. The existence of the Symbolic and Cubic Equation (350), which is

satisfied by the linear and vector symbol <p, suggests a Theorem f of Geometrical

Deformation, which may be thus enunciated :

—

"If, by any given Mode, or Law, of Linear Derivation, of the kind above

denoted by the symbol tp, we pass from any assumed Vector p to a Series of

Successively Derived Vectors, pi, p^, /03, . . . or
<f>^p,

(p^p, (ji^p, . • ; and if, by con-

structing a Parallelepiped, we decompose any Line of this Series, such as pz, into

three partial or comp)onent lines, nip, - m'pi, m"p^, in the Directions of the three

* It will be found that tHs ease corresponds to the circular sections of a surface of the second order
;

while the less particular case in which (p' p = <pp, but not S/i<Pfi = Sv(pv, so that the two directions of p

are determined, real, and rectangular, corresponds to the axes of a non-circular section of such a surface.

t This theorem was stated, nearly in the same way, in page 568 of the Lectures ; and the problem

of inversion of a linear and vector function was treated, in the few preceding pages (559, &c.), though

with somewhat less of completeness and perhaps of simplicity than in the present Section, and with a
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which precede it, as here of p, pi, pz ; then the Three Scalar Coefficients, m,

- m\ m", or the Three Ratios which these three Components of the Fourth Line

/03 hear to the Three Preceding Lines of the Series, will depend only on the given

Mode or Law of Derivation, and will he entirely independent of the assumed

Length and Direction of the Initial Vector.''*

(1.) As an Example of such successive Derivation, let us take the law,

I. . . Pi = 0io = - V^P7, p2 = ^'p = - Y^pi7, &c.,

which answers to the construction in 305, (1.), &c., when we suppose that

j3 and 7 are unit-lines. Treating them at first as any two given vectors, our

general method conducts to the equation,

II. . . ps = mp - m'pi + m"p2,

with the following values of the coefficients,

III. . .m = - i^ySfdj, m'=^- /3^7S m" = S(iy ;

as may be seen, without any new calculation, by merely changing g, X, and fi,

in 354, XXXIII., to 0, (5, and -7.

(2.) Supposing next, for comparison with 305, that

IV. . . /3^ = 7^' = - 1, and SjSy = - /,

so that /3, 7 are unit lines, and / is the cosine of their inclination to each

other, the values III. become,

V. . . m = I, m' = - 1, m" = - I;

slightly different notation. The generalform of sucli a function whicli was there adopted may now
be thus expressed :

(pp = 2)3Sap + Yrp, r being a given quaternion

;

the resulting value of m was found to be (page 561),

m = 2Soa'a"S/3"/3'j8 + 2S(j-Vaa'.V/3'/3) + SrSSojSr - 2SarS/3r + SrTr^

;

and the auxiliary function which we now denote by \j/ was,

mtp-'^a- = i|/<r = 2Voa'S/3'/3(r + SV. aV{Yfi(r.r) + (VcrrSr -\rSffr)

;

where the sum of the two last terms of \}/<t might have been written as a-iSr — rSffr. A student might

find it an useful exercise, to prove the correctness of these expressions by the principles of the present

Section. One way of doing so would be, to treat 'SfiSap and r as respectively equal to fop + Yyp and

c + € ; which would transform m and y^<T, as above written, into the following,

-3/o - S(7 + e) (^0 + <>) (7 + e), and -Vaff - (7 4- e) 8(7 + €)or + V<r((^o + c) (7 + e)
;

that is, into the new values which the M and ^(t of the Section assume, when */? takes the new value,

*p = (<fo + c)p -V V(7 + e)p.
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and the equation II., connecting four successive lines of the series, takes the

form,

YI. . . Pi = Ip + pi - lp2 or VII. • . /03 - pi = - l{p2 - p) ;

a result which agrees with 305, (2.), since we there found that ii p = op, &o.,

the interval P1P3 was = - I x PP2.

(3.) And as regards the inversion of a linear and vector function (347), or

the return from any one line joi of such a series to the line p which precedes it,

our general method gives, for the example I., by 354, (12.),

YIIL ..rPpi = Wii^ypi + p,i3y)7,

and

IX. . . /, = ^ >pi = m ^rppi = - ^1-^-^-^-
;

a result which it is easy to verify and to interpret, on principles already

explained.

357. We are now prepared to assign some new and general Forms, to

which the Linear and Vector Function (with real constants) of a variable

vector can be brought, uithout assuming its self-conjugation ; one of the

simplest of which forms is the following,

I. . . 0/) = Vg-,,/) + YXpiii, with Y. . . go = g + y ;

qo being here a real and constant quaternion, and X, p, two real and constant

vectors, which can all be definitely/ assigned, when the particular form of is

given : except that X and p. may be interchanged (by 295, YII.), and that

either may be multiplied by any scalar, if the other be divided by the same.

It ^fill follow that the scalar, quadratic, and homogeneous function of a vector,

denoted by S/o0jO, can always be thus expressed

:

II. . . ^pipp = gp"^ + BXppp
;

or thus,

ir. . . Sp^p = g'p^ 4 2S\pSpp, if g' = g - SX^
;

a general and (as above remarked) definite transformation, which is found to

be one of great utility in the theory of Surfaces* of the Second Order.

(1.) Attending first to the case oi self-conjugate functions (pop, from

which we can pass to the general case by merely adding the term Yyp, and

* In the theory of such surfaces, the two constant and real vectors, \ and jx, have the directions

of what are called the ci/clic normals.
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supposing (in virtue of what precedes) that aioaas are three real and rectan-

gular vector-units, and c^CzCz three real scalars (the roots of the cubic Mo= 0),

such that

III. . . ^lOi = (^0 + Oi)ai = 0, ^.02 = (^0 + C^jUz = 0, ^3"3 = {<j>o + ^3)03 = 0,

we may write

IV. . . p = — (oiSaijO + a2Sa2p + 03803/0),

and therefore

V. . . ^op = CiOiSoijO + ^203802^ + CsOsSos/o
;

so that

f(j)ip = [Ci - Ci)aSa2p + [Cs — 61)03803/),

VI. . . \^iP = (^3 - ^2)0380310 + [Ci - C2)oiSoi/0,

,^3)0 = [Cl - C3)oi8oijO + (Cz - 63)02802/0,

the binomialforms of ^i, 02, 03 being thus put in evidence.

(2.) We have tlms the general but scalar expressions :

VII. ..-p'= {Sa^pY + (8a2p)^ + (8«3|o)'
;

VIII. . . S|O0|O = Sp^o/O = Ci(8oi|0)^ + 62(803/0)' + 63(803/0)^

= - Ci|0' + (62 - Cl) (S02|0)' + (C3 - Cl) (S03|0)'

= - Cjjo' - (Cs - Cl) (8oi|o)' + (C3 - C2) {Sa^pY

= - Csp'' - ic-i - Cl) (8a,|o)' - (C3 - C2) (802/0)' ;

in which it is in general permitted to assume that

IX. . . Cl < C2 < C3, or that X. . . C2 - Ci = 2e', C3 - Cz = ^e"^,

e and c' being real scalars, and the numerical coefficients being introduced for

a motive of convenience which will presently appear.

(3.) Comparing the last but one of the expressions VIII. with II'., we

see that we may bring '^p^p to the proposed form II., by assuming,

XI. . . X = coi + c'os, /u = - coi + /03, g = 8X/X - C2 = - ^(ci + C3),

because SX/u = e^ - ef^ = c^- ^{ci + C3).

(4.) But in general (comp. 349, (4.)) we cannot have, for all values of p,

XII. . . 8|o0jO = Bp<l)p, unless XIII. . . (ftop = 0o/Oj

that is, unless the self-conjugate parts of and 0^ be equal ; we can therefore

infer from II. that 0o/o = gp + VX/o/x, because YXpfi = V/u/oX = its own conju-

gate ; and thus the transformation I. is proved to be possible, and real.
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(5.) Accordingly, with the values XI. of A, fi, g, the expression,

XIY. . . (Pop
= gp+ YXpju = p{o - SA^) + AS/zp + ^uSAp,

becomes,

XY. . . ^ojo = - C2P + [e'az + eai) 8(^03 - eai)p + (e'aa - eoi) S{e'ai + eai)p

= - c-zp - 2e'a]Saip + 2e'^uzSa3p ;

which agrees, by X., with YI.

(6.) Conversely if g, A, and p. be constants such that (p^p = gp +YXpp, then

^oYA^ = g'YXp, where g' = g - SA^t, as before ; hence - g' must be one of the

three roots Ci, Cj, C3 of the cubic Mo = 0, and the normal to the plane of A, p
must have one of the three directions of ai, 02, 03 ; if then we assume, on trial,

that this plane is that of ai, 03, and write accordingly,

XYI. . . A = (lax + a'az^ p = bai + b^az, (jtip = XSpp + juSA/o,

we are, by YI., to seek for soalars aa'bb^ wliich shall satisfy the three con-

ditions,

XYII. , .2ab = c,- c„ 2a'b' =Cz- c^, aV + ba =
;

but these give

XYIII. . . {2abJ = {2baJ = {c, - c,) {e, - c,),

so that if the transformation is to be a real one, we must suppose that c^ - Cy

and C3 - C2 are either both ponidve, as in IX., or else both negative ; or in other

words, we must so arrange the three real roots of the cubic, that c^ may be

(algebraically) intermediate in value between the other two. Adopting then

the order IX., with the values X., we satisfy the conditions XYII. by sup-

posing that

XIX. . .a'=b'=e\ a = -b = e',

and are thus led back from XYI. to the expressions XI., as the onlg real ones

for A, p, and g which render possible the transformations I. and II. ; except

that A and p may be interchanged^ &c., as before.

(7.) We see, however, that in an imaginary sense there exist two other

solutions of the problem, to transform- ^p and Sp^p as above ; for if we retain

the order IX., and equate g' in IF. to either - Ci or - C3, we may in each case

conceive the corresponding sum of two squares in YIII. as being the product of

two imaginary but linear factors ; the planes of the two imaginary pairs of

vectors which result being real, and perpendicular respectively to ai and 03.

Hamilton's Elements op Quaternions, 3 Y



680 ELEMENTS OE QUATERNIONS. [III. ii. § 6.

(8.) And if the real expression XIY. for ^o/o be given, and it be required

to pass from it to the expression Y., with the order of inequality IX., the

investigation in 354, (12.) enables us at once to establish the formulae

:

XX. . . Ci = - g - TXfi, Cz = - g + SX/z, C3 = - g + TXfi

;

XXI. . . ax = V{XTn - fiTX), a, = UYA/i, m = U(XT/z + ^uTX)

;

in which however it is permitted to change the sign of any one of the three

vector units. Accordingly the expressions XI. give,

TXfx + SX/i = 2e^ = C2 - Ci, TX^ - SX^u = 2/^ = c^- C2, SX^t = g + c^',

TX = T|U, X - fi = 2eai, YXyu = - 2ee'a3ai = + 2ee'a2, X + fi = 2eai.

(9.) "We have also the two identical transformations,

XXII. . . ^Xpfxp = p'TXfi + {{^XiipY + (SXpT^ + ^ppTXy] [TXfx - SXfiY\

XXIII. . . SXppp = - p'TXfi - {{SXupY + (SX^oT^ - SfxpTXf) (TX^ + SXpy\

which hold good for anij three rectors, X, fx, p, and may (among other ways)

be deduced, through the expressions XX. and XXI., from II. and YIII.

(10.) Finally, as regards the expressions YI. for <pip, &c., if we denote

the corresponding forms of -ipp by xpip, &c., we have (comp. 354, (15.) ) these

other expressions, which are as usual (comp. 351, &c.) of mono^nialform :

XXIY.

^ijO = ^i.^3|0 = {Cz - Ci) (<?i - C^ai^aip ;

tZ-z/o = ^3^1/0 = {c-i - Ci) (C2 - Ci)a2Sa2jO
;

\p3p = 0i^2/> = (Ci - Cs) ((?3 - C2)aSa3p ;

and which verify the relations 354, XLI., and several other parts of the

whole foregoing theory.

358. The general linear and vector function ^p of a vector has been seen

(347, (1.)) to contain, at least implicitly, 7iine scalar constants ; and accordingly

the expression 357, 1, involves that number, namely/owr in the term Y$'o/o, on

account of the constant quaternion qo, and Jive in the other term YXp/m, each of

the two unif-rectors, UX and U^, counting as tivo scalars, and the tensor TX/x

as one more. But a self-conjugate linear and vector function, or the self-conju-

gate part <j>op of the general function ^p, involves only six scalar constants

;

either because three disappear with the term Yyp of
<l>p ; or because the
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condition of self-conjugation, SVjSa = 27 = (comp. 349, XXII. aud 353,

XXXYI.), which arises when we take for ^p the form 2/3Sa/) (347, XXXI.),

is equivalent to a system of three scalar equations, connecting the nine constants.

And for the same reason the general quadratic but scalar function, Sp^p,

involves in like manner only six scalar constants. Accordingly there enter

only six such constants into the expressions 357, II., IF., Y., YIII., XIY.

;

Ci, C2, C3, for instance, being three such, and the rectangular unit system

oi, Qzj as answering to three others. The following other general transformations

of S|O0|O and (pop, although not quite so simple as 357, II. and XIY., involve

the same number [six) of scalar constants, and deserve to be briefly considered

:

namely the forms,

I. . . Sp^p = a(Vapy + b{^^pY ;

II. . . ^ojO = - aaVap + 6j3Sj3o
;

in which a, b are two real scalars, and a, j3 are two real unit-vectors. We
shall merely set down the leading formulae, leaving the reader to supply the

analysis, which at this stage he cannot find difficult.

(1.) In accomplishing the reduction of the expressions,

S/o^p = Cx(Sai|o)' + c^{^a2pY + ^3(803^)', 357, YIII.
and

^0/0 = CittiSoi/o + CiaSa^p + CsOsSasp, 357, Y.,

to these new forms I. and II., it is found that, if the result is to be a real one,

- a must be that root of the scalar cubic Mo = 0, the reciprocal of which is

algebraically intermediate, between the reciprocals of the other two. It is

therefore convenient here to assume this new condition, respecting the order of

the inequalities,

III. . . cr^ > cf^ > cp
;

which will indeed coincide with the aiTangement 357, IX., if the three roots

Ci, C2, C3, be all positive, but will be incompatible with it in every other case.

(2.) This being laid down (or even, if we choose, the opposite order being

taken), the (real) values of a, b, a, /3 may be thus expressed

:

lY. . . a = - Cz, b = Ci - Ci + C3;

Y. . . a = xai + Zas, /3 = x'oi + s'ns ;

YI. ..x^ =

in which

Ci — Ci ^ C<i — 6*3

"^1
~i

2' = ~^I
:

C\ — C3 C\ — C3

3 Y 2
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Yll, ,
/J^ = '4 = hixx'+ zz') = - 6Sa^ = (say) h';

X z

YIII. . .
6'^ = c.c^Hzh = c^'x' + c,\' ; IS.. . . x' + y' = x" + /' = !;

X. . . bx'z' = c^xz
;

XI. . . c^x' + C3S' = c^cpc, = b-'b'' = b{Sa(if, cyc, = - a6(Sa/3)^

;

XII. . . i'jS = - J/3Sa/3 = Cia;ai + CiZtti ; &c.

(3.) And there result the transformations :

XIII. . . 02/0 = (Ci - C^ai^aip + ((?3 - ^2)03803^

62
= ~ C2{xai + sos) S(irai + Zaz)p + -^(iCCiOi + 2^303) ^{xCiai + sCsas)^

;

C1C3

XIV. . . 0oP = CiOiSoijO + 6202802/0 + C^Ui^azp

= C2(a;ai + sos) Y(a;ai + zaa)^ + —^ [xCiUi + 20303) S(a;Ciai + zcza^p ;

C1C3

C2

XY. . . S|O0p = - C2(Y(^ai + zaz)py + —- (S(a!Ciai + Z0iai)pY ;

C1C3

which last, */ C1C3 be positive, gives this o^Aer realform,

XYI. . . S|O0|O = — N{S(a;Ciai + 2^303)^ + {ciCi)^ Y(iPai + 203)10};
C1C3

x^ and z'^ being determined by the expressions YI.

(4.) Those expressions allow us to change the sign oi z:x, and thereby to

determine a second pair of real unit lines, a and /3', which may be substituted

for a and 3 in the forms I. and II. ; the order of inequalities III. (or the

opposite order), and the values lY. of a and b, remaining unchanged. We
have therefore the double transformations ;

XYII. . . ^p<^p = - C,{Yapy + (Ci - Ca + C,) {^(5pY = - ciVa'pY

+ (ci -c, + €,) (Si3»^

;

XYIII. . . (pop = CiuYap + (Ci - C2 + C3)/3Sj3|0 = daYap + (Ci - C2 + C3)/3'S/3'|0.

(5.) If either of the two connected forms I. and II. had been given, we

might have proposed to deduce from it the values of CiC^Cs, and of 010203, by

the general method of this Section. We should thus have had the cubic,

XIX. . .0 = M,= ic + a){c'+ {a - b)c - ab{^afif]',
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and because the quadratic {c + ay^Mo = may be thus written,

XX. . . (c-» + cr'f (SajS)^ - (c-^ + a-') (a-^S.(a/3)^ + b'^) + a-\^a^f = 0,

it gives two real values of c~^ + a"S one positive and the other negative ; if

then we arrange the reciprocals of the three roots of il/o = in the order III.,

we have the expressions,

(Ci = i(6 - a) + \ah ,/{a-' + 2a-'b-'S.{a[5Y + 6"^) ; c^ = -a',
XXI. . . 4

[c, = i(6 -a)- ^ab ^{a-' + 2a-'b-'S . {ajif + b'')
;

the signs of the radical being determined by the condition that [ci - Cs) : ab[Sa(if

= cf^ - cf^ > 0. Accordingly these expressions for the roots agree evidently

with the former results, lY. and XI., because S. (aj3)^ = 2(Sa/3)'' - 1.

(6.) The roots Ci, Ci, Cj being thus known, the same general method gives

for the directions of oi, a^, as the versors of the following expressions (or of

their negatives)

:

/';//i/o = aci^{c^a + 6j3Sa/3) ^{c^a + b^^a^]p
;

XXII. . .-^,p = abYa(iSpap
;

Ua/o = acf'{c,a + ijSSajS) S{c,a + 6/3Sa/3)/o
;

of which the monomialforms may again be noted, and which give,

XXir. ..«! = + U(c3a + J/3Sa/3), a, = ± UVajS, a^ = ±V{c,a + b(5Sa(5).

(7.) Accordingly the expressions in (2.) give (if we suppose a-iUi = + oj),

XXIII. . . Caa + 5/3Sa/3 = [Ca - Ci)xai, Vaj3 = {x'z - xz')a2, c,a + ^)j3Sa/3

= (ci - ^3)203

;

and as an additional verification of the consistency of the various parts of this

whole theory, it may be observed (comp. 357, XXIV.), that

XXIY. . . - acf^{csa + Jj3Saj3)^ = [c^ - c,) {c, - c,), ab[Ya^y

= (cs - C2) (C2 - Ci), - aci-\cia + J/3Sa/3)' = (ci - C3) (cg - c^).

(8.) As regards the second transformations, XYII. and XYIII., it is easy

to prove that we may write,

XXY. . . (C3 - c,)a' = b^a^ - aa, {c^ - cOjS' = «a/3a - 6^,
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XXYI. . . - (Cs - C,y = {b(5afi - aaf = {aa(ia - b(5y

;

SO that we have the following equation,

XXVII. . . {a[Vap)' + b{^(5pY) {a' + 2abS.{a(5y + b')

= a(V(Jj3ai3 - aa)pY + b{S{aa(ia - J^)/))',

which is true for any vector p, any two unit lines a, j3, and any two scalars a, b.

(9.) Accordingly it is evident from (4.), that oi, ag must be the bisectors

of the angles made by a, a, and also of those made by j3, j3'; and the

expressions XXY. may be thus written (because b - a = Ci + Cs),

XXVIII. . . (C3 - ci)a' = (C3 + c,)a + 25j3Sa/3, {e, - C3)/3' = (ci + c,)(i - 2aa^a(i
;

whence, by XXIII., we may write,

XXIX. . . a + a = 2«;ai, a — a = 2za3
;

so that a I bisects the internal angle, and as the external angle, of the lines a, a.

(10.) At the same time we have these other expressions,

XXX. . . (Ci - Ca) (jS + jSO = 2(c,|3 - aaSajS), [c, - C,) {(5 - (i') = 2(^3)3 - flaSa^) ;

which can easily be reduced to the simple forms,

XXXI. . . i3 + /3' = 2x'ai, ^ -
i3'

= 2/a3,

with the recent meanings of the coefficients x^ and z\

(11.) And although, for the sake of obtaining real transformations, we

have supposed (comp. III.) that

XXXII. . . {cf' - a') {cf' - cf') > 0,

because the assumed relation a = xai + 203 between the three unit vectors

00x03, whereof the two latter are rectangular, gives .c'^ + s^ = 1, as in IX., so

that each of the two expressions VI. involves the other, and their comparison

gives the ratio,

XXXIII. . .x':z'= {cr - ef') : {cf' - cf'),

yet we see that, without this inequality XXXII. existing, the foregoing

transformations hold good in an imaginary (or merely symbolical) sense : so

that we may say, in general, that the functions Bp^p and ^oP can be brought
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to the forms I. and II. in six distinct tcays, whereof two are real, and the/oM)'

others are imaginary.

(12.) It may be added that the first equation XXII. admits of being

replaced by the following,

XXXIY. .,-^,p = - ber{c^(5 - aaSajSj S(ci/3 - naSaft)p,

with a corresponding form for \p3p ; and that thus, instead of XXIF., we are

at liberty to write the expressions,

XXXV. . . ai = U(C:j3 - «aSaj3), a, = UYajS, a, - V{e,(5 - r/aSajS),

for the rectangular unit system, deduced from I. or II.

359. If we call, as we naturally may, the expressions

I. . . <Pop = CiOiSoip + ^202802/0 + CsasSoajO, 357, V .,

and
II. . . Sp<f>p = ci^a^pY + C,{Sa,py + C,{Sa3p)\ 357, VIII.,

the Rectangular Transformations of the Functions (ji^p and Spfp, then by

another geometrical analogy, which will be seen when we come to speak

briefly of the theory of Surfaces of the Second Order, we may call tlie

expressions,

III. ..<j>j> = gp+ YXpfi, 357, XIV.,

and
IV. . . Sp<{>p = gp' + ^\pnp, 357, II.,

the Cyclic* Transforniationa of the same two functions ; and may say that the

two other and more recent expressions,

V. . . ^o|0 = - ««Vap + iiSSjSp, 358, II.,

and
VI. . . 8p<l>p

= a(Vapy + b{S(ipy, 358, I.,

are Focalf Transformations of the same. We have already shown (357) how

to exchange rectangular forms with cyclic ones ; and also (358) how to pass

from rectangular expressions to focal ones, and reciprocally : but it may be

worth while to consider briefly the mutual relations which exist, between

cyclic and focal expressions, and the modes of passing from either to the other.

* Compare the Note to Art. 357.

t It will be found that the two real vectors a, a, of 358, are the two realfocal lines of the real or

imaginary cone, which is asymptotic to the ttvrface of the second order, Sp<(>p = const.



536 ELEMENTS OE QUATERNIONS. [III. ii. § 6.

(1.) To pass from lY. to YI., or from the cyclic to the focal form, we

may first accomplish the rectangular transformation II., with the values 357,

XX., and XXI., of Ci, <?2, C3, and of ai, a^, as, the order of inequality being

assumed to be
YII. . . C3> Cz> Ci, as in 357, IX.

;

and then shall have (comp. 358, XY.) the following expressions

:

YIII. . . 4Sp<pp = [S. p{c,\V\ - Vn) + C3^(UX + TJ^) )
}^

- {Y. p{c,\m + Vfi) + cHV\ - TJiu) )
}^

;

Ylir. . . iBp<pp = -{S.p{{- c,f (UX -TJp) + (- c,f (UX +Vfi))y

+ {V.jo((- c,)i (UX + Vp) + (- c,f (UX -VpW

IX. ..{c- c,f Sp^p = {Y. p(c3^ YX^ + (- c,f {XTfi + fiTX))}'

+ {S . p{{- c,f YXp - c,i {XT^i + fxTXW;

X. . . (c, - ^0^ ^P<l>P = - {V. P((- c^)^ VX;x + c,i {XTp - pTXW
- {S . p{-ciYXfi + {-c,f (XT^ -^TX))}^

;

in which it is to be remembered that (by 357, XX.),

XI. . . Ci = - g - TXp, C2 = - g + SX/x, C3 = - g + TXp.

;

and of which all are symhoUcally true, or give (as in lY.) the real value

gp^ + BXppp for ^p(pp, if g, X, p, p be real. And in this symbolical seiise,

although they have been written down as four, they only count as three

distinct focal transformations, of a given and real cyclic form ; because the

expression YIIF. is an immediate consequence of YIII. ; and other formulse

IX'. and X'. might in like manner be at once derived from IX. and X.

(2.) But if we wish to confine ourselves to realfocalforms, there are then

four cases to be considered, in each of which some one of the four equations

YIII. Ylir. IX. X. is to be adopted, to the exclusion of the other three.

Thus, if

XII. . . C3> Ci> Ci> 0, and therefore cf^ > Cj"^ > Cs"^ > 0,

the form YIII. is the only real one. If

XIII. . . Ci> c.,> > Ci, C2~^ > cf^ > > Ci-\ then X. is the real form.

If XIY. . . C3 > > Cg > Ci, cf^ > > Ci~^ > ci\ the only real form is IX.
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Finally if XY. . . > C3 > Cj > Ci, > Cx'^ > c{-^ > ci\

that is, if all the roots of the cubic J/q = be negative, then YIII'. is the form

to be adopted, under the same condition of reality.

(3.) When all the roots c are positive, or in the case when YIII. is the

realfocalform, the unit lines a, (i in VI. may be thus expressed :

XYI.

with b = Ci - C2 -\- C3 as before (358, lY.).

(4.) In the same case YIII., the expressions for 4Sp^/t) may be written

(comp. 358, XYI.) under either of these two other realforms :

XYII. . . iSp(pp = N{ (C3^ + ci*) p.VX+ (c3^ - c,^) Vfi.p};

XYir. . . 4Sp<pp = N{(C3^ + c,^) VX.p+ {c.} - c,^) p.Vfx};

so that if we write, for abridgment,

XYIII. ..lo-h (^3^ + ^i*)UA, Ko = i {ej^ - cj^) Ufi,

we shall have, briefly,

XIX. . . Sp(pp = N(tojO + PKq) = "Nipio + Kop).

(5.) Or we may make

XX. . . t = i (ci"* + C3"')UA, K = t (ci"* - ci^)Vfx, whence k' - i^ = crM

;

and stall then have the transformation,

XXL ..S(0^io = N'4^,

which may be compared with the equation 281, XXIX. of the ellipsoid, and

for the reality of which form, or of its two vector constants, i, k, it is necessary

that the roots c of the cubic should all be positive as above.

(6.) It was lately shown (in 358, (8.), &c.) how to pass from a given and

realfocalform to a second of the same kind, with its new real unit lines a, j3'

in the same plane as the two old or giveit lines, a, /3 ; but we have not yet

Hamilton's Elements of Quaternions. 3^
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shown how to pass from a focal form to a cyclic one, although the converse

passage has been recently discussed. Let us then now suppose that the /orm

YI. is real and given^ or that the two scalar constants a, h, and the two unit

vectors a, /3, have real and given values ; and let us seek to reduce this

expression VI. to the earlier form lY.

(7.) We might, for this purpose, begin by assuming that

XXII. . . cf^ > cf > ci\ as in 358, III.

;

which would give the expressions 358, XXI. and XXII., for ^162^3 and 010203,

and so would supply the rectangular transformation, from which we could pass,

as before, to the cyclic one.

(8.) But to vary a little the analysis, let us now suppose that the given

focalform is some one of the four following (comp. (1.)) :

XXIII. . . Sp0^ = (S/3o|o)^ - (Yoop)^ ; XXlir. . . ^p^p = [Ya^pY - {^M';

XXIY. . . Spcpp = {Sji^py + (Va,pY ; XXIY'. . . Sp<i>p = - {Ya^pY - {^(3,pY ;

in each of which Oq and /3o are conceived to be given and real vectors, but not

generally unit lines ; and which are in fact the four cases included under the

generalform, a{YapY + b{S(5pY, according as the scalars a and b are positive

or negative. It will be suflficient to consider the two cases, XXIII. and

XXIY., from which the two others will follow at once.

(9.) For the case XXIII. we easily derive the real cyclic transformation,

XXY. . . Bpcpp = {SM' - (Soop)^ + a,y

= S(/3o + ao)/o. S(/3o - Oo)jO + OoV
= gp"^ + BXpfip = {g - ^Xfx)p^ + 2SXp.Sfip,

where

XXYI. . . X = /3o + oo, fx = i(/3o - oo), g = i(ao' + i3o')

;

and the equations 357, (9.) enable us to pass thence to the two imaginary

cyclic forms.

(10.) For example, if the proposed function be (oomp. XIX.),

XXYII. . . Sp0p = Nf/o/> + /OKo) = (S(,o + K,]pY - (Y(/o - K,)pf,

we may write

"0 = k - fo» /3o = <o + Ko> X = 2to, fx = Kqj g = Iq^ + Kq^
;
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and the required transformation is (comp. 336, XI.),

XXVIII. . . N(,op + pK-„) = {lo' + Op' + 2S(o|tiKo|0.

(11.) To treat the case XXIV. by our general method, we may omit

for simplicity the subindices o> and write simply (comp. V. and VI.) the

expressions,

XXIX. . .<f>p
= - aVap + i3S/3/o, and XXX. . . Sp<pp = [YapY + {S^pf ;

in which, however, it is to be observed that a and /3, though real vedorsy are

not now unit lines (8.). Hence, because - ciYap = aSap - a^p, we easily form

the expressions

:

XXXI. . .m = a^(Sai3)% m' = 0^(0^ - jS^) - (Sai3)^ m" = |3^ - 2a'
;

(^Pp
= Ya(5S(5ap - a\aYap + (dY(ip) + a'p

XXXTI. . . J = Va;o/3Sa]3 + a{a' - (i')Sap,

ixp = -(aSap + /3S/3p) + (/3^-«>;
and therefore

XXXIII. ... if = (c - a') (c^ + (i3^
- a')c - {8a(5Y),

and

XXXIV. . . ^p = Yap(5Sa(5 + {(5' - a'] [cp - a^ap) - c{aSap + l5S(5p) + c'p

= (a(a^ - (5' -c)+ /3S«/3)Sap + (aSa/B - fi3)S/3|0 + [c' + (j3' - 0^)0 - (Saj3)^)jo.

(12.) Introducing then a real and positive scalar constant, r, such that

XXXV. . .r'={a'- (5J + 4(Sa/3)' = {a' + fty + 4(Vai3)^

= a* + {a(5y + i^aY + j3* = a* + 2S . (aj3}^ + (5'

= a\a' + (ial5f = (^-'{(i' + a(5af = &G.,

in which (by 199, &c.),

S . (a/3)' = {8a(iY + (Va/3)^ = 2{Sa(5Y " «'/3' = 2(Vai3j' + a'ii\

the roots of ilT = admit of being expressed as follows :

XXXVI. . . Cx = Ua' - /3' + r'), c, = a^ c, = i(a' - /S^ - r')
;

and when they are thus arranged, we have the inequalities,

XXXVII. . . ci > > C3 > C2, cf' > > a' > Cs'K

3 z 2
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(13.) The corresponding forms of ^p are the three monomial expressions,

XXXYIII. . .

,^3jO = cf^aCi + j3Sa/3) S(aCi + (5Sap)p
;

which may he variously transformed and verified, and give the three follow-

ing rectangular vector units,

XXXIX. . . ai = Cr(aC3 + i3Sa/3), a^ = UVajS, as = U(aC. + (5Sa(5)
;

in connexion with which it is easy to prove that

j' T(aC3 + ^SajS) = (- c,)i (Ci - c,)h (ci - c^)i = r {c, - c,f (- c^)\

XL. . . - TYajS = {Cy - c.)h [c, - c^)^
;

t T(aCi + j3Sa/3) = Ci4(c3 - C2)i (ci - Cs)* = r{cz- Ci)^ Cii ;

the radicals heing all real, by XXXVII.
(14.) We have thus, for the given focalform XXX., the rectangular trans-

formation,

XLI. . . S/o^p = (VapY + (S/3|o)^

^ c,{8{ac, + (iSaft)pY c,{^a(5pY ^ ^3(8(0^. + i3Saj3)p)^

- ^3(^1 - Cz)^'^ (ci - C2) (C3 - C2) Ci(c3 - C2)r^

or briefly,

XLII. . . Sp,f>p = (VapY + {S(ipY = Ci(S .pU(aC3 + (5Sa(i)pY

+ a^(S . pVYa(5Y + C3(S . pV{aC, + jSSajS))^

;

in which the first term is positive, but the two others are negative, and Ci, C3

are the roots of the quadratic,

XLIII. . .0 = c'+{(5'- a')c - (Sa/3)^

(15.) We have also the parallelisms,

XLIV. . .aCs + ^Saj3
II
^C, - aSaj3, aC, + /BSajS || /Sca " aSaj3,

because

c,C3 = - (Saj3)^

;

and may therefore write,

XLV. . . ^p<f>p = (Vapf + {S^pf = c.(S . pU(/3c, - aSaj3))'

+ a\S . pUV«i3)^ + C3(S . pU(i3c3 - aSajS))^ ;
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while

XLYI. . . T(i3ci - aSajS) = rcii(ci - c,)i, T{ftos - aSa/3) = r (- c^)i {c, - c,)i,

and r = [ci - Cs)*, with real radicals as before.

(16.) Multiplying then by r*(TVa/3)', or by (ci - d) (ci - Cs) (cj - C2), we

obtain this new equation,

XLYII. . . (Ci - C3) {(TYajS)' ((V«p)^ + (SjSp)^) - a^SafipYl

= (C3 - a') (C:Sj3p - Sa/3Sa|o)^ - (c, - a'') (CaS/Sp - aSajSj' ;

which is only another way of expressing the same rectangular transformation

as before, but has the advantage of being freed from divisors.

(17.) Developing the second member of XLYII., and dividing by Ci - Ca,

we obtain this new transformation :

XLYIII. . . {TYapy^pi>p = - (Va(5y {(VapY + (SjSp)^)

= a'{Sa[5py - (SajS)' (Sa/))» + 2a^Sai3Sa|t>S/3/> + C{^M ;

in which we have written for abridgment,

XLIX. . .0 = CiCi - a^{ci + C3).

(18.) The expressions XXXYI. for Ci, C3 give thus,

L...C=-a*-(Ya/3)»;

and accordingly, when this value is substituted for C in XLYIII., that

equation becomes an identity, or holds good for all values of the three vectors.

Of ^, p ; as may be proved* in various ways.

(19.) Admitting this result, we see that for the mere establishment of

the equation XLYII., it is not necessary that Ci and Cj should be roots of the

particular quadratic XLIII. It is sufficient, for this purpose, that they

should be roots of any quadratic,

LI. . . c' + ^c + 5 = 0, with the relation LII. . . -ia^ + -B + a* + (Yaj3)' = 0,

between its coefficients. But when we combine with this the condition of

rectangularity, as ± oi, or

LIII. . . = S . (C,j3 - aSajS) (63/3 - aSa/3) = ^(Sa/3)^ + 5/3^ + a\^a^)\

* Many such proofs, or verifications, as the one here alluded to, are purposely left, at this stage,

as exercises, to the student.
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we obtain thus a second relation, which gives definitely, for the two coefficients,

the values,

LIT. . .A==fi'-a\ JB = - (SajS)^

;

and so conducts, in a new way, to the equation XLIII.

(20.) In this manner, then, we might have been led to perceive the truth

of the rectangular transformation XLYII., with the quadratic equation

XLIII. of which Ci and c, are roots, without having previously found the

cubic XXXIII., of which the quadratic is a factor, and of which the other

root is (?2 = a^ But if we had not employed the general method of the present

Section, which conducted us to form first that cubic equation, there would

have been nothing to suggest the particular form XLVII., which could thus

have only been by some sort of chance arrived at.

(21.) The values of oioaaa give also (comp. 357, YIL),

IjV...-p'={S. pU(i3ci - aSajS))^ + (S . pVYajiy + (S . pV{(5c^ - aSa/3))^
;

that is, by XL. and XLVL,

LYI. . . c^c,{c, - c) {p'{Yai5y - i^aidpf) = c,{c, - a') {c^fip - SajSSap)^

- C^{c^ - a') (CsS/Sp - SajSSap)^ ;

and accordingly the values XXXYI. of Ci, c^ enable us to express each-

member of this last equation under the common form, - 6163(^1 - c^)

(aSj3p - j3Sa/o)^

(22.) Comparing the recent inequalities Ci> C3 > c^ (XXXYII.) with the

arrangement 357, IX., we see, by 357, (6.), that for the real cyclic trans-

formation (6.) at present sought, the plane of X, fx is to be perpendicular to

as (and not to at, as in 357, (3.), &c.). We are therefore to eliminate

(csSjSio - Saj3Sa|t>)' between the equations XLYII. and LYI., which gives

(after a few reductions) the real transformation:

LYIL . . ((Sa/3j^ - c.jS'^) {{YapY + {^(5pf)
- (Ci - a') (S«^)y

= (ciSjSiO - SejSSap)^ - C,{Sa(3py

= S . p{c,(i - aSaj3 + Ci*Yai3) S . p{c^(5 - aSajS - d^YajS) ;

which is of the kind required.

(23.) Accordingly it will be found that the following equation,

LYIII. . . ((SajS)^ - C/3S (Vapf +{c- a') {ci^(5pY - p'^ia^f)

= (cSjSp - Ba(5Sapf - c(Sa/3p)%
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is an identity^ or that it holds good for all valuer of the scalar 6', and of the

vectors a, /3, /o ; since, by addition of c(Val5')-p^ on both sides, it takes this

ohviously identical form,

LIX . . ((Saj3)^ - c/3^) [^apY + c{c - a') (SjS^)^ = {c^^p - S«/3Sap)^

- c(nSj3p - |3Sa|of ;

SO that if Ci he either root of the quadratic XLIII., or if Ci(ci - a^) = (SajS)''

- Cl|3^ the tramformulion LYII. is at least symhoHcally valid : but we must

take, as above, i^xQ positive root of that quadratic for Cj, if we wish that trans-

formation to be a real one, as regards the constants which it employs. And

if we had happened (comp. (20.)) to perceive this identity LIX., and to see

its transformation LYIll., we might have heen in that way led to form the

quadratic XLIII., without having previously formed the cubic XXXIII.

(24.) Already, then, we see how to obtain one of the two imaginary cyclic

transformations of the given focalform XXX., namely by. changing Ci to Cz in

LYII. ; and the other imaginary transformation is had, on principles before

explained, by eliminating {QafipY between XLYII. and LYl. ; a process

which easily conducts to the equation,

LX. . . {YapY + {S(5pY + ay = (c, - c,)-'{cr{cS(5p - SafiSapY

-Cf%S(ip-Sa^SapY),

where the second member is the sutn of two squares (ci being > 0, but Cs < 0),

as the second expression LYII. would also become, if Ci were replaced by Ci,

Accordingly, each member of LX. is equal to {SapY + {^ftpY, if Ci, Cs be the

roots of any quadratic LI., with only the one condition,

LXL . .c,c, = B = -{8a^y;

which however, when combined with the condition of rectangularity LIIL,

suffices to give also -4 = j3* - a", as in LIY., and so to lead us back to the

quadratic XLIII., which had been deduced by the general method, as a

factor of the cubic equation XXXIII.

(25.) And since the values XXXYI. of Cj, c^ reduce, as above, the second

member of LX. to the simple form i^apY + {^fipY> we may thus, or even

without employing the roots Ci, c^ at all, deduce the following expression for

the last imaginary cyclic transformation :

LXII. . . Sp<pp = {Yapf + {S(5pf = - «y + S(a + J~l(i)p . S(a - J^l(5)p,
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where J - 1 is the imaginary of algebra (comp. 2 14, (6.)) ; while the real scalar

r* of XXXV. may at the same time receive the connected imaginary form^

LXIII. . .
>•* = (a^ - ^y + 4(Sai3)^ = (a + J[~\^Y (« " J^i3)^

(26.) Finally, as regards the passage from the given form XXX., to a

second realfocalform (comp. 358, (4.)), or the transformation,

LXIV. . . {Napf + (Sj3p)^ = (Va'pf + (S/3»^

in which a and /3' are real vectors, distinct from ± a and ± j3, but in the

same plane with them, it may be sufficient (comp. 358, (8.)), to write down

the formulae

:

LXY. . . r^a' =-{a' + /3a|3), r^j3' = - (jS' + ajda),

with the same real value of r'^ as before ; so that (by XXXY., &c.) we have

the relations,

LXVL . . Ta' = Ta, Tj3'=Tj3, Sa'i3'=Sai3;

' r'{a + a') = a{r'-a' + (5') - 2j3So/3 = - 2{aC^ + /3Sa^) || a,,

y{a - a') = a{r' + a' ~ j3^) + 2/3Sa^ = 2(aC, + j3Sa/3) || a, ;

r'{fi + (5') = fi{r' + a' - j3^) - 2aSa^ = 20^^ - aSa/3) || a.,

LXVII.

LXVIII.
r\li - /3') = j3(r2 -a' + j30 + 2aSai3 = - 2(/3c3 - aSajS) || Os-

(27.) We have then the identity,

LXIX. . . (V(a^ + (iai5)py + (S(i3^ + afia)p)'

= {a^ + 2S.{a(5y + (i^){{YapT^{S(ipr);

with which may be combined this other of the same kind,

LXX. . . - (V(a^ - (ia(5)pf + (S(3' - a(3a)py

= [a^ - 2S . (a/3)^ + /30 {-(VopY + {S(3py),

which enables us to pass from the focal form XXIII., to a second real focal

form, with its two new lines in the same plane as the two old ones : and it

may be noted that we can pass from LXIX. to LXX., by changing

a to a J - J

.
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360. Besides the rectangular, cyclic, and focal transformations of Sjo^jO,

which have been already considered, there are others, although perhaps of

less importance : but we shall here mentiun only two of them, as specimens,

whereof one may be called the Bifocal, and the other the Mixed Trans-

formation.

(1.) The two lines n, a, of 359, LXY., being called focal lines* an

expression which shall introduce them both may be called on that account a

bifocal transformation.

(2.) Eetaining then the value 359, XXXV. of r*, and introducing a new

auxiliary constant e, which shall satisfy the equation,

I. . . i3'
- a^ = r% and therefore IT. . . 4(Sa|3)^ = ^"(1 - e^),

so that

III. . . ^e\^a^y - (1 - e") (j3^ - a')\

the first equation 359, LXV. gives,

IV. . . r'iea - a') = 2/3Sai3, V. . . r\e^ap - Sa'p) = SSajSSjS/o
;

and therefore, with the form 359, XXX. of S/)^/>,

VI. . . (1 - e^)Sp^p = (1 - e')
(
[Yapy + (S/3p)^)

= (1 - e') (VapY + (eSap - Sa>j^

= {e' - l)ay + {SapY - 2eSapSa'p + (Sa»^
;

in which a^ = a'^ by 359, LXVI., so that a and a may be considered to

enter symmetrically into this last transformation, which is of the bifocal kind

above mentioned.

(3.) For the same reason, the expression last found for S/o^/> involves

again (comp. 358) six scalar constants; namely, e, Ta(= Ta'), and the four

involved in the two unit lines, Ua, Ua'.

(4.) In all the foregoing transformations, the scalar and quadratic

function ^p(pp has been evidently homogeneous, or has been seen to involve no

terms below the second degree in p. We may however also employ this

apparently heterogeneous or mixed form,

VII. . . ^p^p = g'{p - iY + 2SX{p - K)Sp{p -Kj + e;

* Compare the Note to Art. 359 [p. 535].

Hamilton's Elements of Quaternions. 4A
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in which g\ X, \i have the same significations as in 357, but e, £, ^ are three

new constants, subject to tlie two conditions of homogeneity,

VIII. . . /e + X^fiZ + ii^\Z, = 0,

and
IX. . . g'e' + 28\ZSfxt: + e = 0,

in order that the expression YII. may admit of reduction to the form,

X. . . Sp^p = g'p' + 2^\p^iip, as in 357, IF.

(5.) Other general homogeneous transformations of ^p(f)p, which are them-

selves real, although connected with imaginary* cyclicforms (comp. 357, (7.)),

because a sum of two squares of linear and scalar functions is, in an imaginary

sense, a product of two such functions, are the two following (comp. 357, (9. jj

:

XI. . . ^p<i>p
= gp"" + SX/>/X(0 = g.p" + [^XipY + {^hipY ;

XII. . . ^ptpp = gp^ + SXpiup = gzp^ - {SXapy - i^fispy ;

in which (comp. 357, (2.) and (8.)),

XIII. . . gi = g + TXju = - Ci, g3 = g - TXju = - Ca,

XIV. . . Xi = YXfi{T\fi - SX/x)-^ nr = (XT^ + /uTX) (TX/x - SX/^)-^

and

XV. . . X3 = Y\fi{TX^ + ^XfxYK iU3 = (XT^ - /uTX) [TXfx + BXfi)-^ ;

so that gi, X,, jui, and gs, X3, jua are real, if g, X, ju be such.

(6.) "We have therefore the two new mixed transformations following :

XVI. . . Sp^p = gAp - e,y + (SXi(p - Ki)Y + (S^i(/a - ^0)^ + e,
;

XVII. . . ^p<i>p = g^ip - e,Y - {^Mp - Z^)Y - (SiU3(/o - ^3))'' 4 ^3

;

with these two new pairs of equations, as conditions of homogeneity,

XVIII. . . g,e, + XSKX + iUiS^,/i. = 0,

XIX. . . g,e,' + (S^.XO^ + (S^,//,)' + ^1 = 0,

and
XX. . . ^363 - XsS^aXs - /i3S^3i"3 = 0,

XXI. . . g,e^ - (8^3X3)^ - (8^3^^ + ^3 = 0.

• Xi + v/ - 1 1X1, and M ±\/ - I /a3, may here be said to be two pairs of imaginary cyclic

normals, of that real surface of the second order, of which the equation is, as before, S/x^p = const.

Compare the Notes to pages 527, 534.
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361. We saw, in the sub-articles to 336, that the differential, d/p, of a

scalar function of a vector^ may in general be expressed under the form,

I. . . d/p = «Si/d|0,

where v is a derived vector function, of the same variable vector p, and n is a

scalar coefficient. And we now propose to show, that if

II. . . fp = ^p^p,

<pp still denoting the linear and vector function which has been considered

in the present Section, and of which <pop is still the self-conjugate part, we

shall have the equation I. with the values,

III. . . n = 2, V = 00/0 ;

so that the part <pop may thus be deduced from <j)p by operating with |dS . p,

and seeking the coefficient of dp under the sign S. in the result : while there

exist certain general relations of reciprocity/ (comp. 336, (6.)), between the

tico vectors p and v, which are in this way connected, as linear functions of

each other.

(1.) We have here, by the supposed linear form of ^p, the differential

equation (comp. 334, VI.],

IV. . . d(j}p = (pdp
;

also

&>{dp
.(f>p) =S{^p.dp), and 8{p . <pdp) ^ S{4>'p .dp)

;

hence, by 349, XIII., we have, as asserted,

V. . . dSptftp = S(0/> + (^'p)dp = 2S . (popdp.

(2.) As an example of the employment of this formula, in the deduction

of 00/0 from 0p, let us take the expression,

VI. . . 0p = 2/3Sa|0, 347, XXXI.,
which gives,

VII. . .fp = Spi>p = SSapS/B/o,

and therefore

VIII. . . dfp = 2S(/3Sa|t> + aS/3p)djo.

Comparing this with the general formula,

IX. . . -^dfp = Si'djO = S . (popdp,

4 A 2
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we find tliat the form VI. of (ftp has for its self-conjugate part,

X. . . V = (Pop = JS(/3Sajo + aS/3/o)
;

and in fact we saw (347, XXXII.) that this form gives, as its conjugate, the

expression,

XI. - . <j)^p = 2aS|3jO.

(3.) Supposing now, for simplicity, that the function is given, or made,

self-conjugate, by taking (if necessary) the semisum of itself and its own

conjugate function, we may write ^ instead of 0o, and shall thus have,

simply,

XII. . . V = (/.p, XIII. ..//> = 8vp, XIY. . .dfp = 2Svdp
;

whence also (comp. 348, I. II.),

XV. . . p = (p-'v = m-'^pv, and XVI. . . Svdp = Spdv.

(4.) Writing, then,

XVII. . .Fv = Si/0-V = m-'SvxPv,

we shall have the equations,

XVIII. . . Fv =fp, XIX. . .dFv = 2Spdv = 2S . <p-'vdv
;

so that p may he deduced from Fv, as v teas deducedfrom fp ; and generally, as

above stated, there exists a perfect reciprocity of relations, between the vectors

p and V, and also between their scalar functions, fp and Fv.

(5.) As regards the deduction, or derivation, of v from/p, and of p from

Fv, it may occasionally be convenient to denote it thus :

*

XX. . . V = i(S . dpY'dfp ; XXI. . . p = i(S . dv)-'dFv
;

* [Hamilton suggested the notation q = (S.dp)-'d in page 291 of a paper published in the '*Pro-

ceedings of the Royal Irish Academy," vol. iii. On the same page he introduced the " more general

characteristic of operation,

. d . d , d

da; ay dz

in -which x, y, and z are ordinary rectangular coordinates," while i,j, and k are unit vectors parallel

to the coordinate axes. More recently < has been printed v, and in accordance with the notation for

partial differentiation used in the " Elements " v = i^x +iDy -I- ADz. Now ii p = ix +jy + kz, for

any system of rectangular axes,

Afp = [AxTix + AyDy + dzD,)/p = - Sdpv. fp.

Comparing this with d/p = ^Sydp, it is evident, as dp may have any direction whatever, that the

equation «j/ = — v. f{p) must be true. Hence it may be inferred that v is independent of any
particular set of coordinate axes.]
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in fact, these last may be considered as only symbolical transformations of the

expressions,

XXII. . . d/p = 2S(d^ . v), ^Fv = 2S(di; . p\

which follow immediately from XIY. and XIX.

(6.) As an example of the passage from an expression such as //o, to an

equal expression of the reciprocal form Fv, let us resume the cyclicform 357, II.,

writing thus,

XXIII. . . fp = Sp(j>p = gp^ + SXpfip,

and supposing that g, X, and p. are real. Here, by what has been already

shown (in sub-articles to 354 and 357), if tpp be supposed self-conjugate, as

in (3.), we have,

XXIY. . . v =
(i>p

= gp + YXpp
;

XXY. . .m={g- SXju) {g^ - XV') = - c^cc ;

XXYI. ..xpv= YXvpSXp - YXpSXvp - g{XSpv + pSXv) +g'v;*

and therefore

XXYII. . . mFv = BvxPv

= SXvuvSXp + {SXvpY - 2g^XvSpv + gW
= [g^ - X'p'y + X'iSpvf + iu^(SAv)^ - 2gSXvSpv

;

which last, when compared with 360, YI., is seen to be what we have called

a bifocalform : its focal lines a, a (360, (1.)) having here the directions of X, p,

that is of wliat may be called the cyclic lines f of the form XXIII. The cyclic

and bifocal transformations are therefore reciprocals of each other.

(7.) As another example of this reciprocal relation between cyclic and

focal lines, in the passage iromfp to Fv, or conversely from the latter to the

former, let us now begin with the focalform,

XXYIII. ..fp = Sp<f>p = (VapY + (S^p)^ 359, XXX.,

[Since y = ffp + xpp. — S\pix,

it follows that \vfji = g\p(i + A-V'^P - >^/^^^pfi = (^V* - ff'^)p + (? - Ajtt)S\/jjii + ffv.

From this Skv/m = {ff
- S\fi)S\pfi,

and, on suhstitution, equation XXVI. may at once be found, remembering that >|/ = w^-^]

t They are in fact (compare the Note to page 527) the ct/clic normals, or the normals to the

cyclic planes, of that surface of the second order, which has for its equation/p = const. ;
while they

are, as above, ilnQ focal lines of that other or reciprocal surface, of which v is the variable vector, and

the equation is Fv = const.
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in which a and /3 are supposed to be given and real vectors. We have now,

by 359, (11.),

r V = 0o = - aYap + j3Sj3,o, m = a'(Sa/3)%

XXIX. . .

I ^v = Vai;i3Saj3 + a{a' - li')Sav,

and therefore,

XXX. . .mFv = a'iSaj^YFv = Bvx^v

= Sai;i3vSaj3 + {a' - jS^) {SavY

= - i;^(Sa/3}^ + Sai;((a^ - /3')Sdv + 2Sa^Si3v)

= - .'^(SajS/ + Sai;S(a=' + j3aj3)i;,

an expression which is of ci/clic form ; one cyclic line of Fv being the greVew

focal line a of /|0 ; and the other cyclic line of Fv having the direction of

± (a^ + /3a/3), and consequently (by 359, LXY.) of + a, where a is the second

real and focal line of /p.

(8.) And to verify the equation XYIII., or to show by an example that

the two functions fp and Fv are equal in value, although they are (generally)

different inform, it is suflficient to substitute in XXX. the value XXIX. of v

;

which, after a few reductions, will exhibit the asserted equality.

362. It is often convenient to introduce a certain scalar and symmetric

function of two independent vectors, p and p, which is linear with respect to

each of them, and is deduced from the linear and self-conjugate vector function

(pp, of a single vector p, as follows :

I- • '/{pi p) = f{p\ p) = ^p'fpp = Sp^p'.

With this notation, we have

ll...fip + p')=fp + 2f{p,p')+fp';

lll...fip,p'^p')=f{p,p')+f{p,pl;

IV. . . f{p, p)^fp', V. . . dfp = 2fip, dp)
;

^^"'A^P,Vp)=^pAp,ph if Y^=Vy = 0;

and as a verification,

YU...f{xp)^c^fp,

a result which might have been obtained, without introducing this new
function I.
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(1.) It appears to be uiinecessary, at this stage, to write down proofs of

the foregoing consequences, II. to YI., of the definition I. ; but it may be

worth remarking, that we here depart a little, in the formula V., from a

notation (325) which was used in some early Articles of the present Chapter,

although avowedly only as a temporary one, and adopted merely for con-

venience of exposition of the principles of Quaternion Differentials.

(2.) In that provisional notation (comp. 325, IX.) we should have bad,

for the differentiation of the recent functionji^ (361, II.), the formulae,

^fp=f{pi^p)i f{pj p)i = '^^p^p\

the numerical coefficient being thus transferred from one of them to the

other, as compared with the recent equations, I. and V. But there is a

convenience now in adopting these last equations Y. and I., naniely,

d//> = 2/(p, dp), /(p, p) = S/5>p

;

because this function ^p<i>p, or 8p(j>p\ occurs frequently in the applications

of quaternions to surfaces of the second order, and not always with the

coefficient 2.

(3.) Retaining then the recent notations, and treating dp as constant, or

d'^jo as null, successive differentiation of/p gives, by lY. and Y., the formulae,

YIII. . . dYp = 2f{6p) ; dYp = ; &c.

;

so that the theorem 342, I. is here verified, under the form,

IX. . . eyp = (1 + d + id')fp ^fp + 2f(p, dp) +fdp ;

or briefly,

X...e%=f{p + dp),

an equation which by II. is rigorously exact (comp. 339, (4.)), without any

supposition whatever being made, respecting any smallness of the tensor, Tdp.

363. Linear and vector functions of vectors, such as those considered in the

present Section, although not generally satisfying the condition of self-conju-

gation, present themselves generally in the differentiation of non-linear but

vector functions of vectors. In fact, if we denote for the moment such a non-

linear function by w(p), or simply by wp, the general distributive property

(326) of differential expressions allows us to write,

I. . . da>(p) = ^(dp), or briefly, V. . . dwp = ^dp
;

wliere ^ has all the properties hitherto employed, including that of not being
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generally self-conjugate, as has been just observed. There is, however, as we

shall soon see, an extensive and important case, in which the property of

self-conjugation exists, for such a function ^ ; namely when the differentiated

function, (i)p, is itself the result v of the differentiation of a scalarfunction fp

of the variable vector p, although not necessarily a function of the second

dimension, such as has been recently considered (661) ; or more fully, wlien

it is the coefficient of djo, under the sign S., in the differential (301, I.) of

that scalar function /p, whether it be multiplied or not by any scalar constant

(such as n, in the formula last referred to). And generally (comp. 346),

the inversion of the linear and vector function in I. corresponds to"^ the

differentiation of the inverse (or implicit) function ur^ ; in such a manner that

the equation I. or I', may be written under this other form,

II. . . d(o-V = 0"^d(T = m"^;//do-, if a = wp.

(1.) As a very simple example of a non-linear but vector function, let us

take the form,

III. . . a = (t){p) = pap, where a is a constant vector.

This gives, if dp = p\

IV. . . ^p' = <p6.p = dwjo = p^ap + pap' = 2Ypap'
;

V . . . SX^jO = 2SA|oa|o' = Sjo'^'A

;

VI. . . 0'X = 2YXpa = 2Yap\y <p'p' = 2Yapp'
;

so that 0|o' and ^'p' are unequal, and the linear function cpp' is not self-

conjugate.

(2.) To find its self-conjugate part 0ojo', by the method of Art. 361, we
are to form the scalar expression,

VII. . . !//>' = iSp'<pp' = p"^8iip ;

of which the differential, taken with respect to p\ is

VIII. . . Wp' = S . 0o/>'d/>' = 2Sfl|oSp'dp', giving IX. . . <p,p' = 2p'^ap
;

and accordingly this is equal to the semisum of the two expressions, TV. and
VI., for ^p' and its conjugate.

(3.) On the other hand, as an example of the self-conjugation of the linear

and vector function,

X. . . di/ = dw/> = (pdp, when X'. . . d/p = 2Svd|o = 2S . uipdp,
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even if the scalar function^ be of a higher dimension than the second, let

this last function have the form,

XI. . .fp = ^^pQ'pQ^Pf ?) Q'y (l" being three constant quaternions.

Here
XII. . . V = wp = I'^iqpq'pq" + q'pfpq + q"pqp^) ;

xiiT. .
.
dv = 0dp = ^p' = WiqpVpq'' + qWVQ) + ¥^{<i'pfpq + q"pqpf}

^^-^{q"p'qpq'-^-qpq'pW')\
and

XIY. . . ^Mp' = iS . q'pf[\qp + pq\) + &c. = S|d>X
;

so that 0' = 0, as asserted.

(4.) In general, if S be used as a second and independent symbol of

differentiation, we may write (comp. 345, IV.),

XV. . . Ufq = dg/y,

where /g' may denote any function of a quaternion ; in fact, each member is,

by the principles of the present Chapter (comp. 344, I., and 345, IX.), an

expression for the limit*

XVI. . . lira. nn'[f{q + »-'d? + n'-^'^q) - f{q + «-^d.?) - f{q + n'-^^q) +fq].

(5.) As another statement of the same theorem, we may remark that a

first differentiation olfq, with each symbol separately taken, gives results of

the forms,

XVII. . . d/^ = /(?, dg) , ^fq = f{q, Sq)
;

and then the assertion is, that if we differentiate the first of these with S, and

the second with d, operating only on q with each, and not on dq nor on Bq,

we obtain equal results, of these other forms,

XVIII. . . Mfq =f{q, dq, dq) = /(?, Bq, dq) = ddfq.

For example, if

XIX. . .fq = qcq, where c is a constant quaternion,

* We may also say that each of the two symbols XV. represents the coefficient of x^y\ in the

development oi f{q + xi.q + ySj) according to ascending powers oi x and y, when such development
is possible.

Hamilton's Elements of Quaternions. 4 B
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the common value of these last expressions is,

XX. . . 8d/(? = d§/q=^q.c.dq + dq.c. Sq.

(6.) Writing then, by X.,

XXI. ..dfp = 2Swpdp, ^fp = 2^wp^p,

and
XXII. . . dwp = ^Sp, with dojp = (j)dp, as before,

we have the general equation,

XXIII. . . S(d,o . <l>Sp) = S(gp . <pdp),

in which dp and Bp may represent any two vectors; the hnear and vector

function, ^, which is t/nis derived from a scalar function fp by differentiation, is

therefore (as above asserted and exemplified) always self-conjugate*

(7.) The equation XXIII. may be thus briefly written,

XXIV. . .ScVgv = Sgpdr;

and it will be found to be virtually equivalent to the following system of

tliree known equations, in the calculus of partial differential coefficients,

XXV. . . DJ^y = J}yD,, T>yD, = D,Dy, D,D, = D,D,.t

* [If ?2 defined by the equation d/p = wSj/dp (361,1.)

is not a constant scalar but a function of p, the function
<f>

generally ceases to be self-conjugate. For

example, comparing d/p = 2Si'dp = 2J'(p)S^dp,

since dp is arbitrary, v = fiFip). Differentiating this again

df = (pdp = lu.dl' + dfj..F = fiS\Ap + edp . F,

if dF = SAdp, and d^ = eAp.

Here again, as dp is arbitrary, 6( ) = (^( )
- f^^H )

)-^"^

and the conjugate of e is e'{ ) = {<!>{)- A.S/i(
)
)F-^.

Hence the spin-vector of 9 is JVAm-F'S or ^Y\vF-^.

This vanishes only when F is some function of f(p), or a constant as may be easily verified, and in

this case is self-conjugate.]

t [In terms of the characteiistic of operation v, defined in the Note to page 548, it is easy to see

that

5d/p = - 5Sdpv./= SSpvSdpv./

= d5/p = - dS5pv./= SdpvSSpV./-

In the transformation of functions involving v, and operating on a single function /(p), or
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364. At the commencement of the present Section, we reduced (347) the

problem of the inversion (346) of a linear (or distributive) quaternion function

of a quaternion, to the corresponding problem for vectors ; and, under this

reduced or simplified form, have resolved it. Yet it may be interesting, and

it will now be easy, to resume the linear and quaternion equation,

I. . .fq = r, with II. . ,f{q + <i)
= fq ^fq',

and to assign a quaternion expression for the solution of that equation, or for

the inverse quaternion function^

III. . .q=f-^r,

with the aid of notations already employed, and of results already established.

(1.) The conjugate of the linear and quaternion function /g- being defined

(comp. 347, lY.) by the equation,

IV. . . ^pfq = Sqfp,

in which p and q are arbitrary quaternions, if we set out (comp. 347, XXXI.)
with the form,

V. . .fq = tqs + t'qs' + . . . = ^tqs,

in which s, s', ... and t, f, . . . are arbitrary but constant quaternions, and

which is more than sufficiently general, we shall have (comp. 347, XXXII.)

the conjugate form,

VI. . .fp = spt + s'pf + . . . = -Zspt
;

whence
VII. . ./I = ^ts, and VIII. . ./I = ^st

;

it is then possible, for each given particular form of the linear function /g*, to

assign one scalar constant e, and two vector constants, e, t, such that

IX. ../! = . + £, /l = e + 6';

f{ix +Jij + kz), V = iT>x +yDj, + kHz may be treated as an ordinary vector since D^, Dy, and D,
obey symbolically the ordinary laws of scalar multiplication as expressed by XXV.

Comparing Mfp = 2SSp(pdp = SdpvSSpv-/,

the vector function
<p[ ) = ^vS( )v-f,

since dp and Sp are both arbitrary. Of course V operates on/and not on the vector operated on by ^.

This expression for f shows again that it is self-conjugate. Again, as v/= - 2»/, <pi ) = - vS( )v,

and in this V operates on v and not on the subject of <^.]

i b 2



556 ELEMENTS OF QTJATEKNIONS. [III. ii. § 6.

and then we shall have the general transformations (comp. 347, I.)

:

X. . . S/? = S . qfl = e^q + Ss'?
;

XI. . . YA = Sq + Y./V^ - Sq + 0Y^ ;

and
XII. . .fq={e + e)8q + ^sq + <l>Yq ;

in which Seq = S . e'Yq, and ^Yg' or Y/Yq is a /mear and vector function of

Yg', of the kind already considered in this Section ; being also such that, with

the form Y. oifq, we have

XIII. . .<pp = ^Ytps*

(2.) As regards the numher of independent and scalar constants which enter,

at least implicitly, into the composition of the quaternion function /g, it may

in various ways be shown to be sixteen ; and accordingly, in the expression

XII., the scalar e is one ; the tico vectors, e and e', count each as three ; and

the linear and vector function, (fVq, counts as nine (comp. 347, (1.)).

(3.) Since we already know (347, &c.) how to invert a function of this

last kind ^, we may in general write,

XIY. . . r = Sr + Yr = Sr + ((>p, where XY. . . jO = ^~^Yr = m~^\pYr
;

the scalar constant, m, and the auxiliary linear and vector function, \p, being

deduced from the function <p by methods already explained. It is required

then to express q, or Sg and Yq, in terms of r, or of Sr and p, so as to satisfy

the linear equation,

XYI. . . (e + £)Sg + 8eq + ^Yg- = Sr + ^p

;

the constants e, e, e, and the form of 0, being given.

* [By a methocl analogous to that of the Note on page 507, if any three diplanar vectors $i, $2,

and jSs are chosen, any quaternion function fq may have its vector part resolved along these three

vectors, so that fq = /3ia;i + ^2x2 + ^sXs + Xi, in which the coefficients x are scalar functions of q,

and are moreover linear iifq is linear in q. So for a linear function,

/} = PiSpiq + fiiSpiq + fiiSpsq + Spiq,

and in this expression pi, p-i, ps, and pi are four constant quaternions involving sixteen scalar

constants and determining the function/. Denoting 8p by a, and Yp by a, on rearrangement,

fq = (/3iSoi + jSaSoa + fii^asjYq + (ai^i + a^fii + agPs + ai)Sq + SuiYq,

and this is manifestly of the type,

fq = (e+ e)Sq + St'q + <p\q.]
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(4.) Assuming for this purpose the expression,

XYII. . .q = q'+p,

in which q' is a new sought quaternion, we have the new equation,

XYIII. ..fq'=8r + <Pp -fp = S(r - £» ;

whence

XIX. . .g' = S(r -£»./-» J,

and

XX. . . ? = p + S(r - £» ./-^l

;

in which p is (by supposition) a known vectory and S(r - i'p) is a known scalar
;

so that it only remains to determine the unknown but constant quaternion, f~^l,

or to resolve the particular equation,

XXI. . . Ao = 1, in which XXII. . . jo = c + y = /"U,

c being a new? and sought scalar constant, and -y being a new and sought vector

constant.

(5.) Taking scalar and vector parts, the quaternion equation XXI. breaks

up into the two following (comp. X. and XL)

:

XXIII. . . 1 = S/(c + 7) = ec + S^V ; XXIY. . . =y/(c + 7) = £c + ^y ;

which give the required values of c and 7, namely,

XXV. . .c={e- 8e'<l>-U)-\ and XXVI. . 7 = - c^-'e

;

whence , _ , _i

XXYII. ../-! = -^^;

and accordingly we have, by XII., the equation,

XXVIII. . . /(I - 0-^e) = e - S£>-'£ = Y-'O.

(6.) The problem of quaternion inversion is therefore reduced anew to that

of vector inversion, and so/e^e^/ thereby ; but we can notv advance some steps

further, in the elimination of inverse operations, and in the substitution for them

of direct ones. Thus, if we observe that ^'^ = mr^\p, as before, and write for

abridgment,

XXIX. . . n = me - Sexpe = /{m - xpe),
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so that w is a new and known scalar constant^ we shall have, by XV. XX.

XXVII. XXIX.,

XXX. . .mp = ^pYr; XXXI. . . nf-'l =m-xPe;
and

XXXII. . . mnq = nipYr + (mSr - ^expYr) . [m - \pe),

an expression from which all inverse operations have disappeared, but which

still admits of being simplified, through a division by m, as follows,

(7.) Substituting (by XXIX.), in the terra n^pYr of XXXII., the value

me - Setpe for n, and changing (by XXX.) \pYr to 7>ip, in the terms which

axe not obviously divisible by m, such a division gives,

XXXIII. . .nq = {m - ;//£)Sr + ^Vr - Se^Yr + <t,

where

XXXIV. . . (T = - pSe'^Pe + ^Pe^ep = V. eYp^Pe.

But (by 348, VII., interchanging accents) we have the transformation,

XXXV. . . Yp^Pe = - <l>'Yei>p = - cp'YeYr,

because <pp = Yr, by XIV. or XV. ; everything inverse therefore^ again dis-

appears with this new elimination of the auxiliary vector p, and we have

this final expression,

XXXVI. . .nq = nf-'r = {me - Ss'xPe) .f-'r

= {m- xPe)Sr + e^pYr - St'^Vr - Ve^TeVr,

in which each symbol of operation governs all that follows it, except where a

point indicates the contrary, and which it appears to be impossible further to

reduce, as the formula of solution of the linear equation I., with the/orm XII.
of the quaternion function, fq*

* [The following solution is possibly more direct. Equating thie scalar and vector parts of

^, ^ ,.
/?=(«+ €)S? + Se'V? + ^\q = r = Sj- + Vr,

the two equations

e^q + %i'Yq = Sr, and e^q + ^V^ = Vj-

are found. Operating on the second equation by cj>-\ and replacing \q in the first. So is seen to be
given by

{e - Se>-' 6)S? = S>- - Se>-iVr.

^°^ ? = S? + V«? = (1 - <^-ie)S? + ^-iVr,
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(8.) Such having been the analysis of the problem, the synthesis, by which

an a posteriori proof oi the correctness of the resulting formula is to be given,

may be simplified by using the scalar value XXIX. of/(w - t/ze) ; and it is

suflficient to show (denoting Yr by to), that for every vector w the following

equation holds good, with the same form XII. of/:

XXXYII. . . /(4(u - Se';//w) - /V£>Tea> = {me - SexPe) . (u.

(9.) Accordingly, that form of / gives, with the help of the principle

employed in XXXY.,

( efdiio = elSe'-diu) 4- ww), - f^exLw = - (e + £)^t'\L(t),

XXXYIII. .

(
-/Yt>T6w = - 0Y£>'Yto> = Y(Yaw . ft') = eSe'i^io - wSt'^^e,

because Swi/z't' = Se'\poj, &c. ; and thus the equation XXXYI. is proved, by

actually operating with/.

(10.) As an example, if we take the particular form,

XXXIX. . .r = fq=pq + qp,
in which

XL. . , p = a +'a = & given quaternion,

we have then,

XLI. . . /I =/l = 2p, e = 2a, e = e' = 2a, </.|0 = 2afj ;

whence by the theory of linear and vector functions,

XLII. . . (p'p = 2ap, \pp = 4a-p, m = 8«',

and therefore,

XLIII. . .^Pe = 8«^rt, m - ^e = 8a^{a - a), n= 16a' {a' - a')
;

80 that, dividing by 8a, the formula XXXYI. becomes,

XLIY. . . 2a{a' - a')q = a{a - a)Sr + a'Yr - aS . aYr - aY. aYr,

or

XLY. . . 2a{a + a]q = aSr + {a + a)Yr - So/',

BO on substituting the value of Sj? just found,

^ (l-.^->e)(Sr-S.>-Wr) ^
e - Se>-^e

It only remains to replace <^-^ by m-^^p in order to recover XXXVI.]
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or

XLYI. . . 2pq%p = S . vKi) +pYr = rSp + Y{Yp .Yr),

or

XLYII. . . ipqSp = 2rBp + {pr - rp) = pr \ rKj9

;

or finally,

XLYIIT. . . ? = nr = "-^II'J^ =
r + Kp,rp-^

Accordingly,

XLIX. . . {pr + rKp) + {rp + Kp . r) = 2r{p + Kp) = 4rSp.

(11.) In so simple an example as the last, we may with advantage avail

ourselves of special methods ; for instance (comp. 346), we may use that which

was employed in 332, (6.), to differentiate the square root of a quaternion, and

which conducfed there more rapidly to a formula (332, XIX.) agreeing with

the recent XLYIII.

(12.) We might also have observed, in the same case XXXIX., that

Ij. . .pr-rp= p\ - qp" = 2Y(Y(jo^) .Y^) = 4Sp .Y(Yp .Y^) = 2Sp . {pq - qp) ;

whence pq - qp, and therefore pq and qp, can be at once deduced, with the

same resulting value for q, or iorf'^r, as before : and generally it is possible

to differentiate, on a similar plan, the n*^ root of a quaternion.

365. We shall conclude this Section on Linear Functions, of the kinds

above considered, by proving the general existence of a Symbolic and Biqua-

dratic Equation, of the form,

I. . . = w - «y+ ny - n"y^ +/S

which is thus satisfied hy the Symbol (/) of Linear and Quaternion Operation

on a Quaternion, as the Symbolic and Cubic Equation,

r. . . = m - w'0 + m''f - f, 350, I.,

was satisfied by the symbol (^) of linear and vector operation on a vector ; thefour

coefficients, n, n\ n'\ n"\ being four scalar constants, deduced from the function

/ in this extended or quaternion theory, as the three scalar coefficients m, m' , m"

were constants deduced from ^, in the former or vector theory. And at the

same time we shall see that there exists a System of Three Auxiliary Functions,

F, G, H, of the Linear and Quaternion kind, analogous to the tico vector

functions, xp and x, whicli liave been so useful in the foregoing theory of vectors,
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and like them connected with each other, and with the given quaternion

function/, by several simple and useful relations,*

(1.) The formula of solution, 364, XXXVI., of the linear and quaternion

equation /g- = r, being denoted briefly as follows,

II. . .ng = nf-'r = Fr,

so that (corap. 348, III'.) we may write, briefly and symbolically,

III. ..fF=Ff=n,

it may next be proposed to examine the changes which the scalar n and the

function Fr undergo, when/r is changed to fr + cr, or./' to/+ c, where c is

any scalar constant ; that is, by 364, XII., when e is changed to e + c, and

^ to + c ;
<l/, \p, and m being at the same time changed, according to the

laws of the earlier theory.

(2.) Writing, then,

IV. . . /c =/ + c, ec = e + e, ({,, = <p + c, (p'c = (f>'+ c,

and
V. . . i^c = ^ + ^x + c^, nic = m + m^c + m^'c^ + c',

we may represent the new form of the equation 364, XXXVI. as follows :

VI. . . ncfc-'r = Far, or VII. . . fcFo = tic
;

where
VIII. . . For = {me - i>ce)Sr + e^c^r - Se%Yr - Ye'<p'cYeYr,

* [That a linear quaternion function satisfies a symbolic quartic may be established as follows :

On inquiry whether it is possible to determine a scalar c and a quaternion q so that/g i cq = 0, the

two equations
{e + c)Sq + Se'V^ = 0, and Sq + {<p + c)Yq = 0,

are found by equating to zero the scalar and vecior parts. Hence from the second equation

V^ = — (<^ + c)"'eS^, and, on substitution in the first, it appears that c must satisfy the relation

e + e — Se'{tp + c)"'e = 0. It may be shown without difficulty, as in the text, that this leads to a

quartic equation in e.

If Cn is any root of this quartic, and ii a,, = - (<p + Cn)'^e, the quaternion qn = I + an will satisfy

(/+ Cn)qn = 0. Corresponding to the four values of c» are four quaternions, and in terms of these

any arbitrary quaternion may in general be expressed.

Assxuning

q = X\q\ + x-iq-i + z^qz + Xiqi,

and deriving from this the equations

Yq = 'SiXno.n, and S<? = "Zxn,

and again from these the equation

V^ — a\^q = 2:2(02 — ai) + X3{az — ai) + 2:4(04 - 01),

Hamilton's Elements of (Quaternions. 4C
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and

and
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IX. . . He = eonic - Sf^ce.

(3.) In this manner it is seen that we may write,

[III. II. § 6.

XT. . , n^ = n + n'c + n'^c^ + w'V + &
;

where F, G, H, are three functional symhoU^ such that

[ Fr = {m - ^£)Sr + ^Vr - ^^'^pYr - YE^'VeYr ;

XII. . AGr^ [m' - xejSr + [ex + ^)Yr - Se'xYr - Ye'YfYr

;

\llr = [m" - £)Sr + (e + x)Yr - StV
;

and w, n\ n'\ n"' are four scalar constants, namely,

( n=em- SeVe (as in 364, XXIX.)

;

n' = m + em' - Se'x^ >

w" = m' + em'^ - Se'c
;

n'" = m" ^e.

XIII. . .

the scalar x^, is given, on operating by SV(o2 - oi) (as - oi), by

a;4S(a2a304 - 030401 + 040102 — 010203) = SVy(o2a3 + 0301 + 0102) - 8^8010203,

and the values of the other scalars may be written down from symmetiy (comp. p. 48). In general

X\, X2, xz, and Xi are uniquely determinate provided the four vectors an do not terminate on a common
plane. As c varies, the curve traced out by p = — (cp + cy^e is a twisted cubic and upon tliis curve

the vectors an terminate, and consequently their four extremities do not lie on a plane.

To verify that p = — (^ + cy^e is a twisted cubic, tbe equation

Sa.(<^ + c)-'6 = 1, or SAtf'ce = nic,

is found determining the values of c for the points in which the curve cuts the arbitrary plane

Sxp + 1 = 0. As this is a cubic equation in c, the cuitc cuts the plane in but three points.

In general then

q = Xiqi + X2q2 + Xsqs + x^q^.

Operating on this by/+ ci, and

(/+ "i)? = X'iipi - C2)q2 + Xsioi - czjqz + Xi{ci - Cijqt,

from which qi has disappeared. Similai-ly operating by/+ C2 destroys the term in 5^2, and finally

(/+ Ci) if+c) (/+ C2) (/+ ei)q = 0,

which is equivalent to I.]
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(4.) Developing then the symbolical equation YII., with the help of X.

and XI., and comparing powers of c, we obtain these new symbolical equa-

tions (comp. 350, XYI. XXI. XXIII.)

:

XIY. ..\o=n:'-fH = n"- n"'f^p ;

\F=n' -fQ = n' - ny+ n"'p -/=»

;

and finally,

XV. ,.n=Ff^ny- n'T + n"'P -/*,

which is only another way of writing the symbolic and biquadratic equation I.

(5.) Other functional relations exist, between these various symbols of

operation, which we cannot here delay to develop : but we may remark that,

as in the theory of linear and vector functions, these usually introduce a

mixture of functions with their conjugates (comp. 347, XI., &c.).

(6.) This seems however to be a proper place for observing, that if we

write, as temporary notations, for any four quaternions, p, q, r, s, the equations,

XYI. . . [pq'] = 2)q - qp ; XYII. . . {pqr) = S .plqr] ;

XYIII. . . [pqr'] = {pqr) + [rq'jSp + lpr]^q + [qp]Sr
;

and

XIX. . . {pqrs) = ^'P\_qrs'\,

so that [pq] is a vector, {pqr) and {pqrs) are scalars, and [pqr] is a qua-

ternion, we shall have, in the first place, the relations :

XX. . . [pq] = - [qp], [pp] = ;

XXI, . . {pqr) = - {qpr) = {qrp) = &c., {ppr) = ;

XXII. . . [pqr] = - [qpr] = [qip] = &o., [ppr] = ;

and

XXIII. . . {pqrs) = - {qprs) = {qrps) = - [qrsp] = &c., {pprs) = 0.

(7.) In the next place, if t be any fifth quaternion, the quaternion equation,

XXIY. . . = p{qrst) + q{rdp) + r{stpq) + s{tpqr) + t{pqrs),

4C2
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which may also be thus written,

XXy. . . q{prst) = p[qrst) + r{pqst) + 8[prqt) + t{prsq),*

and which is analogous to the vector equation,

XXYI. . . = aSjSyg - jSSySa + ySgajS - SSajSy,

or to the continuallyf occurring transformation (comp. 294, XIV.),

XXVII. . . SSajSy = aSgjSy + (5^aBy + ySc/Bg,

is satisfied generally/, because it is satisfied for the four distinct suppositions,

XXVIII. ' . q = p, q = r, q = s, q = t.

(8.) In the third place, we have this other general quaternion equation,

XXIX. . . q[prst) = \_rst~\^pq - [stpl^rq + \tpr']^sq - [prs'l^tq,

which is analogous to this otherX useful vector formula (comp. 294, XV.),

XXX. . . gSajSy = VjSySag + VyaS/SS + VajSSyS ;

because the equation XXIX. gives true results, when it is operated on by the

four distinct symbols (comp. 312),

XXXI. ..S.i», S.r, S.s, ^.t.

[Or again as a determinant

p q r s t

X\ X% Xz Xi X6

yi }/2 y% yi ys

Z\ Z2 Zj Zl Zi

= 0,

Wl tV2 W3 Wi W5

if p = wi + ixi +jyi + kzi, &c.]

t The equations XXVII. and XXX., which had been proved under slightly different forms in the

sub-articles to 294, have been in fact freely employed as transformations in the course of the present

Chapter, and are supposed to he familiar to the student. Compare the Note to page 485.

X Compare the Note immediately preceding.
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(9.) Assuming then any four quaternions, p, r, s, f, which are not connected

by the relation,

XXXII. . . {prst) = 0,

and deducing from them four others, p', /, s', t', by the equations,

p\prst) =f{i'st\ r'(j)rst) = -f[sfp2f

,
s' (prst) =f [tpr'] , f (prst) = - flprs],

XXXIII. . .

in which/ is still supposed to be a symbol of linear and quaternion operation

on a quaternion, the formula XXIX. allows us to write generally, as an

expression for the function /g', which may here be denoted by g' (because r is

now otherwise used)

:

XXXIV. . .^=fq= p'^pq + r'^rq + s'^sq + f^tq
;

and its sixteen scalar constants (comp. 364, (2.)) are now those which are

involved in its fo\ir quaternion constants, p', /, s', t'.

(10.) Operating on this last equation with the four symbols,

XXXV. . . S . [r's't'l, S . [s't'p'\ S . [t'pV^, S . [^VV],

we obtain the four following results :

XXXVI I

^^'''''^'^ ^ {py^'n^PQ ;
{Q'sr/} = {r'srp^)^rq

;

'"{ i^i'py) = {s'fpy)Ssq
;

(q'/rV) = {tyrV)Stq
;

and when the values thus found for the four scalars,

XXXVII. . . Spq, Srq, Ssq, Btq,

are substituted in the formula XXIX., we have the following newformula of

quaternion inversion :

XXXVIII. . . (p'/sr) {prst)q = (p'rVf) (prst)f-'^

= [rsf] {qVsr) + [stp] {qVty) + [tpr] {^t'pW) + [prs] (?>V/)

;

which shows, in a new way, how to resolve a linear equation in quaternions,

when put under what we may call (comp. 347, (1.)) the Standard Quadri-

noniial Form, XXXIV.
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(11.) Accordingly, if we operate on the formula XXXYIII. with /,

attending to the equations XXXIII., and dividing by {prst), we get this new

equation

XXXIX. . . {pYs'qfq =/(gVs'0 - /{q'sYp') + syfpV) - ^($yrV)

;

whence

fq = q% by XXV.

(12.) It has been remarked (9.), that ;;, r, s, t, in recent formulae, may be

anp four quaternions, which do not satisfy the equation XXXII. ; we may
therefore assume,

XL. . . p = 1, r = ij s =j, t = k,

with the laws of 182, &c., for the symbols i,J, k, because those laws give here,

XLI. . . {lij-k) = - 2
;

and then it will be found that the equations XXXIII. give simply,

XLII. ../=/l, / = -A /=-//, f=-fk;

so that the standard quadrinomial form XXXIY. becomes, with this selection

of prst,

XLIIL ..fq=fl,^q-fi. &q -fj. Sjq -fk . 8^7,

and admits of an immediate verification, because ant/ quaternion, q, may be

expressed (comp. 221) by the quadrinomial,

XLIY. . . ^ = S^ - i^iq -j^jq - kSkq.

(13.) Conversely, if we set out with the expression,

XLY. . . q = w + ix +J1/ + kz, 221, III.,

which gives,

XLYI. ..fq = wf\-v xfi + yfj + zfk,

or briefly,

XLYII. . . e = aw + hx + cy \- dz,
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the letters abcde being here used to denote five known quaternions, while wxi/z

dire four sought scalars, the problem of quaternion inversion comes to be that of

the separate determination (comp. 312) of these four scalars, so as to satisfy

the one equation XLYII. ; and it is resolved (comp. XXY.) by the system of

the four following formulae :

[ wlahcd) = (ehcd) ; xiahed) = {aecd) :

XLVIII. . .

[y{ahcd) = (abed) ; z{abcd) = (abce)
;

the notations (6.) being retained.

(14.) Finally it may be sliown, as follows, that the biquadratic equation I.,

for linear functions of quaternions, includes* the cubic T., or 350, 1,, for vectors.

Suppose, for this purpose, that the linear and quaternion function, /g-, reduces

itself to the last term of the general expression 364, XII., or becomes,

XIAX. . . fq = <fYq, so that L. . . e = 0, £ = 6'=0, /1=/'1 = 0;

the coefficients «, n\ n'\ n" take then, by XIII., the values,

LI. . . »i = 0, n' = m, n" = m\ n'" = m" ;

and the biquadratic I. becomes,

LII. . . = (^ w + m'f- m"f- \f^)f

But fq is now a vector, by XLIX., and it may be any vector, p ; also the

operation f is now equivalent to that denoted by 0, when the subject of the

* In like manner it may be said, that the cuhxc equation includes a qnadralxc one, when we confine

ourselves to the consideration of vectors in one plane ; for which case w = 0, and also y\ip = 0, if p be

a line in the given plane : for we have then ^x = "*' ~ 4' = "* > ^^

^^ — in"^ + »»' = 0,

with this understanding as to the operand. In fact, the cubic gives here (because m = 0),

(^' - m"<p + m')<l>p = ;

and therefore

if <r be already the result of an operation with <p, on any vector p : that is if it be, as above supposed,

a line in the given plane.



568 ELEMENTS OF QUATERNION'S. [HI. n. § 6.

operation is a vector ; we may therefore, in the case here considered, write

this last equation LII. nnder the form,

LIII. . . = {-m + m'<^ - m''<p^ + f)p,

which agrees with 351, I., and reproduces the symbolical cubic, when the

symbol of the operand (p) is suppressed.*

* [A few additional remarks may be made concerning the solutions of 'Vq-\fq = 0, and of

Yq'^/'q = 0, and the relations connecting them.

It is easy to see, in various ways, that / and its conjugate /' satisfy the same symbolic biqua-

dratic. If, for instance, q and q' are any arbitrary quaternions

S9(/'* - n-'f'^ + n"f'^ - n'f + n)q' = Bq'if^ - n"'P + n"P - n'f +n)q = Q

by I., and therefore as the quaternions are arbitrary,

(/'4 _ m"'/'3 + n"f"^ - n'f + n)q' = 0.

Again, the same property follows from the equation

e + c= Se'{<j) + c)-U = Sf{(p' + eye'.

(See the Note to page 561.)

Now if, as in the Note just cited, qi, q^, qs, and qi are the solutions of Yq'^fq = 0, and

q'\, q'z, q'%, and q\ are those of Yq''^fq = 0,

C\^q\q'-i = - ^fqiq'z = - Siqifq'-i = dSqiq'z,

as the roots c are the same for / and for its conjugate /'. Hence if ci is not equal to a, it is

necessary to have Sq\q'2 = ; and, in general, S^„g^„' = 0, where n is different from n'.

If then qi=: 1 + ai, and q'i = I + a'l, &c., S>q\q'i = 1 + Soia'2 = 0.

Intei-preted geometrically this property shows that if vectors are drawn through the origin equal

to 01, a2, 03, 04, and to a'l, a'2, o's, and a'i', a'2, o's, and o'l will terminate on the polar plane of ai

with respect to the unit sphere p"^ + 1 = 0. In other words, the tetrahedron determined by the

extremities of ai, 02, aa, and 04 is the polar reciprocal of that determined by o'l, a'2, o'si and a'i. In

the particular case in which/ is self- conjugate, 1 + 80102 = 0, and the tetrahedron is self-reciprocal

with respect to the unit sphere ; or, without reference to a sphere, the tetrahedron may be said to be

orthocentric as the perpendiculai's (— or^, &c.) from the origin on the faces pass through the

corresponding vertices.

Hence, any quaternion q may be expressed in the form (compare again the note to page 561)

Sqq'i Sqq'2
,

S^^'s
,

Sqq'i

Sqiq I aq2q2 Sqiq 3 b?4!? 4

and
Sqq'i Sqq'2 Sqq'3 Sqq'i

fq = - ciqi = r - ^2?2 5 - c^qz ^ ;— C4?4 oTv"*
Sqiqi ^ aq2q2 Sqaq 3 oqiq t

may be regarded as a canonical form of a function /.

It is easy to see from the properties of the reciprocal tetrahedra that the vector

,
V(a3a4 + 0402 + 0203)

«1 = ^ —
0020304

being the negative of the reciprocal of the vector perpendicular on the plane through the extremities

of o'2, o's, and a'i.]



INDEX TO VOLUME I.

( The Numbers refer to the Pages. Additional references are oeeasionalh/ given to teetiont

in which the subjects are specially treated.)

Abstraction of symbol from subject of operation, T,

168; K, U, K, 142; K, S, V, 204.

Academy, Royal Irish, first communication on quater-

nions, note, 160.

construction of ellipsoid, note, 230.

spherical quadrilaterals, note 392.

Acceleration, vector of, 100.

Actual vector, 3, 110.

Addition of vectors, 6.

of vector and point, 5.

of amplitudes, 264.

of quaternions, definition of, 116.

of quaternions, is commutative and associative,

176, 204, 207.

of vector-arcs, is not commutative, 156 ; is as-

sociative, 304, 408.

of vector- angles, 406.

spherical, 406.

Algebra, imaginary symbol of, 133, 224, 253, 258,

289, 316.

prmciples adopted from, 108.

paradox in, 149.

use of signs in, extended, 5, 6, 108, 123, 256.

Algebraic form, equations of, II. ii. § 5, 277.

Alternation and inversion, equidifference of points, 4.

equality of vector-arcs, 144.

equality of geometric quotients, 118.

Am, symbol for amplitude, 262.

Am,, or Ln, 263 ; Amo, principal amplitude, 263.

Amplitude of quaternion, II. ii. § 3, 262 ; note, 120.

Hamilton's Elements of Quaternions.

Amplitudes of quaternions, addition and subtraction

of, 264.

Angle of quaternion, II. i. § 5, 120, 111.

differential of, 458.

representative, 151.

vector-, 151, 406.

Euclidean, 120.

Anharmonic coordinates, 23; in space, 55.

of four points on a line, 15 ; in space, 294 ; on

a circle, 297.

construction of cubic curve, 37.

equation of curves, I. ii. } 6, 32 ; of surfaces, I.

III. §6, 87.

function or quotient, 15.

quaternion, 294, 350.

Anti-parallel sections of a cone, 183.

Apollonius of Perga, locus, 130, 165, 191 ; cyclic

cone, 181.

Arc, vector-, II. i. § 9, 143 ; associative addition of,

304.

representative, 143.

cyclic, 185, 308.

Arcual sum, 156, 303, 369.

addition. See Addition of vector-arcs.

Area, sign of, 18.

directed, 482.

of parallelogram, 246.

spherical triangle, 364.

spherical polygon, or curve, 368, 370.

spherical cap, 482.

4D
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Arithmetic, illustration of diflFerential from, 434.

Aspect, of plane, 112 ; note, 207.

Associative law for addition of vectors, 7 ; quater-

nions, 207 ; vector-arcs, 304.

for multiplication of i, y, k, 159
;
quaternions,

245; II. in. § 2, 308 ; vectors, 337.

for multiplication, enunciations of, II. in. { 1,

301.

Asymptote, of hyperbola, 34.

Atwood's machine, 100.

Auxiliary functions, linear vector, 495
; quaternion,

660.

Ax., symbol for axis of quaternion, 120.

examples on, 121.

equals lUV, 203.

replaced by UV, 334.

Axes of ellipsoid, principal, 238 ; of quadric, 536.

of section of quadric, principal, 238, 525.

Axis of quaternion, 112; II. i. § 5, 119; differential

of, 458.

parabola, 34.

Barycentres, 85.

Barycentric calculus, notes, 22, 60, 61, 62, 86.

Bicouple, 289.

Bifocal form of linear vector function, 546.

Binomial form of quaternion, 254.

of linear vector function, 498.

Biquadratic equation of linear quaternion function,

560.

Biquatemion, 133, 225, 289, 316.

Biscalar, 225, 289.

Bisecting sides of spherical triangle, triangle, 358.

Bisectors of a triangle, 18.

Bivector, 225.

Booth, tangential coordinates, note, 40.

Calculus, Barycentric, notes, 22, 50. 61, 62, 85.

of functions, 206, 202.

of finite differences, 83.

Cap, area of spherical, 482.

Camot, on transversals, note 65, note 377.

Cartesian expressions, 242.

coordinates, 248.

Cassiuian, 281, 285.

Centre of conic inscribed to triangle, 36.

of homology, 60.

of involution, 16.

of ruled hyperboloid, 92 ; vector to, 96.

Characteristic of operation. See Symbol.

Chasles, referred to in notes, 16, 31, 72, 89, 183, 300,

308, 340,

Circle, equation of, square of right radial, 134.

inverse of line, 296.

vector expression for, 417.

vector equation of, 349, 355.

quaternion equation of, 133.

inscribed or exscribed to triangle, 33.

to spherical triangle, 401.

touching three small circles on a sphere,

427.

Circular group of four points, 297.

sections of cyclic cone, 184.

ellipsoid, 232, 239.

points at infinity, note, 516.

logarithmic spiral, 419.

successions, 297, 305, 311.

Cis (symbol), 260.

Class, of a curve, 42, 93.

surface, 88.

Coefficients of vectors, 9.

differential, 444, 99.

Collinear, condition that three points should be, 14,

52 ; three right quaternions, 247.

quaternions, 210.

Commutative law for addition of vectors, 6 ; of qua-

ternions, 176, 207.

does not hold for addition of vector arcs, 156.

does not hold for multiplication of quaternions,

147, 159.

Complanar, vectors, 14, 340; proportion of, 250, 256.

termino-, 45, 344.

points, 14, 45.

quaternions, 116, 211, 250.

Complanarity, sign of, 117.

condition of, of quaternions, 148.

of vectors, 14, 338.

of points, 14, 45, 52.

Complex mean of n vectors, 85.

Composition of two quadrantal rotations, 149.

Concurrence of three lines, 18.

of four planes, 67, 342.
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Condition of contact of line and sphere, 224, 427,

428.

of parallelism of two vectors, 10, 194, 325.

perpendicularity, 180, 325, 345.

collinearity of three right quaternions, 247.

complanarity of three vectors, 14, 338, 345.

of versors, 148.

of concurrence of three lines, 18.

homosphericity, 352, 354.

that three points should lie on a line 12, 14; in

quinary symhols, 52.

that four points should lie in a plane 14, 45 ; in

quinary symhols, 52.

that three vectors should be termino-coUinear,

14, 343.

that four vectors should be termino-complanai-,

45, 344.

that four planes should concur, 57, 342.

Cone, cyclic or quadric, 95, 181, 304.

expressed by S, 181.

vector expression for, 95, 101.

of revolution, 183.

expressed by Z., 121 ; S, 180.

equation of one sheet of, 121.

tangent, to sphere, 225.

cubic, vector expression for, 95.

Congruence, formula of, for quinary symbols, 51.

Conic, anharmonic equation of, 32.

and triangle, 32, 33, 34, 36.

spherical, 182, 239, 303, 309.

Conical rotation, 154, 359, 398, 429.

Conjugate diameters, ellipse, 95 ; ellipsoid, 95.

harmonic, 16.

point of cubic, 4 1

.

quaternions, 115, 123.

of vector, 346.

of linear vector function, 486.

of linear quaternion function, 555.

Conjugation, characteristic of, K, 124.

equation of (linear vector function), 485.

(linear quaternion function), 555.

(pole and polar), 229, 428.

Constants determining a linear vector function, 486,

630 ;
quaternion function, 566,

vector-, of ellipsoid, 201, 236.

or invariants of linear vector function, 491.

Constituents of a quaternion, 242.

Construction, points of, for plane net, 17, 22.

for net in space, 61.

of cubic curve, 38.

of ellipsoid 234.

of fourth proportional to three diplanar vectors,

362.

of series of spherical parallelograms, 390.

Continued proportion of complanar vectors, II. ii. § 2,

266, 251.

Convention respecting sign of area, 18 ; of volume, 48.

sense of rotation, 119 ; notes. 111, 162, 369.

position of operator relatively to operand, 110, 147.

Convergency of series, 269, 424.

Coordinates of a couple, 254.

anharmonic, 23, 55 ; of a plane, 60.

idea of, foreign to quaternions, note 112.

tangential, 40.

Cartesian, 248.

Cosine of quaternion, 276, 424.

Couple, 254.

Criterion as to nature of conic inscribed to triangle, 34.

Cube-root of quaternion, 256; principal, 267.

Cube-roots of unity, nine, 291.

Cubic curve, anharmonic construction of, 38.

cone, 95.

of linear vector function, symbolic, 494.

Curve, vector equation of, 94.

cubic, with conjugate point, 37, 41.

Cyclic form of linear vector function, 620, 628, 635,

638.

cone, 181, 309.

planes, normals, of cone, 183, 649.

of ellipsoid, 232, 236.

arcs, 185, 308.

quadrilateral, 296, 347.

Cyclical permutation of vectors under sign S, 360.

of quaternions under sign S, 248.

law of i,j, k, 169.

Cylinder, of revolution expressed by TV, 195 ; by V,

199.

tangent to sphere, 201 ; spheroid, 201 ; ellipsoid,

202.

Decomposition of vector, 193, 338, 339.

quaternion q = 1q .\Jq, 169
; j' = Sj -f \q,

193.

4 1) 2
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Definite integral, 368, 482.

Definition of vector, 3.

sum of vectors, 7 ; of quaternions, 109.

addition and subtraction of vectors, 6,

differential of a vector, formula of, 98.

of quaternion, note, 35.

simultaneous diff'erentials, 431.

q<i\ 422.

Deformation of sphere, 232.

theorem of geometrical, 625.

Degenerate quaternions, 120, 178, 333.

Degree of plane curve, 32 ; of surface, 87.

of curve, 93.

De Moivre's theorem, 264.

De Morgan, note, 278.

Denominator, reduction of two quaternions to a com-

mon, 116.

Depressed equation of linear vector functions, 501,

505.

Derivative of a vector, 99.

Descartes, notes 394, 404.

Desk, illustration of quaternion by, 113.

Developable surface, 100.

Development of functions of a quaternion, 475.

Diacentric sphere, 234, 241.

Diameters, conjugate of ellipse, 95 ; of ellipsoid, 9.5.

Difference of two points, 3 ; of two vectors, 5.

of two quaternions, II. i. § 12, 176.

finite, 102.

Differences, finite, equations in, 84.

and differentials, 434.

successive, 479.

Differential quotient, 443.

of implicit functions of quaternions, 484.

of n*^ root of a quaternion, 660.

Differential of vector, I. iii. § 7, 96, 98.

of square root, 452 ; of a product or power, 451,

476.

of ?-i, 439 ; of Kg, V^, and Sy, 455 ; of Ty and

Uy, 456.

finite, 99, 432.

coefficient, 99, 444.

quotient, 444.

Differentials and differences, 434.

distributive property of, 441.

successive, 465, 479.

simultaneous, 431.

Differentiation, partial, symbol for, 35 ; of a vector,

101 ; of a quaternion, 446.

examples of quaternion. III. ii. § 4, 451.

Dimensions, theory of, applied to linear functions of

a vector, 488.

Diplanar quaternions, 116.

Direct similitude, 115.

circular succession, 297.

Directed area, 482.

Direction, relative, 110, 138.

Directions of linear vector function, 508, 515, 517.

Distributive property of multiplication of vectors by

coefficients, 9.

of quaternions, 212, 219.

of sign I, 206 ; K, 176, 207; S, 185 ; V, 204.

of differential, 441.

Division of vector by parallel vector, 10.

of quaternions, defined, 109, 116.

homographic, 16.

Effective vector, 3.

Elimination of a vector, 342, 366.

of differentials, 448.

Ellipse, vector expression for, 96, 417.

section of cylinder, 196, 199, 418.

Ellipsoid, equation of, 201, 230, 313, 325, 328, 635,

537 ; bifocal, 545 ; focal, 201, 230, 531 ; cyclic,

527.

circular sections of, 232, 235.

construction of, 234.

principal axes of, 238.

sections of, 238.

homologies of, and sphere, 315, 232.

vector-constants of, 201, 236. 537.

tangent right cylinder to, 202.

vector expression for, 96.

Elliptic logarithmic spiral, 419.

Equality of points, 3, 13.

vectors, 3.

quaternions, 109, 115.

vector-arcs, 144.

Equation of loci involving signs Ax. and L, 121

;

K, 127 ; S, 180, 190 ; V, 195, 199 ; T, 165,

167, 190 ; U, 142.

powers of a vector, 417.

anharmonic of curve, 32 ; local and tangential, 39.

of surface, 87.
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Equation, vector-, of curve, 94 ; of surface, 94.

See Sphere, Ellipsoid, &c.

exponential, for spherical triangle, 404.

in finite differences, 84.

of algebraic form in -quaternions 277 ; w* roots

of, 292.

of conjugation (poles and polars), 229 ;
(linear

functions), 485, 555.

of second degree, homogeneous and vector, 508.

of six segments, 21, 18.

symbolic, for linear functions, 494, 560.

Equi-difference of points, 4.

Euclid, angle, 120.

Euler, note 244,

Evolutionary quaternion, 295.

Examples, geometrical, on signs Z, Ax. 121 ; K, 127 ;

R, 296; S, 180, 190; T, 165, 167, 190; U,

142 ; V, 195, 199.

depending on power of vectors, 417.

of quaternion differentiation, 451.

Excess, spherical, 364.

Exponential form for sine and cosine, 266, 274. See

under Ponential.

equation for spherical triangle, 404.

transformation of Taylor's series, 473.

Exponents, scalar, 264.

quaternion, 274, 421.

Exscribed or circumscribed conic, 36.

Extensions of algebraic notation, 6, 6, 108, 123,

256.

Factor, or operator, 108, 136.

Factorials, notation of, 476.

Finite difference, 102.

differences, equation in, 84.

differential, 99, 432.

Five quaternions, identical relation connecting, 563.

vectors, 47.

Fluxions, note 431.

Focal property of sphero-conic, 310, 393.

relations, notation for, 310.

transformation of linear vector functions, 531,

535, 538.

equations of surfaces of the second order, 536.

lines of cones, 545, 549.

Foci of involution, 16,

Formula (A), 160.

of congruence, 51.

of differential, 98, 438.

of relation between + and -, 5.

of commutation, 7.

of association, 7.

of collinearity of three right quaternions, 247.

of perpendicularity of two vectors, 325.

parallelism of two vectors, 325.

complanarity of three vectors, 338, 247.

Formulae of spherical trigonometry, fundamental, 400.

Four constituents of quaternion, 242.

points, group of, linear, 15 ; circular, 297.

points, complanarity of, 14, 45.

vectors, linear equation between, 44, 338.

proportion of, 250.

Fourth proportional to three vectors, complanar, 250,

293 ; diplanar, 356 ; rectangular, 377.

unit in space, 394, 380.

Fraction, geometric, 107.

Function, anharmonic quaternion, 294.

of vectors, a quaternion, 332, 394.

of three vectors, linear, 338.

transcendental, of quaternions, 421, 453.

trigonometrical, of quaternions, 424.

linear. See Linear functions.

Functional notation, 205, 202.

Functions, calculus of, 205, 202.

Fundamental formulae of spherical trigonometry, 400

.

Gauche quadrilateral, 82.

hexagon in sphere, 305.

Generation, double, of ruled hyperboloid, 90.

of ellipsoid, 241.

Generatrix of ruled hyperboloid, 89.

Geometric quotient, 107.

inversion and alteration of, 118.

Geometrical examples on V, 195,199 ; S, 180 ; Ax. and

Z, 121; K, 127; E, 296; U, 142; S and T, 190.

nets, plane, I. ii. $ 3, 20 ; I. ii. § 5, 29 ; in

space, I. III. § 4, 61.

illustration of •differential, 436 ; of ratio of

vanishing quantities, 470.

deformation, theorem of, 525.

"Geometric superieure," of Chasles, referred to in

notes, 16, 72, 89, 300.
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"G^om^trie de position," of Camot, referred to in

notes, 377.

Grammaritlim, note, 335.

Graves, C, note, 308.

Graves, J. T., note, 276.

Gravitation, Newton's law of, 99.

Group of four points, circular, 297. See Anliarmonic.

Guide-points, 239.

Half-line or ray, equation of, 121, 142.

Handle, versor compared to a, 336 ; note, 345.

Harmonic section, 16.

mean of two vectors, 231, 298 ; of n, 300.

property of quadrilateral, 20.

of pole and polar, 229.

polar of point to a triangle, 21.

Helix, 419.

Heptagon, inscribed to sphere, 354.

Hexagon, spherical, 303.

inscribed to sphere, 305, 354.

" Higher Plane Curves," Salmon's, notes, 37, 40, 41,

42.

History of quaternions, notes to, 206, 258, 262, 278.

Hodograph, 99.

nomographic division, 16.

figures, plane nets are, 31 ; nets in space are, 79.

property of ruled hyperboloid, 89.

Homologies of ellipsoid and sphere, 315, 232.

Homology, centre of, 60
;
plane of, 60.

Homosphericity, equation of, 354,

Hydrostatics, 483.

Hyperbola, 33.

Hyperbolic paraboloid, 93, 96.

Hyperboloid, ruled, anharmonic equation of, 88.

vector expression for, 95.

Hypotenuse, proof of theorem of square of, 212.

I, symbol for index of right quotient, 187.

is distributive, 206.

Ax. «= lUV, 203.

IV = V, 335.

i,j, Tiy laws of, II. I. § 10, 157, 344.

quaternion in terms of, 242.

vector in terms of, 344.

early use of, notes, 160, 345.

Identification of a right quaternion, with its own
index, III. i. §4,, 331 ; note, 193.

Identity connecting three vectors, 337, 344, 376,

426.

four vectors, 376.

five quaternions, 563.

six spherical arcs, 377.

on square root of quaternion (j^^j^)', 315.

Illustration of differential and difi'erence, 434, 436.

ratio of vanishing quantities, 470.

a quaternion, 113.

Imaginary, intersections, note, 87, 223.

roots of equation of algebraic form, II. ii. § 5,

289.

interpreted as geometrically real, 133.

of algebra, 224.

roots and directions of linear vector functions,

515.

Imponential, 274.

Indetei-minateness of interpretation of V - 1, 133.

of versor, 139.

vector-arcs, 145.

nuU quaternion, 120.

directions of linear vector function, 601.

Index of right quotient, II. i. § 5, 122.

symbol of, 187.

equals right quotient, III. i. § 4, 331 ; note, 193.

Indices of right quotients, quotient of, 176.

sum of, 206.

product of, 329.

Infinity, line at, 27.

circular points at, note, 516.

Inflexional tangents to cubic, 37.

Inscription of polygons in a sphere, 354.

Integral, definite, 368, 482.

scalar and vector, 482.

Integration, 482.

Interpretation of a product of vectors aa a quaternion,

III. I. § 1, 321, 337, 394.

of V^^, 133, 253.

Intersection, imaginary, note, 87, 223.

real, 220.

of line and plane, 47.

of two planes, 338.

Invariants, quaternion, 491, 506.

Inverse or reciprocal of a vector, II. ii. § 7, 293.

a quaternion, 122 ; differential of, 439.

similitude, 115, 129.

of line, 296 ; of circle, 296.
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Inversion and alternation, 4, 118, 144.

geometrical, 293.

of linear vector function, 485.

of linear quaternion function, 557.

Inversor, 135.

semi-, 135.

Involution, 16.

double, 72.

in space, 295, 300.

K introduced, 124.

•examples on, 127.

differential of Kj', 455.

Lacroix, referred to in notes, 473.

Lagrange, referred to in notes, 441, 472.

Law of the Norms, 173, 244.

«' Lectures" referred to in notes, 160, 206, 219, 304,

311, 315, 345, 354, 380, 479, 525.

Left-handed, 111. See Convention respecting rota-

tion.

Lemniscata, 286.

Length, 163.

of two lines, relative. 111.

"Letters on Quaternions," note 311.

Limiting ratios, 469.

Line,* expressed by Z and Ax., 121 ; K, 127 ; U,

142 ; V, 195.

anharmonic equation of, 26 ; coordinates of, 27.

symbol of ternary, 56 ; anharmonic, 57 ;
quinaiy,

62.

vector expression for, 15, 94 ; equation of, 195.

number added to, 335
;
point, 5.

at infinity, 27.

half-, 121, 142.

rational, 29.

reflexion of, 129.

intersection of, and plane, 47 ; and sphere, 220,

223.

of intersection of two planes, 338.

Lines, relative length and direction of two, 111.

Linear equation between two vectors, 12.

three vectors, 13.

four vectors, 44, 338.

five quaternions, 563.

Linear vector function, inversion of, 485.

form of, standard trinomial, 486 ; binomial,

498 ; monomial, 501, 506 ; cyclic, 520,

528, 635, 538; bifocal, 545; focal, 531,

533, 535, 638.

conjugate, 486.

self-conjugate, 613, 519, 525.

non-conjugate part of, 492.

auxiliary {^), 485 ; (x), 495.

derived, 551.

symbolic cubic of, 494.

with equal roots, 500.

unequal real roots, 609.

imaginary roots, 515.

with depressed equation, 501, 505.

number of constants in, 486, 530.

powers of, 491.

system of lines and planes related to, 612.

dimensions of, 488.

quaternion function, 485, 655.

number of constants in, 556.

standard quadrinomial form of, 665.

symbolic biquadratic of, 660.

Local equations, 39.

Loci, equations of, involving Z, Ax, 121 ; K, 127;

E, 296; S, 180, 199; T, 165, 167; U, 142;

V, 194, 199.

powers of a vector, 417.

Locus, Apollonian, 130, 165, 191.

Logarithm of quaternion, II. ii. § 4, 2S8, 276, 421.

Logarithmic spiral, 418.

Mean point, projection ot, 19, 81.

of gauche quadrilateral, 82.

complex, 85.

of partial systems, 83.

proportional between two vectors, 251.

of two vectors, harmonic, 298 ; of n, 300.

of « vectors, simple, 81 ; complex, 86.

Mixed transformation of linear vector function, 646.

Mobius, referred to in notes, 22, 31, 65, 79, 61, 62,

66, 77.

Monomial form of linear vector function, 601, 505.

equations of circle and sphere, 356.

Mourey, note, 278.

' The word line is frequently used for vector in the Elements.
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Multiplicand, 147, 110, 159.

Multiplication of vectors by coefficients, 9.

of quaternions by coefficients, 119.

definition of, 116.

is not commutative, 147.

is doubly distributive, 219, 212.

is associative, 245, II. iii. § 2, 308.

reduced to multiplication of versors, 172.

of versors illustrated by vector-arcs, 147.

of i,j, Ic, 159.

of vectors is associative, 337.

Multiplier, 147, 110, 159.

N, symbol for norm, 130.

Ng', differential of, 455.

Negative unity, square of rigbt radial, 132, 203.

square root of, 133, 224, 253, 289.

square of vector, 345.

Net, plane geometrical, 20, 29; in space, 61.

Nets are homographic figures, 31, 79.

Newton, Principia, note, 97, 431, 471.

Non-commutative multiplication, 147.

addition, 156.

Non- conjugate part of linear vector function, 492.

Non-scalar, 110.

Norm, 130, note 128.

of sum, 189, 219, 476.

differential of, 455.

Norms, law of the, 173, 244.

Normal, cyclic, of cones, 183.

of ellipsoid, 232, 235.

Notation, functional, 205, 202.

simplification of, 334.

extended meaning of algebraic, 6, 6, 108, 123, 256.

for focal relations, 310.

of factorials, 476,

See Symbol.

Null quaternion, 125, 139.

vector, 3.

vector-arc, 146,

Number of points of construction, 22, 73.

signless. 111, 170.

added to Hne, 335.

of constants involved in linear vector function,

486, 530
;
quaternion, 556.

Numbers, name "Norm" borrowed from theory of^

note, 130.

Oblique cone, 183 ; note, 181.

quotient, 321, 337.

Ohm, note, 276.

Opening, spherical, 366.

Operation, characteristic of. See Symbol.

Operations, calculus of, 202.

Operator or factor, 108, 135.

V notes, 648, 554.

Opposite quaternions, 126.

vectors, 3.

Order of curve, &c. See Degree.

of factors, indifferent when one is scalar, 119.

generally important, 147, 153, 158.

Origin of vectors, 12.

Oval, 279.

P, symbol for ponential, 268.

Parabola, inscribed to triangle, 34.

Paraboloid, ruled, anharmonic equation of, 93.

vector expression for, 96.

Paradox, apparent, 149.

Parallelepiped, volume of, 247, 338.

ParaUelisra, condition of, 325.

Parallelogram, area of, 246.

spherical, 388.

Parameters in vector equations, 94.

Partial differentiation of a vector, 101.

of a quaternion, 446.

sign for, 35.

successive, 479.

Parts, right, or right quotients, or vector parts, distri-

butive addition of, 204.

Pencil of lines, 23, 307 ;
planes, 57.

Pentagon, inscribed to a sphere, 351.

Permutation, cyclical, of quaternions under S, 248,

350; oiij, A, 159.

Perpendicular, from point on line, 179, 194, 427.

on a plane, 180, 342, 353.

Perpendiculars, of triangle, spherical, 217.

Perpendicularity of two vectors, condition of, 325,

345.

Plane, expressed by symbol Z, 121 ; Ax,, 121 ; K,

127; T, 165,167; U, 143; S, 180.

vector expression for, 24, 94.

anharmonic equation of, 56.

quinary symbol for, 53.

scalar equation of, 180.



INDEX TO VOLUME I. 577

Plane, through three points, 344.

polar, of point to sphere, 228.

geometrical nets, 20, 29.

rational, 54.

of quaternion, 111.

and line, intersection of, 47.

Planes, condition of concurrence of four, 57, 342.

cyclic of cones, 183 ; of ellipsoid, 232.

line of intersection of two, 338.

system of, related to linear vector function, 512.

Point, symbol of a, quinary, 51 ; ternary, 25 ;
qua-

ternary, 65.

mean, of triangle, 19.

of gauche quadrilateral, 82.

in general, 81.

addition of vector to, 5.

Points, difference of two, 3.

equi-difference of two, 4.

condition for three on a line, 14.

four in a plane, 14, 45.

five on a sphere, 354.

of plane construction, 17, 22.

of first construction in space, 61.

of second construction in space, 62 ; table of

types, 75 ; diagram of, 78.

group of linear, 15 ; in space, 294 ; circular, 297.

rational, in a plane, 29 ; in space, 54, 79 ; types

of, 55.

circular, at infinity, note, 516.

Pole and polar of a sphere, 228,

of plane curves, 35.

Polygon, area of spherical, 368.

inscribed in sphere, 347.

spherical sum of angles of, 416.

exponential equation for spherical, 404.

Polynomial equations, 277.

Poncelet, Traite des Proprietes Projective, referred to

in notes, 60.

Ponential of a quaternion, II. ii. § 268.

Position, vector of, 100.

Positive or signless number, 170 ; note, 111.

Power of a vector, a quaternion, 396, 399.

equation of loci involving a, 417.

transformations of, 420 ; development of, 476.

differential of a, 451.

Powers of quaternions, 264, 274, 421,

of linear vector functions, 491.

Hamilton's Elements of Quaternions.

Pressure, hydrostatic, 483.

Principal root of quaternion, 259.

cube-root, 257.

amplitude, amo, 263.

axes of ellipsoid, 238.

section of quadric, 525.

Principia, referred to in notes, 97, 431, 471.

Principles adopted from algebra, lOS.

Product, of quaternions, defined, 109.

conjugate of, 173.

differential of, 451.

reciprocal of, 173.

scalar of, 187, 245.

tensor, 171.

vector of, 245.

versor, 171.

of two quaternions, 109, 116, 171.

of two vectors, interpreted. III. i. § 1, 321.

of vectors, 337, 346, 394.

of two rectangular vectors, 333.

of indices, 329.

of sides of a triangle, 348.

of sides of an inscribed polygon, 347.

Projection of mean point, 19.

stereographic, 311.

of closed figure, 8.

of line, 179.

Property, associative, of addition, 7, 207, 304
;

of multiplication, 159, 245, 308, 337.

commutative, of addition, 6, 176, 207.

distributive, of multiplication, 9, 212, 219.

harmonic of quadrilateral, 20.

Proportion of vectors, 118, 175, 250.

continued, of vectors, 251, 256.

mean, of vectors, 251.

Proportional, fourth, to three complanar vectors, 250.

diplanar vectors, 362.

rectangular vectors, 377.

Provector, 3, 146.

Pyramid, volume of, 247, 338.

sign of volume, 48.

Quadrantal rotations, 149.

triangle, 377.

Quadratic equation in quaternions, 281.

vector equation, 508.

4E
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Quadric, ruled hyperboloid, 88, 95.

focal and cyclic equations of a, 635.

bifocal equation of a, 545.

axes of plane section of a, 525.

See Ellipsoid and Linear vector function.

Quadrilateral, cyclic, 296, 347.

of a plane net, 31.

gauche, 82.

harmonic property of, 20.

area of spherical, 368.

product of sides of, 347.

Quadrinomial form for quaternion, 242.

linear quaternion function, 665.

Qualitative element of a quaternion, note 167.

Quantitative element of a quaternion, notes 167, 138.

Quantities, ratio of vanishing, 470.

Quaternary symbols, 65.

Quaternion, as a factor or operator, 135.

as a fourth proportional, 357, 362.

as a power of a vector, 396, 399.

as quotient of two vectors, 110.

general function of vectors is a, 332, 394.

oblique quotient, 321, 337.

product of vectors, 321, 337.

number added to line, 335.

scalar plus vector, 11, 335.

square root of a positive plus square root of a

negative, 203.

Sy + yq, 193.

T^U?, 169.

Quaternion, anharmonic, 294, 296, 350.

binomial, 254.

development, 473.

equations, 243.

algebraic, in complanar, 277.

general algebraic, 292.

evolutionary, 295.

exponents, 274, 421.

identities, 426, 563.

integration, 482.

invariants, 491, 506.

inversion, 657.

quadrinomial, 242.

Quaternion, functions of a single :

conjugate, 123.

cosine, 275, 424.

ciibe root, 256.

Quatemion, functions of a single:

imponential, 274.

inverse, 122.

linear function of, 485, 555.

logarithm, 275, 421.

opposite, 126.

ponential, 268.

power, 268, 274, 421.

reciprocal, 122.

root, 259.

sine, 275, 424.

square, II. i. § 7, 132, 141, 170, 187.

square root, 188; differential of, 452.

transcendental, functions of a, 421, 453.

Quaternions, operations on two :

addition, 176, 116.

conjugate of product, 173.

division, 116.

multiplication, 116, 173.

product, 109, 116, 171.

quotient, 109, 116, 171.

reciprocal of product, 173.

subtraction, 116.

sum, 176.

Quaternions, two :

are collinear, 116.

condition of complanarity, 148.

equality of, 109, 115.

qp, 214:, 421.

Quaternions, special cases of :

nuU, 125.

radial, 131.

right part, 192.

right quotient, 121.

scalar, 120.

vector, 336.

versor, 143.

Quaternions, parts of :

amplitude, 262.

angle, 119.

axis, 119.

four elements of , 112, 113.

index of right, 122.

plane, 111.

scalar, 177.

tensor, 167.

vector, 192.
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Quaternions, parts of, versor, 137.

Quaternions, any number of :

addition, 207.

collinear, 210.

complanar, 250, 116, 211.

cyclical permutation under S, 248.

diplanar, 116.

multiplication, 245, 219, 301, 308.

Quaternions, calculus of

:

applications to plane trigonometry, 178, 197, 214,

208.

spherical trigonometry, 216, 209,

history of. See History.

Letters on, note 311.

Lectures on. See Lectures.

Taylor's series adopted to, 473.

Quinary symbols, 50.

types, 55.

Quotients, of vectors, 107.

right, 121.

quotient of, 175.

sum of, 206.

index of, 122, 331.

oblique, 321, 337.

radial, 131.

geometric, 109.

two, with common denominator, 109, 116.

inversion and alternation of, 118.

differential, 443.

of two quaternions, 109, 116, 171.

scalar of, 187.

R, symbol for reciprocal, 141, 293, 328.

Eadial quotient, 131.

right, 132.

Radical plane, 328.

Ratio of vanishing quantities, 470.

Rational points, lines and planes, 29, 54, 79.

Ray or half-line, equation of, 121.

Reality of roots of self-conjugate function, 513, 519,

525.

Reals, 11, 258.

Reciprocal of quaternion, 122; development of, 475;

versor of, 138.

vector, II. II. § 7, 293.

Reciprocity of forms, 547.

Rectangle, spherical, note, 388.

Rectangular vectors, fourth proportional to three, 377.

versors, multiplication of, 149, 157 ; vectors, 333.

system of self-conjugate linear vector function,

513, 519, 525.

transformations of self-conjugate linear vector

function, 528.

Reduction of two geometric quotients to a common

denominator, 116.

of quaternion multiplication, 171.

of a quaternion to a power of a vector, 399.

Reflexion of a line, 129, 358.

successive, 361.

Regression, edge of, 93, 100.

Relation connecting three vectors, 337, 344, 375, 426.

four vectors, 44, 376.

five vectors, 47.

six spherical arcs, 377.

five quaternions, 563.

Relative length and direction, 111, 138.

Remainder of a series, 474.

Representative angle, 151.

arc, 143.

point, 143.

Resolution of vector along and perpendicular to given

line, 193.

along three given lines, 338.

perpendicular to three given planes, 339.

of quaternion. See Decomposition.

Revector, 3.

Reversor, 139.

Revolution, cone of, 183 ; cylinder of, 195, 199.

spheroid of, 201.

Right-hand rotation, 119.

Right part, 193.

quotient or quaternion, 121.

index of, 122.

identification of, with its own index, III.

I. §4, 331 ; note, 193.

quotients, quotient of, 175.

index of sum of, 206

.

radial, 132.

versor, as unit-line, 335.

Root of quaternion equation of n*^ degree, 292.

square, of quaternion, 188, 452.

cube, of quaternion, 256 ; nine of unity, 291.

n''* roots of unity, n geometrically real, 259.

m(« - 1) imaginary, 290.

4 K 2



580 ELEMENTS OF QTJATEENIONS.

Root, principal, 259.

of negative unity, imaginary symbol of algebra,

224.

of zero, 316.

of equations of algebraic form, II. ii. § 5, 277.

Rotation, convention respecting. 111, 119; notes, 49,

369.

conical, 154, 359, 398.

of solid, 361.

Rotations, composition of two quadrantal, 149.

theorem in, 415.

Ruled hyperboloid, 88, 95.

paraboloid, 96, 93. '

S, symbol for scalar, 177.

examples on S, 180, 190.

distributive, 185.

cyclical permutation under, 248, 350.

S = |(l+K), 177.

= 1-V, 193.

S-\ 202.

Sq, differential of, 455.

Sadleir, Rev. W. D., note 375.

Salmon's Higher Plane Curves, notes, 37, 41, 42.

Scalar, why so called, 11.

of a quaternion, 177, 186.

•of a product, 245.

of a sum, 185.

unit in space, 380.

integration, 482.

plus vector equals quaternion, 11, 335.

Screw surface, 419.

Section, harmonic, 16.

homographic, 16.

Sections of cone, 181.

of cylinder, 196, 199.

of ellipsoid, 238.

of quadric, principal axes of, 525.

circular, of cone, 183.

of ellipsoid, 232.

Segments, equation of six, 18, 21.

Self-conjugate functions, 513, 519, 525.

Semi-inversor, 135.

Sense of rotation. See Convention respecting rotation.

Series, poneutial, 268.

exponential, for sine and cosine, 274, 421.

Taylor's, 102, 473.

Series, convergency -of, 269, 424.

remainder of, 474.

of spherical parallelograms, 388.

Sign of area of plane triangle, 18.

of volume of a pyramid, 48, 342.

of spherical area, 370.

Signless number, tensor a, 170, 111.

Similitude, 115.

Simplification of notation, 334.

Simultaneous differentials, 431.

Sine, exponential form for, 266, 274.

of a quaternion, 424.

Solution of the exponential equation, 409.

Space, scalar unit in, 380.

symmetry of, 394.

Sphere, equation of, in terms of, K, 130; S, 180;

V, 199 ; N, T, 165, 167 ; S'- - V^, 200.

square of a vector, 327.

monomial, 355.

Apollonian locus, 130, 165, 191.

intersection of right lines and, 220, 223.

of cone and, 181.

of ellipsoid and, 240.

tangent cylinder to, 201.

tangent cone to, 225.

poles and polars of, 228.

homologies of ellipsoid and, 315, 232.

diacentric, 234, 241.

Spherical parallelogram, 388.

addition, 406.

area, 364, 368, 482.

cap, 482.

conic, 182, 239, 309, 310.

excess, 364.

hexagon, 303.

opening, 366.

polygon, 414.

sum, 156, 406, 415.

tetragonometry, 417.

triangle. See Triangle.

trigonometry, 209, 216, 325, 358, 400.

Spheroid of revolution, 201.

Spiral, 418.

Square of a quaternion, II. i. § 7, 132, 141, 170,

187.

of a vector, 327, 345.

of a riiiht-radial, 132.
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Square root of zero, 316.

of- 1, 133, 224, 253, 289.

of quaternion, 315, 367, 452,

on hypotenuse, proof of theorem of, 212.

Standard form for quaternions, binomial, 254
;
quad-

rinomial, 242.

for vectors, 344.

for linear vector functions, 486.

Stereographic projection, 311.

Sub-contrary sections of a cone, 183.

Subtraction of vectors, 5.

of quaternions, 116.

of amplitudes, 264.

Succession, direct or indirect, 297.

Successive differentiation, 465, 480.

Sum of vectors, 7.

arcual, 156, 369.

spherical, 156, 406, 416.

tensor and norm of a, 189, 219.

scalar of, 185.

Summand, 5.

Supplementary triangle, 217.

Surfaces, anharmonic equations of, 87.

vector equations of, 94.

of second order. See Quadric and Ellipsoid,

focal and cyclic forms of equations of, 535.

developable, 100.

screw, 419.

Symbol, Am. 262 ; Am<„ Am„, 263.

L, 120 ; U, 263.

cts, 260.

Ax. 120 ; replaced by (TV, 334.

I, 187 ; suppressed, 334.

t, y, h, note, 160.

K, 124.

I, 276.

N, 130, note, 128.

P, 268.

E, 141.

S, 177, 166, note, 127 ; S-'O, 202.

T, 163, note, 131.

U, 136 ; TJO, 140.

V, 193, note, 124; V'lO, 202.

of complanarity
( ||| ), 117.

of intersection (OA • BC), 17.

of focal relation (• •), 393.

of similarity ( oc), 115.

Symbol of inverse similarity («'), 115.

for vector-arc (n), 144.

for spherical addition [(+)], 406.

\/ —\ indeterminate, 133; uninterpreted, 289.

Symbols, quaternary, 55.

quinary, 50.

ternary, 25, 56.

of algebra, imaginary, 224.

extended use of, 5, 6, 108, 123, 256.

+ and -, formula of relation between, 5.

notes on, 262, 334.

Symbolic cubic of linear vector function, 494.

biquadratic of linear quaternion function, 660.

Symbolical or imaginary, 133, 289.

Symmetry of space, 394.

Syntypical points, 55.

System of six planes, 302.

lines and planes related to linear vector function,

512.

three right versors, II. i. § 10, 157.

T, symbol for tensor, 163.

examples on, 165, 167, 190.

T?, differential of, 456.

Table of types of points of construction, 76.

Tangent to a curve, 97.

cone to a sphere, 225.

cylinders, 201.

Tangents, to sphere, 481.

Tangential coordinates, 40.

equations, 39.

Taylor's series, 102, 473.

Tension, act of, 164.

Tensor of quaternion, 167.

of vector, 163.

of a scalar, 168.

of a sum, 189, 219.

development of, 476.

Term, 3.

Termino-coUinear vectors, 14, 343.

coinplanar vectors, 45, 344.

Ternary symbols, 25, 56.

types, 76.

products of vectors. III. i. § 6, 337.

Tetragonometry, spherical, 417.

Tetrahedron, pyramid or gauche quadrilateral, 82

Total differentiation, 479.
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Transcendental functions of a quaternion, 421, 453.

Transformations from S to T, 190.

of U, 141.

of equation of ellipsoid. See Ellipsoid,

of linear vector functions, 528.

of powers of vectors, 420.

of quaternions, 356.

exponential, 473.

Transport, 4.

Transvector, 3, 147.

Transversal, triangle cut by, 21.

of spherical triangle, 362.

Triangle, plane, harmonic relations, 21.

conies and, 32.

product of vector sides of plane, 348.

spherical, area, 364,

exponential equation, 404.

sum of angles, 406.

Trigonometry, plane, fundamental formula, 214; 178,

197, 265, 272,

S and V, 208.

spherical, fundamental formula, 216; 357, 325, 400.

S and V, 209.

solution of the exponential equation of, 409.

Trigonometrical functions of a quaternion, 424.

Trinomial form for vectors, 344, 242.

linear vector functions, 486.

Types of points of construction, 55.

U, symbol for unit-vector, 136.

for versor, 137.

examples on, 142.

Uj, differential of, 456.

Ultimate ratio, 469.

Uninterpreted symbol, \/- 1, 224, 289.

Unit-vector, 120.

conception of right versor as, 335.

sphere, 120.

in space, scalar, 380.

Unity, particular case of radial quotient, 132.

negative, inversor, 135.

square of right radial, 132.

square root of, 133, 224, 253, 258, 289.

cube root of, principal, 258.

nine cube roots of, 291.

geometrically real w'* roots of, 259.

geometrically imaginary n'* roots of, 290.

V, symbol for vector, or right part, 193 ; = IV. 335.

examples on, 195, 197, 199, 208.

distributive character of, 204.

q = ^q + V?, 193.

V=l-S = ^(l-K), 197.

\q, differential of, 455.

Vanishing quantities, ratio of, 470, 483.

Vection, 5.

Vector, definition of, 3.

difference of points, 3.

origin and term of, 3.

resolution of, 194, 338, 339.

as a factor, 335.

trinomial form, 344.

arc, 3.

determination of, 144.

arcs, addition of, 147.

is associative, 303.

representative of a versor, II. i. §9, 143.

angle, 3.

representative of a versor, 151.

associative property of, 304.

angles, sum of, 166, 406.

expression of curve, 94 ; of surface, 94.

of developable, 100.

tensor of, 163.

versor of, note, 137.

scalar of, 346.

reciprocal of, 293.

conjugate of, 346.

plus scalar is quaternion, 11, 335.

is right part of quaternion, 335.

differentiation of, 98.

partial differentiation of, 101.

differential of, 96.

square of, 327, 345.

power of, 396, 399, 420, 476.

called imaginary part, note, 316.

trinomial form for, 344.

special case of quaternion, 335.

addition of, to point, 5.

or vector-part, of a product, 245.

of conjugate, 197.

equation of circle, 349, 365.

of second degree, 608.

Vectors, addition, is commutative, 6.

coefficients of, 9.
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Vectors, complanar, 340.

complanarity of tHree, 338.

continued proportion of complanar, 251.

detennined by three scalars, 341.

division by numbers, 1 1

.

by parallel vector, 10.

by any vector, 107.

elimination of, 342.

fourth proportional to three, complanar, 2o0 ;

diplanar, 357 ; rectangular, 377.

function, linear. See Linear vector function,

harmonic mean of two, 298.

identities connecting. See Identity,

integrals, 482.

linear relation connecting any four, 44.

linear relations connecting any five, 47.

mean between two, 251.

multiplication, 323.

is associative, 337.

null, 3.

parallel, 10, 325 ; perpendicular, 325, 345.

product of two, interpreted as quaternion, 321.

product of any number, interpreted as quaternion,

337, 346, 394.

product of two rectangular, 333.

proportion of, 118, 175, 260.

subtraction, 5.

sum of, defined, 7.

termino-coUinear, 14, 343.

termino-complanar, 45, 344.

Velocity, vector of, 99.

Version, 164.

Versor or radial quotient regarded as a factor, 136.

of quaternion, 137; note, 124.

of vector, note, 137.

of scalar, 139.

of null quaternion, 139.

of conjugate, 138.

of reciprocal, 138.

reciprocal of, 138.

conjugate of, 139.

is power of unit vector, cf., 261.

right, as unit-line, 335.

depends on relative direction, 138.

of sum, 476.

of product, 171.

development of, 476.

Versors, condition of complanarity of, 148.

equation between, 409.

Volume, sign of a, 48, 342.

of parallelepiped, 247, 338.

of sphere, spheric shell, 483.

"Warren, note, 278.

Zero, square root of, 316, 291.

nuU quaternion is, 125.

versor of, 139.

Zone, area of, 482.

END OF VOLUME I.
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